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An Augmented IB Method & Analysis for Elliptic BVP on
Irregular Domains
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Abstract: The immersed boundary method is well-known, popular, and has had vast areas
of applications due to its simplicity and robustness even though it is only first order accurate
near the interface. In this paper, an immersed boundary-augmented method has been
developed for linear elliptic boundary value problems on arbitrary domains (exterior or
interior) with a Dirichlet boundary condition. The new method inherits the simplicity,
robustness, and first order convergence of the IB method but also provides asymptotic first
order convergence of partial derivatives. Numerical examples are provided to confirm the
analysis.
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1 Introduction
In this paper, we develop an augmented immersed boundary method for linear elliptic
boundary value problems (BVP) on arbitrary domains. Since its introduction in 1970’s,
the Immersed Boundary (IB) method [Peskin (1977)] has been flourished in many fields
including mathematics, engineering, biology, computational fluid dynamics (CFD), see for
example Peskin et al. [Peskin and McQueen (1995)] for reviews and references therein.
The IB method is not only a mathematical modeling tool in which complicated boundary
conditions can be treated as source distributions but also a numerical method in which a
discrete delta function is utilized to spread the singular source to nearby grid points. The
IB method is robust, simple, and has been applied to many problems.
The problem of interest in this paper is to solve the following boundary value problem
numerically

∇ · (β(x)∇u(x))− σ(x)u(x) = f(x), x ∈ Ω,

u|∂Ω = u0(X).
(1)
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Figure 1: A diagram of an interior boundary value problem on an irregular domain that is
embedded in a Rectangular domain with a uniform grid. The geometry is used in numerical
experiments in Section 5

For wellposedness requirement of the problem, we also assume that β(x) ≥ β0 > 0,
σ(x) ≥ 0, β(x) ∈ C(Ω), σ(x) ∈ C(Ω), and f(x) ∈ C(Ω), so that u(x) ∈ C2(Ω).

It is challenging to solve the problem above both in discretization and solving the resulting
linear system of equations after the discretization. Various efforts can be found in the
literature including the capacitance matrix method, fictitious domain methods, boundary
integral methods if the coefficients are constants, and the augmented immersed interface
method [Hunter, Li and Zhao (2002); Li, Zhao and Gao (1999)] etc., and some immersed
boundary (IB) based methods. Most of the methods mentioned are relatively sophisticated.
The purpose of this paper is to develop the IB method for the irregular domain problem that
has the same nature as the original IB method in terms of the accuracy and the simplicity.
The idea is to extend the setting to a rectangular domain so that the Peskin’s IB method
can be applied. The source strength involving a two-dimensional Dirac delta function
should be such a one that the boundary condition is satisfied, which once again fits the
Peskin’s interpolation formula that involves the Dirac delta function. We also propose a
simple method to approximate the first order partial derivatives using the computed finite
difference solution.

The rest of paper is organized as follows. In the next section, we explain the augmented
idea that transforms the irregular domain problem to an interface problem with an unknown
source strength v(∂Ω). The solution of the interface problem should satisfy the boundary
condition using the distribution theory. The discrete version is also presented. In Section 3,
we present the convergence analysis that confirms the first order convergence of solution.
In Section 4, we describe an algorithm to approximate the first order partial derivatives
followed by the error analysis. In Section 5, we present numerical examples of both interior
and exterior problems with a general boundary. We conclude and acknowledge in the last
section.
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2 An augmented IB method for linear elliptic BVP
We use an interior problem to explain the idea as illustrated in Fig. 1. We first embed the
domain Ω into a rectangular domain R = [a, b]× [c, d]. We also assume that ∂Ω ∩ ∂R is
empty, see Fig. 1 for an illustration. In discretization, the discrete boundaries ∂Ωh and ∂Rh
are at least several grids apart (≥ 5h). The idea is to extend the boundary value problem to
a rectangular domain R; then re-write the problem using the Peskin’s immersed boundary
formulation,

∇ ·
(
β̂(x)∇u(x)

)
− σ̂(x)u(x) = F (x)

+

∫
∂Ω
v (X) δ(x−X(s)) δ(y − Y (s))ds, x ∈ R, (2)

u0(X,Y ) =

∫ ∫
R
u(x, y)δ(x−X)δ(y − Y )dxdy, (X,Y ) ∈ ∂Ω, (3)

u|∂R = 0, (4)

where x = (x, y) is a point in the domain R ⊃ Ω , X = (X(s), Y (s)) is a point on
∂Ω assuming that ∂Ω has a parametric representation ∂Ω = (X(s), Y (s)). The modified
source term F (x) has the following form,

F (x) =

{
f, if x ∈ Ω,

0, if x ∈ R− Ω.
(5)

The coefficients β̂, σ̂ are non-negative extensions of β, σ from Ω to R. In this way, we
have transformed the original irregular domain problem to an interface problem with an
additional boundary variable v(s) which has been shown to be the flux jump across the
boundary ∂Ω,

[β∇u · n]∂Ω = v. (6)

The extended problem is still wellposed. The restriction of the solution of u(x, y) on Ω is
the solution to the original problem. Note that, when β and σ are constants, we use the
same β and σ in the entire rectangular domain R.

2.1 Augmented IB discretization

There are variety of methods that can solve the above interface problem accurately,
for example, the augmented immersed interface method. However, in this paper we
wish to investigate how the IB method can be applied to solve the problem since it is
straightforward, simple, and robust.
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For simplification of discussion, we use a uniform mesh

xi = a+ ih, i = 0, 1, · · ·M ; yj = c+ jh, j = 0, 1, · · · , N, (7)

assumingR = (a, b)× (c, d), whereM andN , M ∼ N , are the number of the grid lines in
x and y directions, respectively. The boundary ∂Ω is represented by a set of ordered control
points (Xk, Yk), k = 1, 2, · · ·Nb, which is then interpolated using a periodic cubic spline.
We use Uij to represent the finite difference approximation to u(xi, yj), Vk to v(Xk, Yk),
and so on.
The immersed boundary discretization then is simply the following

β̂i−1/2,jUi−1,j + β̂i+1/2,jUi+1,j + β̂i,j−1/2Ui,j−1 + β̂i,j+1/2Ui,j+1

h2

−

(
β̂i−1/2,j + β̂i+1/2,j + β̂i,j−1/2 + β̂i,j+1/2

h2
+ σ̂ij

)
Uij = Gij , (8)

u0(Xk, Yk) =
∑

ij

Uijδh(xi −Xk)δh(yj − Yk)h2, (9)

where β̂i+1/2,j = β̂(xi + h/2, yj), σ̂i,j = σ̂(xi, yj) and so on,

Gij = Fij +

Nb∑
k=1

Vkδh(xi −Xk)δh(yj − Yk)∆sk, (10)

and ∆sk =
√

(Xk+1 −Xk)2 + (Yk+1 − Yk)2, and δh(x) is a discrete delta function, for
example,

δε(x) =


1

4h

(
1 + cos

πx

2h

)
, if |x| < 2h,

0, if |x| ≥ 2h.
(11)

Note that, there are sophisticated discrete Dirac delta functions in the literature such as the
discrete radial delta function, for example, for various purposes. Here we simply apply the
original Peskin’s IB method for a first order method.
The matrix-vector form of the discretization (8), (9) can be written as
AhU +BV = F1,

QU + DV = F2,
(12)

where U has the dimension O(MN) while V has the dimension O(Nb) ∼ N , the
matrix Ah corresponds to the coefficient matrix from the finite difference scheme on the
rectangular domain. If we can solve the about system of linear equations simultaneously,
we get a finite difference approximation Uij to the original problem with O(h log h)
accuracy.
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2.2 Solving the linear system of equations

If we can solve the system of Eq. (12), then we get an approximate solution to the original 
boundary value problems at the grid points, inside for interior problems; and outside for
exterior problems. Another approach is to solve V first through the Schur complement of
(12) if we apply the block Gaussian elimination method to get

(D −QA−1
h B)V = F2 −QA−1

h F1 = F̄, or SV = F̄, (13)

where A−1
h F1 is the result of the elliptic solver on the rectangular domain given the source

term F1. It has been shown in Li et al. [Li and Ito (2006)] and other related papers, that the
matrix-vector multiplication SV given V is simply

SV = R(V) + F̄ = R(V)−R(0), (14)

whereR(V) = SV− F̄ is the residual of the boundary condition given V. More precisely,
the k-th component of SV is

(SV)k =
∑
ij

Uijδh(xi −Xk)δh(yj − Yk)h2 − u0(Xk, Yk), (15)

where Uij’s depend on V through (10). The right hand side of SV = F̄ can be
computed from −R(0) which corresponds to the residual of the boundary condition with
zero component values of the augmented variable, which is the result from the boundary
value problem on the rectangular domain. Since we know how to get the matrix-vector
multiplication, we can use a direct or GMRES iterative method to solve the system (13).

3 Convergence analysis
In this section we show that like the original IB method, the augmented IB method is also 
first order accurate except for a factor of log h. We use the exterior problem to illustrate the 
proof. The proof follows the path of the proof in Li et al. [Li, Zhao and Gao (1999)] for 
different problems. We use U and u to represent the vectors of approximate and exact 
solution at grid points on entire R; Tu and Eu = U − u are the vectors of the local 
truncation errors and the global error. We have Eu|∂Rh 

= 0 for the values at grid points 
on the boundary ∂R. Similarly, we define T q and E q =  V − v as the vectors of the local 
truncation error and the global error for the augmented variable in (9). According to the 
definitions, we have

AhU +BV = F1, AhE
u +BEv = Tu, (16)

QU +DV = F2, QEu +DEv = Tv, (17)

where the local truncation error vector Tu is defined as Tu = F1 −Ahu−Bv and so on.
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Theorem 3.1. Assume that u(x) ∈ C2(Ω), then the computed solution of the finite
difference equations (8)-(9) is also first order accurate except for a factor of log h, that
is, ‖E‖∞ ≤ Ch log h.

Proof: From (16)-(17), we have

SEv =
(
D −QA−1

h B
)
Ev = −Tv +QA−1

h Tu. (18)

From the consistency of the interpolation formula (9), we know that ‖Tq‖∞ ≤ Ch. From
the results in Li et al. [Li (2015)], we also know that ‖A−1

h Tu‖∞ ≤ Ch log h. From the
consistency of the interpolation scheme (9), we also conclude that ‖QA−1

h Tu‖∞ ≤ Ch.
Therefore, now we have SEv = U(Ev)−U(0) = O(h log h)− 0. This is because the IB
method has been shown to be first order accurate except for a factor of log h. Thus, U(Ev)
corresponds to the boundary value problem with u|∂R = 0 and with u|∂Ω = O(h log h).
From the maximum principle of elliptic partial differential equations, we know that the
solution is also bounded by O(h log h). Finally, the Schur complement matrix S is
an interpolation scheme from Uij to U(Xk, Yk) on the boundary. From the first order
convergence and the consistency condition we have ‖SEv‖ ≤ ‖Ev‖+O(h) = O(h log h).
This completed the proof.

4 Approximation of first order partial derivatives
We also propose a simple method to find approximations of the first order derivatives at the
control points on the boundary ∂Ω using a one-sided interpolation. We think that with
suitable choices of the parameters, the accuracy of the computed first order derivative
can also be first order accurate except for a factor of log h. Note that the IB method
is a smoothing method in which the discontinuity in the first order derivatives will be
smoothed out. However, away from the boundary, the solution is smooth and the derivatives
should be close to the true ones. We use the interior boundary value problem to explain
how to compute the first order derivatives of the solution at a boundary point (Xk, Yk) to
demonstrate the procedure.

Let Xk = (Xk, Yk) be a selected point on the boundary ∂Ω. We select a region Ωk:
δ1,h ≤ |Xk − xik,jk | ≤ δ2,h, where xik,jk ∈ Ω are regular grid points used (outside of
the support of the discrete delta function) in the interpolation, for example, δ1,h = 3h,
δ1,h = 4h or larger so that the region contains at least one grid point in the domain. The
selected region should be outside of the domain where the solution will be smoothed out
by the discrete delta function. We then use the standard central finite difference scheme to
compute the first order derivatives

∂U

∂x
(xik , yjk) =

Uik+1,jk − Uik−1,jk

2h
, (19)

∂U

∂y
(xik , yjk) =

Uik,jk+1 − Uik,jk−1

2h
. (20)



An Augmented IB Method & Analysis for Elliptic BVP 69

In our approach, we use the average of computed first order derivatives in the selected
region, that is,(
∂U

∂x

)
(Xk,Yk)

=
1

Nδ

∑
xik,jk

∈Ωk

∂U

∂x
(xik , yjk), (21)

where Nδ is the number of grid points in Ωk, see Fig. 2 for an illustration.

(Xk, Yk)

(xik, yjk)

∂Ω

Figure 2: An illustration to compute an approximation of first order derivatives at
(Xk, Yk) ∈ ∂Ω using a regular grid point

We conjecture that the computed first order derivatives are asymptotically first order
convergent to the true ones at Xk with suitable choices of δi. Below is the sketch of the
proof. We know that the computed solution is continuous, and it is smooth away from the
boundary, which means

Eik±1,jk = u(xik±1, yjk)− Uik±1,jk = Eik,jk + Ch
∂Eik,jk
∂x

+O(h2 log h),

where
∣∣∣∂Eik,jk

∂x

∣∣∣ ∼ O(1) and
∣∣∣∂Eik+1,jk

∂x − ∂Eik−1,jk

∂x

∣∣∣ ∼ O(h) since the error is also smooth
away from the boundary. Thus we have(
∂U

∂x

)
(Xk,Yk)

=
uik+1,jk − uik−1,jk

2h
+
Eik+1,jk − Eik−1,jk

2h
+ TDx

ik,jk

=
∂u

∂x
(xik , yjk) +O(h2) +O(h log h),

where |TDx

ik,jk
| ≤ Ch2 is the truncation error from the finite difference scheme. Thus

we conclude that the error of the first order derivative is of O(h log h). The behavior is
asymptotic since we need relatively fine meshes to make sure that the interpolation points
are not far from boundary but are away from the smoothed region.
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5 Numerical examples
We present a couple of numerical experiments to show the performance of the new
augmented IB method for solutions and their normal derivative at the boundary. All the
experiments are computed with the double precision and are performed on a MacBook
Pro with Pentium(R) Dual-Core CPU, 2.6 GHz, 8 GB memory. We present errors in the
infinity norm (pointwise). In all tables listed in this section, we use M = N = Nb. We
use a constant β and σ so that a fast Poisson solver based on Fast Fourier Transform (FFT)
can be utilized. We use the GMRES method to solve the Schur complement system for the
augmented variable with the tolerance 10−6 and 0 as the initial guess in all computations.
The interface is a general curve

r = 0.5 + ε sin(Lθ), 0 < ε < 0.5, L is an integer, (22)

within the rectangular domain R = [−1, 1]× [−1, 1]. One special case is presented in Fig.
1 with ε = 0.2, L = 5.

We start with an interior problem with r =
√
x2 + y2 ≤ 0.5 + 0.2 sin(5θ). The analytic

solution is designed as

u(x, y) = sinx cos y. (23)

The source term and the Dirichlet boundary condition are determined from the PDE and the
analytic solution. In Tab. 1, we present a grid refinement analysis when β = 1, σ = 1.5.
The second column in the table shows the maximum errors of the finite difference solution
while the third column shows the ratios of EN (u)/E2N (u) which are close to number
two for a first order accurate method as we double the N . The first order convergence of
solution is clearly verified. The fourth column shows the errors of the normal derivative of
the solution at the boundary ∂Ω pointing outward,

un =
∂u

∂n
=
∂u

∂x
cos θ +

∂u

∂y
sin θ (24)

assuming the normal derivative at (Xk, Yk) is n = (cos θ, sin θ). The fifth column shows
the ratios of consecutive errors which approach number two as the N gets larger.
Next we show the numerical results for an exterior problem with the same boundary. The
analytic solution is designed as

u(x, y) = r4 + C0 log(2r). (25)

The source term and the boundary condition are determined from the PDE and the analytic
solution. In Tab. 2, we present a grid refinement analysis when β = 2.5, σ = 1.5. We
observe similar behavior as the previous example.
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Table 1: A grid refinement analysis for the interior domain problem with σ = 1.5

N EN (u) ratio EN (un) ratio

16 1.2246e-01 3.4370e-01
32 7.3012e-02 1.6773 2.3324e-01 1.4736
64 3.4722e-02 2.1028 1.2802e-01 1.8219
128 1.8401e-02 1.8870 8.5695e-02 1.4939
256 9.0522e-03 2.0327 4.2197e-02 2.0308
512 4.6185e-03 1.9600 2.1648e-02 1.9493

Table 2: A grid refinement analysis for the exterior domain problem with σ = 1.5

N EN (u) ratio EN (un) ratio

16 1.0543e-02 1.7277e-01
32 6.4618e-03 1.6315 1.2422e-01 1.3909
64 3.0752e-03 2.1013 7.3291e-02 1.6948
128 1.7951e-03 1.7131 3.7054e-02 1.9779
256 8.0070e-04 2.2419 1.8329e-02 2.0216
512 4.4263e-04 1.8090 1.0189e-02 1.7989

As last example, we show the case β = 1, σ = 0, the interior boundary is simply a
circle r = 0.5, that is, we have a Poisson equation outside the circle. The solution is
u(x, y) = sinx cos y. The grid refinement analysis results are presented in Tab. 3. We can
see that while the errors for the solution are smaller than that of the normal derivatives, the
convergence order is roughly the same. The last column shows the number of GMRES
iterations without any preconditioning techniques. In this example, the curvature is a
constant and the errors behave more uniformly.

Table 3: A grid refinement analysis for the exterior domain problem with σ = 0 and a
circle boundary r = 0.5

N EN (u) ratio EN (un) ratio No.
16 7.9908e-03 2.4436e+00 4
32 4.5244e-03 1.7662 1.3344e-01 1.8313 9
64 2.6955e-03 1.6785 6.6886e-02 1.9950 22
128 1.1601e-03 2.3235 3.2501e-02 2.0580 34
256 7.0706e-04 1.6407 1.7205e-02 1.8891 47
512 3.1290e-04 2.2597 8.8740e-03 1.9388 62
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6 Conclusion
In this paper, we proposed a new augmented immersed boundary method for general elliptic
boundary value problems with a Dirichlet boundary condition on irregular domains. The
new method inherits many properties of the original IB method for interface problems such
as simplicity, robustness, and first order convergence. We also proposed a simple method
to estimate first order partial derivatives which is asymptotically first order accurate.
The convergence of method for the solution and the first order derivatives are also
proved under appropriate regularity assumptions. How to generalize the method to other
boundary conditions and how to develop efficient preconditioning techniques for the Schur
complement using only the matrix and vector multiplications are two open challenges.




