
Copyright c© 2019 Tech Science Press CMES, vol.119, no.1, pp.91-124, 2019

OpenIFEM: A High Performance Modular Open-Source Software
of the Immersed Finite Element Method for Fluid-Structure

Interactions
Jie Cheng1, Feimi Yu1 and Lucy T. Zhang1, *

Abstract: We present a high performance modularly-built open-source software -
OpenIFEM. OpenIFEM is a C++ implementation of the modified immersed finite element
method (mIFEM) to solve fluid-structure interaction (FSI) problems. This software is
modularly built to perform multiple tasks including fluid dynamics (incompressible and
slightly compressible fluid models), linear and nonlinear solid mechanics, and fully coupled
fluid-structure interactions. Most of open-source software packages are restricted to certain
discretization methods; some are under-tested, under-documented, and lack modularity
as well as extensibility. OpenIFEM is designed and built to include a set of generic
classes for users to adapt so that any fluid and solid solvers can be coupled through
the FSI algorithm. In addition, the package utilizes well-developed and tested libraries.
It also comes with standard test cases that serve as software and algorithm validation.
The software can be built on cross-platform, i.e., Linux, Windows, and Mac OS, using
CMake. Efficient parallelization is also implemented for high-performance computing for
large-sized problems. OpenIFEM is documented using Doxygen and publicly available to
download on GitHub. It is expected to benefit the future development of FSI algorithms
and be applied to a variety of FSI applications.

Keywords: Immersed finite element method, open-source, parallelization, fluid-structure
interaction, adaptive mesh refinement.

1 Introduction
Fluid-structure interactions are difficult to model as they involve complicated motions
and deformations of the fluid-structure interface. Tremendous research efforts have been
devoted to developing numerical algorithms for FSI problems since 1970s. One of the early
attempts is the Arbitrary Lagrange Eulerian (ALE) method [Hughes, Liu and Zimmermann
(1981); Liu and Ma (1982); Liu, Chang, Chen et al. (1988); Hu, Patankar and Zhu
(2001)]. ALE method requires conforming meshes between fluid and structure, which
can handle complicated fluid-solid interface at the cost of expensive mesh-updating and

CMES. doi:10.32604/cmes.2019.04318 www.techscience.com/cmes

1 Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute,
Troy, NY, 12180, USA,

 ∗ Corresponding Author: Lucy T. Zhang. Email: zhanglucy@rpi.edu

92 Copyright c© 2019 Tech Science Press CMES, vol.119, no.1, pp.91-124, 2019

re-meshing. In practice, the difficulty of re-meshing grows with the large displacement
and deformation of the fluid-structure interface. To avoid this process, a series of
non-conforming techniques have emerged to model FSI problems. One of which is the
immersed method which postulates the co-existence of the fluid and the solid domains so
that non-conforming meshes or discretizations can be used for the fluid and the structure.
Immersed boundary (IB) method is initially developed by [Peskin (1977, 2002)], in which
solid membrane is modeled as elastic fibers, and described as a set of equivalent body forces
in the Navier-Stokes equations. Based on the IB method, immersed interface method is
developed by Peskin [Leveque and Li (1994)], which improves the accuracy of the original
formulation to capture the pressure jump of the interface. Another derivative of the IB
method is the extended immersed boundary method [Wang and Liu (2004)] which replaces
the simplistic elastic fiber model with the standard finite element method. Immersed finite
element method (IFEM) [Zhang, Gerstenberger, Wang et al. (2004); Zhang and Gay (2007);
Wang, Wang and Zhang (2012)], on the other hand, completely changes the formulation
so that the immersed domain becomes “volume-based” rather than discrete “point-based”.
It models the entire solid volume using finite elements, where the solid occupies a volume
and the solid constitutive law is represented.
In all the immersed methods mentioned above, including the immersed finite element
method, the solid displacement is imposed from the fluid velocity, rather than being
solved from its own governing equations. The modified immersed finite element method
(mIFEM) changes the formulation so that the imposition of the velocity is reversed: the
solid dynamics is solved using its own governing equation and its velocity is imposed
onto its overlapping fluid domain [Wang and Zhang (2013)]. Comparing to the original
IFEM, which may lead to severe solid mesh distortion resulting in the overestimation of
the solid deformation especially for high Reynolds number flows. The mIFEM preserves
the solid dynamics by faithfully solving its governing equations, therefore it produces
more accurate and realistic coupled solutions. Furthermore, mIFEM does not impose
fluid velocity onto the solid, thus removes the incompressibility constraint on the solid
when the background fluid is incompressible. An important advantage of the mIFEM is
that it is minimally-intrusive to the fluid and solid solvers, which allows modularity in
the solvers. The interactions between the solid and the fluid are reflected as tractions
on the solid boundary, body force and no-slip boundary conditions in the artificial fluid
region. As a result, the information exchange between the fluid and the solid is rather
straightforward because the fluid/solid solvers are interfaced to apply those Neumann and
Dirichlet boundary conditions.
As the immersed algorithms become further utilized in FSI applications, a number
of open-source software packages implementing these algorithms became available.
Currently the most developed ones are based on IB method. For example, IB method
with Adaptive Mesh Refinement (AMR), namely IBAMR [Griffith (2014)], has been under
rapid development for more than 4 years. It uses mainly C++ language. IBAMR has
become relatively complete in the sense that it contains many variants of the immersed
boundary method, which are specialized to solve bio-membrane types of problems. It has

OpenIFEM: A High Performance Modular Open-Source Software 93

been mainly applied to cardiac blood flows [Battista, Lane and Miller (2017)] as well as
swimming and flying animals [Bale, Hao, Bhalla et al. (2014)]. Another software package
is PetIBM [Chuang, Mesnard, Krishnan et al. (2018)]. Different from IBAMR, PetIBM
is rather specialized for the Immersed Boundary Projection Method [Wang, Giraldo and
Perot (2002)], with applications for only incompressible fluid. cuIBM [Layton, Krishnan
and Barba (2011)] is a new immersed boundary method code based on GPU parallelization.
cuIBM is currently under development, at the time of writing it is only capable of solving
2D incompressible Navier-Stokes equations. This software is focused on GPU acceleration
on a single CUDA-capable device, and shows good speedup for small and medium size
problems. Due to the shorter history, currently there is few open-source packages for
immersed finite element method. One of them is ans-ifem [Heltai, Roy and Costanzo
(2012)]. Ans-ifem is a C++ implementation of Heltai et al. [Heltai and Costanzo (2012)],
which is more of a demonstration rather than a usable software, and is no longer maintained.
It comes with several examples that help users understand the algorithm. However, the
numerical procedures to solve the fluid and solid governing equations are monolithic in
some way, and the entire code is in one piece, which makes it very challenging to modify
any part of the code to suit an application.
OpenIFEM will address the following issues that exist in the available FSI software
packages:

• Modularity and extensibility: one of the most common problems of the existing
projects is the lack of modularity and extensibility, which hinders the customization
of the code. Very often, a user wants to plug his/her own numerical model into the
software for a certain engineering application. To address this, the components of
OpenIFEM are divided into a variety of independent classes that can be replaced
by the user, with a set of Application Program Interfaces (APIs) defined from high
level to low level to ensure the algorithm still works after customization. At a higher
level, it is easy for a user to add a new fluid or solid solver into OpenIFEM without
having to change the FSI algorithm. The FSI solver interacts with the fluid and the
solid solvers through a small number of APIs such as element-wise body force and
traction boundary conditions. The user only needs to ensure the new solver supports
these APIs. At a lower level, effort is made in OpenIFEM to account for possible
extensions to solid constitutive law, time/space-dependent boundary conditions, etc.
Generic classes that handle common routines are written so users can easily derive
a new class from them and override these routines.

• Restrictions on discretization techniques: existing projects have restrictions on
the numerical methods to solve fluid/solid governing equations. For instance,
PetIBM is restricted to Perot’s fractional step method [Perot (1993)] to solve the
Navier-Stokes equations; cuIBM also only works with projection method. On
the contrary, OpenIFEM does not make assumptions on how the fluid and solid
governing equations are solved, as long as they allow standard boundary conditions
such as body force to be set.

94 Copyright c© 2019 Tech Science Press CMES, vol.119, no.1, pp.91-124, 2019

• Efficiency: OpenIFEM is fully parallelized using MPI. Not all algorithms can be
parallelized to the same degree, due to the fact that some algorithms require intense
communications among ranks. mIFEM can be sufficiently parallelized because only
limited communications are required among processes. For example, the core of
mIFEM, i.e., the evaluation and interpolation of FSI stress, fluid traction, solid
velocity etc., are performed locally on each process, without using information that
are only available to other processes.

• Reproducibility: existing FSI modeling projects often do not pay enough attention
to the reproducibility. OpenIFEM has a test suite to ensure the computational results
are reproducible. So far, it includes 29 test cases which cover various components
of the code. These cases are still growing with the increase in participation from
developers. All test cases are accompanied with input parameters and descriptions,
and can be run with a single command by using CMake’s module ctest, which
prevents regressions during developments.

• Documentation: as pointed out in Mesnard et al. [Mesnard and Barba (2017)],
open source research software is often poorly documented and unsupported, and
on occasion, can be an unreadable mess. OpenIFEM, on the other hand, is
well-documented in a consistent style. In particular, the mathematical formulas
are explained and viewed in html or pdf format. In addition, the coding style in
OpenIFEM follows consistent conventions to improve readability, such as naming
of variables, and fixed indentations of lines.

This project aims to provide a flexible, high performance open-source software for IFEM
simulations, using the modular mIFEM formulation. To the authors’ knowledge, it is the
first time such a comprehensive software is introduced. The rest of paper is organized
as follows: in Section 2 we briefly review the mIFEM algorithm. Then in Section 3 we
introduce the design of OpenIFEM in detail, where the software work flow, main features,
data structures and external tools, as well as the issues related to software license and
contributions are explained. Numerical examples for solid solver, fluid solver, and FSI
solver are presented in Section 4. Finally, conclusions are drawn in Section 5.

2 A Brief Review of the Modified Immersed Finite Element Method (mIFEM)
The premise of the immersed approaches is that it couples an Eulerian background fluid
that is everywhere in the domain with a Lagrangian solid domain that “floats" on top of the
fluid. Similar to the original IFEM algorithms, in an FSI computational domain there exists
an artificial fluid domain Ω that overlaps with the solid domain Ωs. Combined with the real
fluid domain Ωf , the entire fluid domain is governed by Navier-Stokes equations and the
impact of the solid is reflected in the FSI force. Different from other fluid-driven immersed
method, such as the IB or the original IFEM, the mIFEM algorithm has the advantage of
capturing solid dynamics, handling large density disparities, and avoiding severe solid mesh
distortion in high Reynolds number flows. For this reason, OpenIFEM adopts mIFEM

OpenIFEM: A High Performance Modular Open-Source Software 95

algorithm as the component solvers can be modularly built. The workflow o f mIFEM
algorithm is shown in Fig. 1. A variety of options for fluid solvers are available including
incompressible and slightly compressible fluids, f ully i mplicit a nd i mplicit-explicit time
schemes etc. Similarly, solid solvers can include different material models and flexible
time discretization schemes. For detailed derivation please refer to Zhang et al. [Zhang,
Gerstenberger, Wang et al. (2004); Zhang and Gay (2007); Wang, Wang and Zhang (2012);
Wang and Zhang (2013)]. The FSI process does not intrude the fluid and solid governing
equations themselves, except for when applying appropriate and consistent Dirichlet and
Neumann boundary conditions. It does not have particular requirements on discretization
methods, e.g., finite volume vs. finite elements. Doing so allows fluid and solid
solvers to be treated as black boxes, where the algorithm can be implemented in a
modularized way: a solid solver that solves the solid dynamic equations, a fluid solver
that solves the fluid dynamic equations, and an FSI solver works as a median to
communicate and pass information between solvers.

Figure 1: Workflow of the mIFEM algorithm: steps 1 and 5 are independent solid and fluid
dynamic solvers, steps 2, 3, 4, 6 and 7 are done by the FSI solver

3 Software design
OpenIFEM is written in C++ with modern design where the components are split into
different files and classes to ensure modularity and sustainability, with a clear hierarchical
inheritance. In this section, we introduce the structure of OpenIFEM as well as some of its
major features.

3.1 Dependencies and tools

OpenIFEM currently includes several finite element solvers: nonlinear solid dynamics,
incompressible and compressible fluid dynamics solvers. Both serial and parallel
computations using distributed memory are supported. It also includes several additional

96 Copyright c© 2019 Tech Science Press CMES, vol.119, no.1, pp.91-124, 2019

features such as Adaptive Mesh Refinement (AMR) and user-defined time/space-dependent
boundary conditions. We heavily use well-recognized and well-maintained third-party
libraries to implement OpenIFEM. The functionalities of these libraries and the
justifications of usage are explained below. An illustration of the OpenIFEM dependencies
is demonstrated in Fig. 2:

Figure 2: Illustration of software dependencies

deal.II: deal.II [Bangerth, Hartmann and Kanschat (2007)] is a C++ program library
that facilitates developers to write programs for solving partial differential equations
numerically. It adopts the state-of-the-art programming techniques to provide a large
number of data structures and standard routines that are required in finite element methods,
such as classes to handle interpolation and integration, routines to reorder the degrees of
freedom for efficient matrix solving. Specifically, we use deal.II for its basic data
structures in finite element method such as mesh representation, shape functions, Gauss
quadrature, etc. OpenIFEM is built upon deal.II to avoid unnecessary tedious work
while keeping the core code short and clean.
PETSc: PETSc is a highly optimized linear algebra package created for C/Fortran
programs which further depends on other packages such as lapack/blas and MUMPS
[Balay, Gropp, McInnes et al. (1997); Balay, Abhyankar, Adams et al. (2017)]. PETSc
also offers a set of user-friendly APIs to do parallel tasks so that users do not have to
concern the details of partition, communication, and synchronization. OpenIFEM relies
on PETSc to carry out distributed-memory parallel computations. We further utilize the
fact that deal.II has created modern C++ wrappers for PETSc data structures that are

OpenIFEM: A High Performance Modular Open-Source Software 97

consistent with the ones of deal.II. By using uniform and consistent data structures, the
parallel code looks surprisingly similar to the serial code with minimum intrusion.
p4est: Another important feature in OpenIFEM is the adaptive mesh refinement for
enhanced solution accuracy during interfacial solution exchanges. In the design of the
IFEM, only the locations of interest, i.e., in the overlapping region needs to be refined,
rather than globally, thus allowing us to investigate interesting details of the computational
field without high computational cost. The mesh structure in OpenIFEM is handled by
p4est. p4est is a tree-based method [Burstedde, Wilcox and Ghattas (2011)], which
makes use of recursive encoding schemes while allowing non-overlapping refinement.
Therefore, it combines efficiency and simplicity. We use p4est to deal with mesh
refinement and coarsening in both serial and parallel implementations.

3.2 Modularity

OpenIFEM is designed to solve not only fluid-structure interaction problems but also
independent solid mechanics and fluid mechanics problems. The mIFEM algorithm
has a natural advantage that it does not pose restrictions on how the fluid governing
equations and solid equations should be solved. An FSI simulation runs as long as
proper boundary conditions are applied to the fluid solver and solid solver. In the
current version, multiple fluid solvers and solid solvers are implemented in OpenIFEM
for different applications and all of them can be used in FSI simulation. A typical
scenario of Object-Oriented Programming (OOP) is to derive all the fluid solvers from
a base class named FluidSolver which handles the common members and methods.
Similarly, the solid solvers are derived from a base class named SolidSolver. In
an FSI application, a FSI object is constructed, which takes a generic FluidSolver
and a generic SolidSolver as members. Any individual fluid or solid solver can
be used. This design guarantees the modularity of software components. For instance,
the following code snippet demonstrates the combination of a hyperelastic solid solver
(Hyperelasticity) and an implicit incompressible Navier-Stokes solver (InsIM):
F l u i d : : InsIM <2> f l u i d ;
S o l i d : : H y p e r E l a s t i c i t y <2> s o l i d ;
FSI <2> f s i (f l u i d , s o l i d) ;

3.3 Data structures

Various PDEs are solved with finite elements in OpenIFEM, which share a large number
of data structures. Among the common data structures, the following are especially
important: Triangulation, DoFHandler, FiniteElement, CellProperties
and Interpolator, where the first three classes are provided in deal.II and the rest
are defined in OpenIFEM.
Triangulation is used to describe a mesh as a hierarchy of levels of elements which
may have different refinement levels. It also comes with readers for commonly used mesh
generators such as Gmsh and commercial software ABAQUS.

98 Copyright c© 2019 Tech Science Press CMES, vol.119, no.1, pp.91-124, 2019

The values of degrees of freedom are stored in a vector. However, in OpenIFEM and
other deal.II-based applications, we do not access individual degrees of freedom
directly using vector indices. Instead, they are accessed through an intermediate class
DoFHandler, which has member functions to query the indices of degrees of freedom
residing on vertices, lines, faces, etc. This intermediate layer hides the degrees of freedom
indices from the users, so that the users do not have to know the ordering of the degrees of
freedom, and DoFHandler can reorder them when necessary.
FiniteElement is the base class for finite element discretization which consists of a
number of groups of variables and functions including descriptions of the shape functions
and their derivatives; the locations of the supporting points; and the interfaces to evaluate
function values and derivatives at an arbitrary point in an element.
CellProperty is a class defined in OpenIFEM to store the cell/quadrature point-specific
information. Every element is associated to CellProperty which contains the material
properties and can be easily accessed through a pointer. The element-specific properties
can be used in the assembly process, thus nonuniform material properties can be easily
assigned. In addition, this data structure is used in the FSI process for the FSI force to be
expressed as a body force at the integration points. It is set by a FSI object and used as
boundary conditions of a FluidSolver object.
Interpolator is a class that performs FSI implementation tasks. During the
implementation exchanges, the FSI force is interpolated from the solid nodes onto the fluid
quadrature points; the solid nodal velocities are interpolated onto the artificial fluid nodes;
the fluid stress is computed at the solid boundary quadrature points to obtain the traction as
boundary conditions, which also requires the interpolation of fluid velocity and pressure.
Given a DoFHandler and a source vector associated with it, an Interpolator
interpolates the source vector to an arbitrary target point: it iterates through the elements
and finds the one that contains the target point, then interpolates the source vector to that
point using shape functions. At each time step, same interpolation is performed using
different source vectors, but Interpolator remembers the element that contains the
point and reuses it.

3.4 Input files

OpenIFEM is currently a terminal-based application that uses text file to specify input
parameters. It queries more than 40 input parameters. As the code is further developed, this
number is expected to increase. Therefore, a uniform and organized approach to declare
and parse input parameters are very essential.
The input parameters are divided into 3 sections: general simulation parameters,
fluid-specific parameters, and solid-specific parameters. A ParameterHandler class
is used to handle the input parameters. Once an input parameter is declared in this class,
it automatically reads the corresponding variable from the input file. Meanwhile, it prints
hints on the screen for the user, and checks the validity of the user-provided values. The
following text snippet is extracted from a sample input file of OpenIFEM as an example:

OpenIFEM: A High Performance Modular Open-Source Software 99

Simulation parameters
subsection Simulation
Type of simulation: FSI/Fluid/Solid
set Simulation type = FSI
The end time of the simulation in second
set End time = 2e0
The time step in second
set Time step size = 5e-3
The output interval in second
set Output interval = 5e-3
Mesh refinement interval in second
set Refinement interval = 5e-2
Checkpoint save interval in second
set Save interval = 1e-1
...

end
Fluid solver
subsection Fluid finite element system
The degree of pressure element
set Pressure degree = 1
The degree of velocity element
set Velocity degree = 2
...

end
subsection Fluid material properties
The dynamic viscosity
set Dynamic viscosity = 0.1
Fluid density
set Fluid density = 1
...

end
Solid solver
subsection Solid finite element system
The polynomial degree of solid element
set Degree = 1
...

end
subsection Solid material properties
Material type
set Solid type = NeoHookean
Solid density, used by all solid solvers
set Solid density = 6
...

end

3.5 Parallelization

The parallelization of the solvers can be divided into four parts, namely partitioning,
assembly, solving and solution output. In OpenIFEM, two kinds of parallelization
strategies, distributed mesh and shared mesh, are used for optimal efficiency. Depending
on the parallelization strategy deployed, each solver may have slight difference in parallel
implementation. We will first go through the process of an individual parallel solver (which
can be either fluid or solid solver), then demonstrate the parallelization strategy of the FSI

100 Copyright c© 2019 Tech Science Press CMES, vol.119, no.1, pp.91-124, 2019

coupling.
Partitioning Partitioning starts at the very beginning of the program. It divides the
elements and nodes into partitions, associated to the MPI ranks. An optimal partitioning
should have every MPI rank own a continuous chunk of elements, with approxiamtely the
same number of degrees of freedom. In all the following procedures, such as assembly,
solving linear system, output, each MPI rank is only responsible for its own partition. This
is true for both distributed mesh and shared mesh strategies. However, there is a nuance
between these two strategies in terms of memory allocation:

• With fully distributed mesh partition, each MPI rank only stores part of the mesh,
and part of the vectors, matrices, etc. None of the MPI ranks has full knowledge
of the entire mesh. Instead, an MPI rank “owns” some elements, nodes, degrees of
freedom etc. that it can read and modify. However, in finite element method, an
MPI rank has to communicate with neighboring ranks. The information exchange
happens in a “ghost” layer, which covers the direct neighbors of the elements owned
by a specific MPI rank. An MPI rank cannot write to, but can read its ghost layer.
The values in the ghost elements are set by the MPI ranks that actually “own” them.
Distributed mesh partition saves a lot of memory by only storing a portion of the
mesh, vectors, matrices etc. While this strategy is scalable, it causes difficulty in the
FSI process if both fluid and solid solvers adopt it, which will be explained later in
this section.

• Shared mesh partition uses a more straightforward way. Although each rank only
writes to its own partition, it has a copy of the entire mesh, so it “knows” the
information of the entire domain. It can be thought of as the distributed mesh with
a large ghost layer that covers all the elements and nodes that are not locally owned.
Comparing to the distributed mesh, it uses more memory on each rank. But if the
mesh is not too big to be the bottleneck, it should not cause any problem. The
distinction between distributed mesh and shared mesh is shown in Fig. 3.

OpenIFEM: A High Performance Modular Open-Source Software 101

Figure 3: Illustration of distributed mesh and shared mesh

Assembly: In the element-wise assembly process, every rank assembles the local matrices
and right hand side vectors for the elements in its partition. Since the partition is
continuous, the information required to complete the assembly is local to each rank except
for the elements that are on the boundaries of partitions. For those elements, data in other
ranks can be accessed through the ghost layer, where only point-to-point communication
is involved. The overall communication is insignificant, therefore the workload per rank
decreases almost linearly with the number of MPI ranks. As a result, assembly process
becomes the most scalable part of the entire program.
Solving: The solving part is done by iterative linear solvers provided in PETSc [Balay,
Abhyankar, Adams et al. (2017)]. To enable the tailored preconditioners that we use in
the fluid solvers, the intermediate matrices should also be assigned and partitioned during
the partitioning step. In the iterative linear solvers implemented in PETSc, two types of
computations are performed: matrix-vector multiplication and vector norm computation.
Since each rank only stores its own part of the matrix and vector, communication
is required for both types of computation. While matrix-vector multiplication only
involves point-to-point communication, a collective operation is necessary for vector norm
computation, which requires heavy communication in the solving part.
Efficiency tests: Two sets of test cases, strong scaling test and weak scaling test, are
presented here to evaluate the parallel performance of fluid solver. The test cases are run
on DRP cluster located in the Center of Computational Innovation (CCI) at Rensselaer
Polytechnic Institute, which consists of 64 nodes with 2 Intel Xeon E5-2650 processors
and 128 GB of system memory on each node and connected via 56 GB FDR Infiniband. In
the strong scaling test, the total degrees of freedom is set to be around 1.3× 106. In the
weak scaling test, the degrees of freedom on each rank are fixed to be around 5000, and the
problem size grows with MPI ranks. The cases are tested on 1 to 256 MPI ranks (up to 16

102 Copyright c© 2019 Tech Science Press CMES, vol.119, no.1, pp.91-124, 2019

nodes). The results of performance tests are shown in Fig. 4. In the strong scaling test, the
speedup is significant from 1 to 16 cores as only intra-node communication is involved at
this stage. In transition from 16 cores to 32 cores, there is a slow-down in the solving time
because inter-nodal communication comes into play. For problems larger than 32 cores,
the speedup is almost linear with the number of cores. In the weak scaling test, we find that
the time for assembly does not change much as the problem size increases. This indicates
that assembly has a good scalability as expected. The time for solving increases linearly
with the problem size, because iterative solvers have the complexity of order O(n2), where
n is the number of rows/columns which corresponds to the number of degrees of freedom.
Therefore, the linear increase in solving time is also satisfactory.

(a) Strong scaling (b) Weak scaling

Figure 4: Performance test results

Output Depending on whether a solver uses distributed mesh or shared mesh, the parallel
output process can be different. In a distributed mesh solver, each rank outputs its own
data into a .vtu file, which contains only the information on that particular rank. Then
a .pvd file is written by rank 0 to indicate all .vtu files to be read. Post-processing
software ParaView [Ahrens, Geveci and Law (2005)] then puts together the individual files
to accomplish a complete visualization. On the contrary, in a shared mesh solver, rank 0
collects all the results from other ranks.
FSI coupling The difficulty of FSI parallelization lies in the fact that the iteration of fluid
elements and solid elements are nested during the search of the interpolation process. In
order to compute the FSI force, for every fluid element, we need to determine whether
any of its quadrature points is contained in a solid element (as shown in Algorithm 3.1);
similarly, for every quadrature point on a solid boundary, we need to search which fluid
element it is immersed in, so that the traction applied to the solid boundaries can be
computed (as shown in Algorithm 3.2). Because of the nested loops during the search over
both fluid and solid meshes, if both solvers use distributed mesh, there is no way for one
MPI rank to search over the elements owned by other ranks. Therefore, at least one of the
solvers must use shared mesh. In many of our FSI problems, the solid geometry has much

OpenIFEM: A High Performance Modular Open-Source Software 103

smaller mesh size and less memory consumption, we choose to use shared mesh for solid
solver in the parallelization of the FSI coupling. As a result, each rank has a local mesh of
the fluid and the entire mesh of the solid, shown in Figure 5. With the solid solver using
shared mesh and the fluid solver using distributed mesh, the nested loops become feasible:
when a solid loop is nested in a fluid loop, nothing has to be changed because each rank
already has the entire information of the solid; when a fluid loop is nested in a solid loop,
each rank loops over only its local fluid part, then a collective communication gathers the
results. For simplicity and clarity, we only include the primitive version of this searching
process, i.e., a brute force search in this paper. We will discuss further optimization of the
FSI search in future work.

Algorithm 3.1 The nested searching loop for computing fluid FSI force

1: for all fcell in fluid elements do . Loop over fluid elements
2: for all qp in quadrature points do . Loop over quadrature points
3: for all scell in solid elements do . Loop over solid elements
4: if qp is in scell then
5: Compute FSI force
6: end if
7: end for
8: end for
9: end for

Algorithm 3.2 The nested searching loop for computing solid FSI traction

1: for all scell in solid elements do . Loop over solid elements
2: for sface in element faces do . Loop over element faces
3: if sface is on solid boundary then
4: for qp in face quadrature points do . Loop over face quadrature points
5: for all fcell in fluid elements do . Loop over local fluid elements
6: if qp is in fcell then
7: Compute FSI traction
8: end if
9: end for

10: end for
11: end if
12: end for
13: end for

104 Copyright c© 2019 Tech Science Press CMES, vol.119, no.1, pp.91-124, 2019

Figure 5: Combination of distributed mesh and shared mesh for FSI coupling

3.6 Adaptive mesh refinement

Adaptive mesh refinement (AMR) is widely used in fluid mechanics and solid mechanics
simulations. It has become a component in many software packages, such as OpenFOAM
[Greenshields (2015)] and ABAQUS [Smith (2014)]. In FSI simulations, AMR has been
used in ALE methods, as reported in Bathe et al. [Bathe and Zhang (2009); Boman and
Ponthot (2012)], which are focused on preserving geometrical features at the interface.
Feature reserving method is complicated as each type of nodes (corner, edge, surface
and volume) must be treated with a different algorithm. In immersed methods, the
major concern is that the fluid-structure interface projected from the solid is not explicitly
represented but rather fitted into the background elements. If the background resolution is
sufficiently fine, then the immersed solid has a sharper representation. If it is coarse, then
the solid boundary is smeared. A mesh smoothing algorithm specialized for tetrahedral
elements is implemented in Van Loon et al. [Van Loon, Anderson, De Hart et al. (2004)] for
fictitious domain method, where the fluid elements that coincide with the solid boundaries
are refined at every time step. In this smoothing method, the fluid nodes that lie on solid
boundary must stay unchanged, therefore the number of nodes on solid boundary cannot
be changed, which is a limitation on the resolution of the interface. On the other hand, a
structural adaptive mesh refinement strategy is introduced [Vanella, Rabenold and Balaras
(2010)] where block-structured rectangular patch grids are used, and embedded in the
projection method to solve fluid governing equations. Similarly, AMR is implemented
as a hierarchical structured Cartesian grids organized as a sequence of patches in Grifftith
et al. [Griffith, Luo, Griffith et al. (2017)], where the target of the refinement is also the
fluid-structure interface. This AMR method is designed specifically for structured grid, in
which the neighborhood relationships are defined by storage arrangement. Therefore, it is
suitable for finite difference method, but not for finite element method where the geometry
is often too complicated to be meshed with structured grid. The AMR functionality
in OpenIFEM is powered by p4est. p4est represents the grid as a quad/oct-tree of
elements with different refinement levels, which is designed to work in parallel and scales

OpenIFEM: A High Performance Modular Open-Source Software 105

to hundreds of thousands of processor cores. Different from the methods mentioned before,
p4est works with unstructured quadrilateral and hexahedral elements, which can deal
with complicated geometries. Also, as a mesh management tool designed for parallel
computations, p4est supports additional functionalities such as mesh partitioning and
ghosting.
Although p4est implements the mesh adaption algorithm which is ready to be used,
two issues remain for user applications: 1. the so-called hanging-node constraints; 2.
refinement/coarsening criterion. As illustrated in Fig. 6, Q1 and Q2 denote two unrefined
elements. Let us suppose Q2 is refined once, which then split into 4 smaller elements;
and Q3 denotes the upper left one. Assuming each vertex is associated with one degree of
freedom, and the IDs of the degrees of freedom along the edge between Q1, Q2 are x0, x2,
x1 respectively.

Figure 6: Illustration of hanging-node constraints

x2 is not a degree of freedom in Q1, but the midpoint at the edge between x0 and x1, it has
to meet the following constraint:

x2 =
1

2
x0 +

1

2
x1 (1)

This additional constraints due to the local refinement is called hanging-node constraints.
As the mesh being refined or coarsened, hanging-node constraints are introduced into the
system, on top of the regular constraints due to boundary conditions. As a result, the
hanging-node constraints must be handled by the user application that utilizes p4est. In
OpenIFEM, every time the mesh changes, initialize_system is called, in which
the hanging-node constraints will be identified and added into the system constraints. The
handling of hanging-node constraints is done through the interface of deal.II.
OpenIFEM defines two types of refinement/coarsening criterion. The first type is solution
gradient based, which is used in fluid dynamics and solid mechanics computations. This
method is proposed in Kelly et al. [Kelly, De SR Gago, Zienkiewicz et al. (1983)], where
the jump of the solution (second derivative of solution) is evaluated at element faces and
scaled by the size of element:

106 Copyright c© 2019 Tech Science Press CMES, vol.119, no.1, pp.91-124, 2019

η2K =
∑

F∈∂K
CF

∫
∂KF

[
a
∂uh

∂n

]2
ds (2)

where ηK is the error estimator of element K, ∂K is the boundary of element K, ∂KF

is a particular face F of element K, CF and a are element size related parameters, ∂uh

∂n is
gradient of the solution, and [·] denotes the jump of a variable at a face. In independent
fluid or solid simulations, the solution jumps are computed on all faces, and the elements
with high jumps are refined, and those with low jumps are coarsened.
The second refinement/coarsening type is location-based, similar to Griffith et al. [Griffith,
Luo, Griffith et al. (2017)]. In FSI applications, the location of interest is the fluid-structure
interface which can be identified. In location-based strategy, an element is refined if it
is close to the fluid-structure interface, and coarsened when it is further away from the
interface.

min|P f − P s| ≤ Chs · hs (3)

where P f is the center position of the fluid element under consideration, and P s is the
center position of any solid element. hs is the solid mesh size, and Chs is mesh-related
parameter, which controls how large the refined region should be, which typically ranges
from 1 to 10.

3.7 Cross-platform build system

Since OpenIFEM requires a number of dependencies to build, building and linking all the
packages and libraries are complicated and tedious. It can be even more difficult to build the
entire system on different types of platforms and environments, e.g., Windows, Mac OS,
Linux. CMake [Kitware Inc (2018)] provides a simple solution to put the pieces together
without caring about the platform differences. CMake searches all the dependencies
and verifies the version requirement, it then creates a makefile that can be used to build
OpenIFEM library as well as test cases. After the library is built, it can be easily linked to
other programs with CMake.

3.8 Test suite

OpenIFEM has a variety of test cases to ensure its accuracy and avoid regressions. The
test cases cover general benchmark cases and special functionalities (time/space-dependent
boundary conditions, etc.). Users can also add their own tests using the ctest module in
CMake.
Adding a test To add a test, a user can put a new test case file and its corresponding input
file into a new directory in the tests directory using same name as the test case. Then the
user should add the name of the test case into the test list in tests/CMakeLists.txt.
After OpenIFEM is built, the new test case is automatically compiled.

OpenIFEM: A High Performance Modular Open-Source Software 107

Running a test To run the tests, a user can simply use the command ctest to run all the
test cases. To run only a specified subset of tests, the user can use argument -R followed
by a string. All the test cases with names containing that string will be executed. More
options can be found in CMake documentations [Kitware Inc (2018)].

3.9 Documentation, license and contribution

All the source code in OpenIFEM is well-documented, in a consistent style. Especially,
the formulas used in the code are carefully explained so they can be easily understood.
Doxygen is used to extract those comments and render them as pdf or html documents.
OpenIFEM is under Apache License 2.0. The source code is free to access on
https://github.com/OpenIFEM/OpenIFEM. We welcome contributions from
the computational community and are open to issues and pull requests.

4 Numerical examples

OpenIFEM can be used to perform independent solid mechanics simulations, independent
fluid mechanics simulations, and coupled FSI simulations. In this section, 4 numerical
simulation cases are presented to validate the solid solver, fluid solver and FSI solver in
OpenIFEM, by comparing to analytical or other known numerical solutions. They are also
included in the test suites.

4.1 Solid mechanics module

To validate the solid module, we perform a transient analysis on the bending of a 2D
cantilever beam made of Neo-Hookean material. As shown in Fig. 7, the cantilever
beam is fixed on the left side, with a constant traction applied to the upper boundary. The
length of the beam is L = 10 cm, the thickness is H = 1 cm. The material properties are
shear modules G = 5.955× 105 dyne/cm2, bulk modulus κ = 1× 106 dyne/cm2, density
ρ = 1100 g/cm3. The imposed traction is T = 25 dyne/cm2 along the entire length of the
beam throughout the simulation time of 50 s. The time step used in this case is ∆t = 0.1 s.
A total of 640 uniform first-order quadrilateral elements are used and the number of degrees
of freedom is 5120. The related parameters are shown in the following snippet of input file.

108 Copyright c© 2019 Tech Science Press CMES, vol.119, no.1, pp.91-124, 2019

Solid solver
subsection Solid finite element system
The polynomial degree of solid element
set Degree = 1

end
subsection Solid material properties
Material type
set Solid type = NeoHookean
Solid density, used by all solid solvers
set Solid density = 1100
A list of parameters used by hyperelastic material
set Hyperelastic parameters = 2.9775e5, 1e6

end
subsection Solid solver control
Number of Newton-Raphson iterations allowed
set Max Newton iterations = 10
Relative displacement error tolerance
set Displacement tolerance = 1.0e-6
Relative force residual tolerance
set Force tolerance = 1.0e-6

end
subsection Solid Dirichlet BCs
Dirichlet BCs can be applied to multiple boundaries.
set Number of Dirichlet BCs = 1
List all the constrained boundaries here
set Dirichlet boundary id = 0
1-x, 2-y, 3-xy, 4-z, 5-xz, 6-yz, 7-xyz
set Dirichlet boundary components = 3

end
Two types of Neumann BCs are supported: traction and pressure.
subsection Solid Neumann BCs
Indicates how many sets of Neumann boundary conditions to expect.
set Number of Neumann BCs = 1
The id, type, and values must appear n_neumann_bcs times.
set Neumann boundary id = 3
Traction/Pressure
set Neumann boundary type = Traction
If traction, dim*n_solid_neumann_bcs components are expected;
if pressure, n_solid_neumann_bcs components are expected.
set Neumann boundary values = 0, -25

end

Figure 7: Setup of the cantilever beam test case.

OpenIFEM: A High Performance Modular Open-Source Software 109

The cantilever beam is initially at rest. The results are validated by comparing to ABAQUS
[Smith (2014)]. Point P denotes the midpoint of the free boundary on the right, as shown
in Fig. 7. Fig. 8 presents the profile of the vertical displacement at P . With the perturbed
loading, the beam would initially bend downward reaching a maximum deflection of
5.1× 10−1 cm, until the external work equals the elastic energy. The inertia then takes
the beam back to its original position with a small deflection of 3.0e− 5cm. Without any
damping, the beam bounces back and forth throughout the transient simulation period. The
external work from loading is very small comparing to the elastic energy of the beam,
resulting in small displacements at the equilibrium when the beam bounces back to its
original position.

Figure 8: Vertical displacement of Point P over time

The deflection of the beam (indicated as the dashed line in Fig. 7) at t = 9 s, when
the deflection is at its maximum, is plotted in Fig. 9. The spatial distribution is highly
nonlinear. The results obtained by OpenIFEM agree with ABAQUS perfectly.

110 Copyright c© 2019 Tech Science Press CMES, vol.119, no.1, pp.91-124, 2019

(a) Horizontal displacement (b) Vertical displacement

Figure 9: Displacement components on the centerline

4.2 Fluid mechanics module

The fluid module is benchmarked with a 2D flow around a cylinder case at Reynolds
number of 100 presented in [Schäfer, Turek, Durst et al. (1996)]. Flow past a cylinder
is a standard benchmark problem in many experimental and numerical studies, for example
[Norberg (1994); Justesen (1991); Finn (1953)]. As illustrated in Figure 10, a 2.2 cm long
0.41 cm wide rectangular fluid domain is modeled with a parabolic velocity boundary
condition on the left boundary with Vmax = 1.5 cm/s at the centerline. No-slip wall
boundary conditions are applied to the upper and lower boundaries. A cylinder is placed
at an offset of 0.01 cm lower than the centerline. The distance from the inlet to the center
of the cylinder is Lin = 0.2 cm, and the diameter of the cylinder is D = 0.1 cm. The
fluid dynamic viscosity is µ = 0.001g/(cm · s) and the density is ρ = 1 g/cm3. With a
mean velocity of 1.0 cm/s, corresponding Reynolds number is Re = 100. The fluid solver
parameter settings are specified in the following snippet of the input file:

Fluid solver
subsection Fluid finite element system
The degree of pressure element
set Pressure degree = 1
The degree of velocity element.
set Velocity degree = 2

end
subsection Fluid material properties
The dynamic viscosity
set Dynamic viscosity = 0.001
Fluid density
set Fluid density = 1

end
subsection Fluid solver control
The global Grad-Div stabilization
set Grad-Div stabilization = 0.1
Maximum number of Newton iterations at a time step

OpenIFEM: A High Performance Modular Open-Source Software 111

set Max Newton iterations = 8
The relative tolerance of the nonlinear system residual
set Nonlinear system tolerance = 1e-6

end

The imposed input velocity is a function of the y-coordinate, which is specified as a
user-defined function in the test script, then passed onto the fluid solver. The following
code snippet shows the declaration of the velocity boundary condition.

t empla te < i n t dim>
c l a s s BoundaryValues : p u b l i c Func t ion <dim>
{
p u b l i c :

BoundaryValues () : Func t i on <dim >(dim + 1) {}
v i r t u a l double v a l u e (c o n s t P o i n t <dim> &p ,

c o n s t unsigned i n t component) ;

v i r t u a l vo id v e c t o r _ v a l u e (c o n s t P o i n t <dim> &p ,
Vector <double > &v a l u e s) ;

} ;

Figure 10: Setup of the flow around a cylinder test case

The mesh contains 5888 second order quadrilateral elements and 54192 degrees of
freedom. The total simulation time is set to be t = 8 s to allow the flow to be fully
developed. The time step used is ∆t = 0.01s.
At this Reynolds number, the flow exhibits a periodic behavior with a vortex shedding
behind the cylinder. The flow is fully-developed and the vortex shedding becomes periodic
after t = 4 s. Fig. 11 shows the velocity and pressure fields at t = 8 s, where the vortices
can be clearly seen.

112 Copyright c© 2019 Tech Science Press CMES, vol.119, no.1, pp.91-124, 2019

(a) Velocity magnitude distribution in cm/s

(b) Pressure distribution in dyne/cm2

Figure 11: Velocity magnitude and pressure distributions at t = 8 s

To verify the results quantitatively, the drag coefficient CD and lift coefficient CL of the
cylindrical wall are evaluated using:

CD =
2

U2
meanD

FD (4a)

CL =
2

U2
meanD

FL (4b)

where FD and FL are the drag and lift forces respectively, and Umean denotes the mean
velocity at the inlet and D is the diameter of the cylinder.
Fig. 12 shows the drag and lift coefficients over time, where the average drag coefficient is
found to be CD = 2.19, very close to the experimental result 2.05 in Finn [Finn (1953)].
The frequency is found to be f = 3.01 Hz and lift coefficient amplitude is |CL| = 1.00,
which are also in good agreement with schafer et al. [Schäfer, Turek, Durst et al. (1996)].

OpenIFEM: A High Performance Modular Open-Source Software 113

(a) Drag coefficient (b) Lift coefficient

Figure 12: Drag and lift coefficients of the cylinder

4.3 FSI module

We present 2 numerical examples for the FSI module, one is free fall of an almost rigid solid
body, the second one is a soft solid with large deformation. Similar problems are analyzed
with original and modified IFEM algorithm in Zhang et al. [Zhang and Gay (2007); Wang
and Zhang (2013)], where the free fall of a rigid cylinder can be compared to empirical
solutions.

4.3.1 Free falling of a 2D disk

In this example, a 2D disk falls in the viscous fluid driven by gravity g =
980 cm/s2. The disk is modeled with Neo-Hookean material that has large shear (G =
3.36× 106 dyne/cm2) and bulk moduli (κ = 8.33× 107 dyne/cm2), close to a rigid body.
The solid density is ρs = 2.6 g/cm3. The fluid dynamics viscosity is µ = 1g/(cm · s)
and density is ρf = 1 g/cm3. The height of the computational domain H = 6 cm, width
of domain W = 2 cm, diameter of the disk D = 0.25 cm. The left, lower and right
boundaries of the fluid domain are modeled as no-slip walls, the upper boundary is a
no-penetration boundary. The initial position of the disk is at the vertical centerline of
the fluid domain, with a distance h = 1 cm from the upper boundary. The setup is shown
in Figure 13. The system is solved with a time step of ∆t = 0.001 s. The definition of
material properties in the input file is similar to the previous cases, therefore we show a
snippet of the “Simulation” section in the input file where the simulation type is specified
as “FSI”.

114 Copyright c© 2019 Tech Science Press CMES, vol.119, no.1, pp.91-124, 2019

Simulation parameters
subsection Simulation
Type of simulation: FSI/Fluid/Solid
set Simulation type = FSI
The dimension of the simulation
set Dimension = 2
Level of global refinement before running
set Global refinements = 2, 3
The end time of the simulation in second
set End time = 4e-1
The time step in second
set Time step size = 1e-3
The output interval in second
set Output interval = 1e-3
Body force which applies to both fluid and solid (acceleration)
set Gravity = 0.0, -980.0

end

Figure 13: Setup of the free falling of 2D disk test case

The vertical velocity of the center of the disk over time is shown in Fig. 14. The solid disk
falls with increasing velocity that is driven by gravity. Due to the drag of the viscous fluid,
the acceleration gradually decreases until the drag and the body forces are balanced, which
allows the disk to reach a terminal velocity of 7.33 cm/s. Eq. (5) is an empirical formula

OpenIFEM: A High Performance Modular Open-Source Software 115

compiled from experimental results given by Clift et al. [Clift, Grace and Weber (2005)].
ρs and ρf denote the densities of the solid and the fluid, respectively; µ is the fluid dynamic
viscosity; R is the radius of the disk, and W is the width of the fluid domain. The ratio
between W and R reflects the wall effect. As the fluid domain becomes wider, ln

(
W
2R

)
term becomes dominant. Comparing to terminal velocity of 7.29 cm/s yielded from the
empirical formula, the discrepancy in terminal velocities between the simulated one and
empirical one is only 0.55%.

v∗ =
(ρs − ρf)gR2

4µ

[
ln

(
W

2R

)
− 0.9157 + 1.7244

(
2R

W

)2

− 1.7302

(
2R

W

)4
]

(5)

Figure 14: Vertical velocity of the disk vs. time.

We also examine the velocity distributions in Fig. 15. From the horizontal velocity (vx)
distributions (a - c), we can see that as the disk falls downward, it pushes the upstream fluid
to both sides. In the downstream, the horizontal velocity shows an opposite pattern, where
the fluid on both sides moves toward the center, forming two vortices. The vx contour
shows the outlines of the high and low velocity regions. At the beginning, the velocity
contours in the upstream and downstream regions have similar shapes; as the disk falls, the

116 Copyright c© 2019 Tech Science Press CMES, vol.119, no.1, pp.91-124, 2019

contours in the downstream stretch out while the contours in the upstream do not. This is
due to the fact that the upstream fluid is always in touch with the disk, but the high velocity
in the downstream fluid is diffused by the viscosity after the disk moves away.
The vertical velocity, vy, has a different pattern (d - f). The minimum vy (maximum velocity
in the direction of gravity) occurs in the surrounding area of the disk, and propagates
to the adjacent region. Symmetrically large positive vy is observed in the near wall
regions. Similar to vx, the velocity contours in the downstream is gradually stretched out
by viscosity. The velocity patterns agree very well with solutions reported in Lee et al.
[Lee, Chang, Choi et al. (2008); Zhang, Liu and Khoo (2012)].

(a) vx at t = 0.05 s (b) vx at t = 0.2 s (c) vx at t = 0.4 s

(d) vy at t = 0.05 s (e) vy at t = 0.2 s (f) vy at t = 0.4 s

Figure 15: Velocity distributions and contours in cm/s at different time

To examine the fluid near the disk, Fig. 16 shows the zoomed-in view of the velocity vectors
and the pressure contours. From the velocity vector plot we can clearly see two symmetric
vortices behind the disk. Due to the hydrostatic pressure, the pressure distribution is almost
linear except near the body of the disk where the pressure on the lower part of the disk
surface is higher than the surrounding fluid while the upper part is smaller. This observation
also agrees with the results obtained by other numerical models [Zhang, Liu and Khoo
(2012); Banks, Henshaw, Schwendeman et al. (2017a,b)].

OpenIFEM: A High Performance Modular Open-Source Software 117

(a) Velocity vector (b) Pressure contours

Figure 16: Zoomed-in velocity in cm/s and pressure distributions in dyne/cm2 at t = 0.4s

4.3.2 Large deformation of a leaflet driven by incompressible flow

Finally, we present an FSI case where the solid deformation is largely driven by an
incoming flow. As illustrated in Fig. 17, a leaflet is fixed at the bottom of a rectangular
fluid domain sized 1 cm×4 cm, and placed 1 cm from the left boundary of the fluid domain.
The width of the solid is 0.1 cm and the height is 0.4 cm. The material is modeled as nearly
incompressible Neo-Hookean with a shear modulus of G = 7× 104 dyne/cm2 and a bulk
modulus of κ = 8.6× 106 dyne/cm2, which corresponding to an initial Young’s modulus
of 1.9× 105 dyne/cm2 and Poisson’s ratio of 0.49. The solid density is set to ρs = 6 g/cm3.
The width of the fluid domain is 4 cm and height is 1 cm. The fluid density is ρf = 1 g/cm3

and the dynamic viscosity is µ = 0.1g/(cm · s). Constant velocity input V0 = 25 cm/s
is specified on the left boundary of the fluid domain, the bottom boundary is modeled
as no-slip wall, while the upper boundary has no-penetration condition, and the right
boundary is outflow. The Reynolds number is 250. This relatively high incoming velocity is
challenging to traditional immersed approach because the solid displacement would likely
be overestimated [Wang and Zhang (2013)] as the solid displacement is evaluated using the
fluid velocity.

118 Copyright c© 2019 Tech Science Press CMES, vol.119, no.1, pp.91-124, 2019

Figure 17: Setup of the leaflet case

There are 2200 second order quadrilateral fluid elements with 20533 degrees of freedom,
as well as 256 first order quadrilateral solid elements with 2048 degrees of freedom used.
The time step is set to be ∆t = 5e− 4s. The simulation is run for 0.2s when the steady
state is obtained. The displacement magnitude of the upper left corner of the leaflet P ,
marked as green dot in Fig. 17 is monitored. As can be seen in Fig. 18, as the flow begins
to develop, Point P undergoes a large displacement 5 times that of the height of the leaflet.
Then the leaflet starts to vibrate, but with decreasing amplitude. The displacement of Point
P finally stabilizes at 0.1s, converging to 0.105cm. The boundary conditions in this case
are specified in the input file, which is listed in the following snippet:

subsection Fluid Dirichlet BCs
Number of boundaries with Dirichlet BCs
set Number of Dirichlet BCs = 3
List all the boundaries with Dirichlet BCs
set Dirichlet boundary id = 0, 2, 3
List the constrained components of these boundaries
One decimal number indicates one set of constrained components:
1-x, 2-y, 3-xy, 4-z, 5-xz, 6-yz, 7-xyz
To make sense of the numbering, convert decimals to binaries (zyx)
set Dirichlet boundary components = 3, 3, 2
Specify the values of the Dirichlet BCs, including both homogeneous and
inhomogeneous ones.
set Dirichlet boundary values = 25, 0, 0, 0, 0

end
subsection Solid Dirichlet BCs
Dirichlet BCs can be applied to multiple boundaries.
set Number of Dirichlet BCs = 1
List all the constrained boundaries here
set Dirichlet boundary id = 2
1-x, 2-y, 3-xy, 4-z, 5-xz, 6-yz, 7-xyz
set Dirichlet boundary components = 3

end

OpenIFEM: A High Performance Modular Open-Source Software 119

Figure 18: Displacement magnitude of Point P .

We show the fluid velocity at four different times in Fig. 19. The deformation of the solid
is very significant, but the volume is still conserved. In fact, by integrating the Jacobian
J at the quadrature points, the volume change of the solid is less than 0.1%. In addition,
a large velocity gradient area is observed near the upper left corner of the leaflet, which
produces large vortices in the downstream. At t = 0.2 s the fluid field is fully developed
and the solid oscillation has stopped, where the upper part is dominated by high velocity
flow, and the velocity in the lower part is much smaller.

120 Copyright c© 2019 Tech Science Press CMES, vol.119, no.1, pp.91-124, 2019

(a) t = 0.01s (b) t = 0.05s

(c) t = 0.1s (d) t = 0.2s

Figure 19: Velocity magnitude in cm/s with contours at different time

Correspondingly, the pressure field is shown in Fig. 20. A sharp jump near the solid is
identified due to the existence of the solid. A negative pressure region representing flow
recirculation is formed and shed from the tip of the leaflet. A similar numerical example
with large deformation is studied in Zhang et al. [Zhang, Liu and Khoo (2012)], in which
same flow pattern is obtained.

(a) t = 0.01s (b) t = 0.05s

(c) t = 0.1s (d) t = 0.2s

Figure 20: Pressure field in dyne/cm2 at different time

5 Conclusions
In this paper, we present a high performance modularly built open-source software, the
OpenIFEM, for FSI problems. It is the first comprehensive software package focused

OpenIFEM: A High Performance Modular Open-Source Software 121

on solving FSI problems using modular components, i.e., independent Eulerian and
Lagrangian solvers, which fills the void in this field. The code is written in object-oriented
way, with modern design that allows easy customization. Many basic building blocks in
finite element programming and linear algebra are handled by third-party libraries, which
significantly reduces the size of the code base and improves the maintainability. Four
numerical examples are presented to verify the solvers in the solid, fluid and FSI modules
of OpenIFEM. More testing problems in 2D and 3D can be found online. Comparing
to other immersed method packages, OpenIFEM has modularity, extensibility, flexibility,
maintainability, efficient parallel implementation, test suites and thorough documentation.
We expect this project to be helpful to other researchers in this area and welcome
contributions from the community.

Acknowledgement: Author Lucy T. Zhang would like to thank NSFC 11550110185,
NSFC 11650410650, and NIH-2R01DC005642-10A1 for funding support.

References
Ahrens, J.; Geveci, B.; Law, C. (2005): Paraview: An end-user tool for large data
visualization. The Visualization Handbook, vol. 717.

Balay, S.; Abhyankar, S.; Adams, M.; Brown, J.; Brune, P. et al. (2017): Petsc Users
Manual Revision 3.8. Technical report, Argonne National Lab.(ANL), Argonne, IL (United
States), 2017.

Balay, S.; Gropp, W. D.; McInnes, L. C.; Smith, B. F. (1997): Efficient management
of parallelism in object-oriented numerical software libraries. Modern Software Tools for
Scientific Computing, pp. 163-202.

Bale, R.; Hao, M.; Bhalla, A. P. S.; Patankar, N. A. (2014): Energy efficiency and
allometry of movement of swimming and flying animals. Proceedings of the National
Academy of Sciences, vol. 111, no. 21, pp. 7517-7521.

Bangerth, W.; Hartmann, R.; Kanschat, G. (2007): Deal. II - a general-purpose
object-oriented finite element library. ACM Transactions on Mathematical Software, vol.
33, no. 4, pp. 24.

Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W.; Tang, Q. (2017): A stable
partitioned FSI algorithm for rigid bodies and incompressible flow. Part I: Model problem
analysis. Journal of Computational Physics, vol. 343, pp. 432-468.

Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W.; Tang, Q. (2017): A stable
partitioned FSI algorithm for rigid bodies and incompressible flow. Part II: General
formulation. Journal of Computational Physics, vol. 343, pp. 469-500.

Bathe, K.-J.; Zhang, H. (2009): A mesh adaptivity procedure for CFD and fluid-structure
interactions. Computers & Structures, vol. 87, no. 11-12, pp. 604-617.

Battista, N. A.; Lane, A. N.; Miller, L. A. (2017): On the dynamic suction pumping of
blood cells in tubular hearts. Women in Mathematical Biology, pp. 211-231.

122 Copyright c© 2019 Tech Science Press CMES, vol.119, no.1, pp.91-124, 2019

Boman, R.; Ponthot, J.-P. (2012): Efficient ALE mesh management for 3D quasi-Eulerian
problems. International Journal for Numerical Methods in Engineering, vol. 92, no. 10, pp.
857-890.
Burstedde, C.; Wilcox, L. C.; Ghattas, O. (2011): p4est: Scalable algorithms for parallel
adaptive mesh refinement on forests of octrees. SIAM Journal on Scientific Computing, vol.
33, no. 3, pp. 1103-1133.
Chuang, P.-Y.; Mesnard, O.; Krishnan, A.; Barba, L. A. (2018): PetIBM: toolbox and
applications of the immersed-boundary method on distributed-memory architectures. The
Journal of Open Source Software, vol. 3, no. 25, pp. 558.
Clift, R.; Grace, J. R.; Weber, M. E. (2005): Bubbles, Drops, and Particles. Courier
Corporation.
Finn, R. K. (1953): Determination of the drag on a cylinder at low Reynolds numbers.
Journal of Applied Physics, vol. 24, no. 6, pp. 771-773.
Greenshields, C. J. (2015): OpenFOAM user guide. OpenFOAM Foundation Ltd, version,
vol. 3, no. 1.
Griffith, B. E. (2014): IBAMR: An adaptive and distributed-memory parallel
implementation of the immersed boundary method, 2014.
Griffith, B. E.; Luo, X.; Griffith, B. E.; Luo, X. (2017): Hybrid finite difference/finite
element immersed boundary method. International Journal for Numerical Methods in
Biomedical Engineering, vol. 33, no. 12, pp. e2888.
Heltai, L.; Costanzo, F. (2012): Variational implementation of immersed finite element
methods. Computer Methods in Applied Mechanics and Engineering, vol. 229, pp.
110-127.
Heltai, L.; Roy, S.; Costanzo, F. (2012): A fully coupled immersed finite element method
for fluid structure interaction via the deal. ii library. arXiv preprint arXiv:1209.2811.
Hu, H. H.; Patankar, N. A.; Zhu, M. Y. (2001): Direct numerical simulations
of fluid–solid systems using the arbitrary Lagrangian–Eulerian technique. Journal of
Computational Physics, vol. 169, no. 2, pp. 427-462.
Hughes, T. J. R.; Liu, W. K.; Zimmermann, T. K. (1981): Lagrangian-Eulerian finite
element formulation for incompressible viscous flows. Computer Methods in Applied
Mechanics and Engineering, vol. 29, no. 3, pp. 329-349.
Justesen, P. (1991): A numerical study of oscillating flow around a circular cylinder.
Journal of Fluid Mechanics, vol. 222, pp. 157-196.
Kelly, D. W.; De SR Gago, J. P.; Zienkiewicz, O. C.; Babuska, I. (1983): A posteriori
error analysis and adaptive processes in the finite element method: Part I – error analysis.
International journal for numerical methods in engineering, vol. 19, no. 11, pp. 1593-1619.
Kitware Inc (2018): CMake documentation, 2018. https://cmake.org/cmake/
help/v3.13/.
Layton, S. K.; Krishnan, A.; Barba, L. A. (2011): cuIBM–a GPU-accelerated immersed
boundary method. arXiv preprint arXiv:1109.3524.

OpenIFEM: A High Performance Modular Open-Source Software 123

Lee, T. R.; Chang, Y. S.; Choi, J. B.; Kim, D. W.; Liu, W. K. et al. (2008): Immersed
finite element method for rigid body motions in the incompressible Navier-Stokes flow.
Computer Methods in Applied Mechanics and Engineering, vol. 197, no. 25-28, pp.
2305-2316.
Leveque, R. J.; Li, Z. (1994): The immersed interface method for elliptic equations with
discontinuous coefficients and singular sources. SIAM Journal on Numerical Analysis, vol.
31, no. 4, pp. 1019-1044.
Liu, W. K.; Chang, H.; Chen, J.-S.; Belytschko, T. (1988): Arbitrary
Lagrangian-Eulerian Petrov-Galerkin finite elements for nonlinear continua. Computer
Methods in Applied Mechanics and Engineering, vol. 68, no. 3, pp. 259-310.
Liu, W. K.; Ma, D. C. (1982): Computer implementation aspects for fluid-structure
interaction problems. Computer Methods in Applied Mechanics and Engineering, vol. 31,
no. 2, pp. 129-148.
Mesnard, O.; Barba, L. A. (2017): Reproducible and Replicable Computational Fluid
Dynamics. Computing in Science & Engineering, vol. 19, no. 4, pp. 44-55.
Norberg, C. (1994): An experimental investigation of the flow around a circular cylinder:
influence of aspect ratio. Journal of Fluid Mechanics, vol. 258, pp. 287-316.
Perot, J. B. (1993): An analysis of the fractional step method. Journal of Computational
Physics, vol. 108, no. 1, pp. 51-58.
Peskin, C. S. (1977): Numerical analysis of blood flow in the heart. Journal of
Computational Physics, vol. 25, no. 3, pp. 220-252.
Peskin, C. S. (2002): The immersed boundary method. Acta Numerica, vol. 11, pp.
479-517.
Schäfer, M.; Turek, S.; Durst, F.; Krause, E.; Rannacher, R. (1996): Benchmark
computations of laminar flow around a cylinder. Flow Simulation with High-Performance
Computers II, pp. 547-566.
Smith, M. (2014): ABAQUS/Standard User’s Manual, Version 6.14. Simulia.
Van Loon, R.; Anderson, P. D.; De Hart, J.; Baaijens, F. P. T. (2004): A combined
fictitious domain/adaptive meshing method for fluid–structure interaction in heart valves.
International Journal for Numerical Methods in Fluids, vol. 46, no. 5, pp. 533-544.
Vanella, M.; Rabenold, P.; Balaras, E. (2010): A direct-forcing embedded-boundary
method with adaptive mesh refinement for fluid–structure interaction problems. Journal of
Computational Physics, vol. 229, no. 18, pp. 6427-6449.
Wang, C.; Giraldo, F.; Perot, B. (2002): Analysis of an exact fractional step method.
Journal of Computational Physics, vol. 180, no. 1, pp. 183-199.
Wang, X.; Liu, W. K. (2004): Extended immersed boundary method using FEM and
RKPM. Computer Methods in Applied Mechanics and Engineering, vol. 193, no. 12-14,
pp. 1305-1321.
Wang, X.; Wang, C.; Zhang, L. T. (2012): Semi-implicit formulation of the immersed
finite element method. Computational Mechanics, vol. 49, no. 4, pp. 421-430.

124 Copyright c© 2019 Tech Science Press CMES, vol.119, no.1, pp.91-124, 2019

Wang, X.; Zhang, L. T. (2013): Modified immersed finite element method for
solid-dominated fully-coupled fluid-structure interactions. Computer Methods in Applied
Mechanics and Engineering, vol. 267, pp. 150-169.
Zhang, L. T.; Gay, M. (2007): Immersed finite element method for fluid-structure
interactions. Journal of Fluids and Structures, vol. 23, no. 6, pp. 839-857.
Zhang, L. T.; Gerstenberger, A.; Wang, X.; Liu, W. K. (2004): Immersed Finite Element
Method. Computer Methods in Applied Mechanics and Engineering, vol. 193, no. 21-22,
pp. 2051-2067.
Zhang, Z.; Liu, G. R.; Khoo, B. C. (2012): Immersed smoothed finite element method for
two dimensional fluid-structure interaction problems. International Journal for Numerical
Methods in Engineering, vol. 90, no. 10, pp. 1292-1320.

