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Abstract: Interferometric phase filtering is one of the key steps in interferometric 

synthetic aperture radar (InSAR/SAR). However, the ideal filtering results are difficult to 

obtain due to dense fringe and low coherence regions. Moreover, the InSAR/SAR data 

range is relatively large, so the efficiency of interferential phase filtering is one of the 

major problems. In this letter, we proposed an interferometric phase filtering method 

based on an amended matrix pencil and linear window mean filter. The combination of 

the matrix pencil and the linear mean filter are introduced to the interferometric phase 

filtering for the first time. First, the interferometric signal is analyzed, and the 

interferometric phase filtering is transformed into a local frequency estimation problem. 

Then, the local frequency is estimated using an amended matrix pencil at a window. The 

local frequency can represent terrain changes, thus suggesting that the frequency can be 

accurately estimated even in dense fringe regions. Finally, the local frequency is filtered 

by using a linear window mean filter, and the filtered phase is recovered. The proposed 

method is calculated by some matrices. Therefore, the computational complexity is 

reduced, and the efficiency of the interferometric phase filtering is improved. 

Experiments are conducted with simulated and real InSAR data. The proposed method 

exhibits a better filtering effect and an ideal efficiency as compared with the traditional 

filtering method. 

 

Keywords: Interferometric phase filtering, interferometric synthetic aperture radar, local 

frequency estimation, amended matrix pencil, linear window mean filter. 

1 Introduction 

Interferometric synthetic aperture radar (InSAR/SAR) has become one of the main 

approaches for DEM inversion and surface displacement monitoring [Song, Guo, Liu et 

al. (2014)]. Image coregistration, interferometric phase filtering, and phase unwrapping 

are the main steps for InSAR data processing. Thermal noise, coregistration errors, 
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temporal decorrelation, and baseline decorrelation cause noise in the interferometric 

phase during measurement [Jiang, Ding, Li et al. (2014)]. These noises increase the 

difficulty of phase unwrapping and DEM inversion and can even lead to unwrapping 

failure [Yu, Lan, Xu et al. (2017); Yu, Lee, Yuan et al. (2018); Cao, Yu, Lee et al. 

(2018)]. Therefore, an effective interferometric phase filtering method is of importance.  

Interferometric phase filtering aims to filter while avoiding phase loss and resolution 

degradation. Recently, many interferometric phase filtering methods have been proposed. 

These methods are mainly divided into two categories: spatial domain methods and 

frequency domain methods. Among the spatial domain filter methods, multi-look filter 

[Gao, Liu, Li et al. (2017)] is one of the most commonly used and has best filtering 

effects but is hindered by several limitations in the fringe density region. The pivoting 

mean [Lanari, Fornaro, Riccio et al. (1996)] and median filters [Eichel and Ghiglia 

(1993)] are widely used due to their high efficiency. However, these two methods do not 

consider the fringe direction and sparse variation. Consequently, interferometric fringes 

in dense fringes are lost, and the resolution is greatly reduced. In 1998, Lee et al. [Lee, 

Papathanassiou, Ainsworth et al. (1998)] used a set of optimal directional windows and 

additive noise models to obtain the least mean square estimation of the interferometric 

phase. This method can suppress the phase noise while maintaining the phase gradient 

and its coherence. However, there will still be significant phase loss in the fringe density 

region. Then, the nonlocal technique is proposed by performing the weighted averaging 

of similar patches, such as Non-Local Means (NLM) filter [Buades, Coll and Morel 

(2005)], Probabilistic Patch-Based (PPB) filter [Deledalle, Denis and Tupin (2009)], and 

Block-matching and 3D transformation-domain collaborative (BM3D) filter [Zhang, 

Zhang, Zhao et al. (2014); Chierchia, Gheche, Scarpa et al. (2017)]. These nonlocal 

filtering methods may preserve fringe structures to some extent. However, the 

computational cost is considerably high due to the similar patches matching in the 

interferogram, and the precision of the patch similarity is easily influenced by the noise 

strength. Moreover, spatial domain methods achieve the filtering effect at the expense of 

the spatial resolution, which is the main drawback of spatial domain methods. 

In 1988, Goldstein R M et al. proposed the Goldstein filter, which is regarded as the most 

classical frequency domain method [Goldstein and Werner (1998)]. However, in view of 

the global nature of the filtering parameters in the algorithm, the relationship between 

denoising and phase preservation is difficult to balance. In 2003, Baran et al. used the 

mean of the coherence in the smoothing window instead of the filtering parameters 

[Baran, Stewart, Kampes et al. (2003)]. The Goldstein filter can adaptively control the 

degree of filtering on the basis of the coherence of the interferometric phase. In 2008, 

considering the biased estimation of coherence, Li et al. [Li, Ding, Huang et al. (2008)] 

determined the filtering parameters on the basis of all influencing factors, coherence 

coefficients, and apparent values of the phase standard deviation. In 2014 and 2016, Jiang 

et al. [Jiang, Ding, Tian et al. (2014)] and Zhao et al. [Zhao, Jiang and He (2016)] 

improve the Goldstein filter by establishing a parametric model based on the non-biased 

coherent estimation nonlinear filter, and they are all achieved ideal results. All of these 

methods improve the classical Goldstein filter to obtain superior filtering effect. However, 

the suitable parameters are difficult to set. Moreover, the Goldstein filter is hindered by 

limitations in the fringe density area. To overcome the aforementioned problems, the 



 

 

Frequency Domain Filtering SAR Interferometric Phase Noise                              351 

slope-compensated filter, based on the local frequency estimation, has attracted an 

extensive research and discussion. In 2011, Wang et al. proposed a two-step adaptive (TS) 

filtering method. First, principal phase components are estimated using the frequency 

spectrum with an adaptive bound and are then removed from the original noisy phase. 

Thus, a residual noisy phase is obtained. Spatial filtering is conducted on this residual 

noisy phase image by using four directional masks to obtain a good filtering effect. 

However, this method produces excessive smoothing and induces phase loss in fringe 

density regions [Wang, Huang and Yu (2011)]. Originally, Spagnolini used the maximum 

likelihood (ML) algorithm to estimate the local fringe frequency [Spagnolini (1995)], and 

subsequently, the modified multiple-signal classification (MUSIC) algorithm [Trouvé, 

Nicolas and Maître (1998)] and approximate maximum-likelihood algorithm (AML) 

[Huang and Xu (2008)] were successfully introduced to the interferometric phase 

filtering. In 2010, Suo et al. [Suo, Li and Bao (2010)] applied local frequency estimation 

to interferometric phase filtering. They combined the slope compensated and the 

conventional mean filter. Accurate local unwrapping results were obtained, particularly in 

the fringe density and low coherence regions. However, those methods are based on the 

estimation of the maximum likelihood estimation theory, which requires the 

identification of the peak within the sampling window. This process is time-consuming 

and thus reduces the efficiency of this method. 

This letter proposes a novel interferometric phase filtering method, namely, frequency 

domain filtering, which is based on an amended matrix pencil and the linear window 

mean filter. A window centered on a pixel samples the interferometric phase. The 

assumption is that the frequency of each pixel in the window is consistent, and a signal 

matrix with the same frequency is established. The matrix is SVD-decomposed. With the 

large eigenvalue corresponding to the signal vector and the small eigenvalue 

corresponding to the nature of the noise vector, the sampling matrix is filtered in the first 

step. The dimension of the filtered sample matrix is reduced, the matrix is SVD-

decomposed to the second-step filtering, and the local frequency is estimated. Finally, the 

estimated frequency is filtered with the linear window mean filter, and the filtered phase 

value is restored. The window size of filter methods is difficult to set. If the window is 

too small, the noise will be residued. If the window is too large, the phase will be lost.  In 

this letter, we obtained an optimal window size range by experimental analysis. 

This letter is organized as follow. In Section 2, the signal of the interferometric phase is 

analyzed, and the interferometric phase filtering is transformed into local frequency 

estimation. Section 3, describes the matrix pencil interferometric phase filtering method 

and the local frequency linear smoothing model. Section 4, presents two simulated data 

sets and one real data set, and compares the proposed and traditional methods. Finally, 

conclusions are summarized in section 5. 

2 Interferometric phase signal 

The interferometric phase is obtained by the coregistration of the two complex data and 

can be expressed in a 2D formula as follows [Hua (1992)]:   
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where ),( nmx  is the complex interferometric phase located at ),( nm , ),( nmA  is the 

amplitude, ),( nm  is the measured wrapped phase, ),( nm  is the true phase,   is the 

wrapped factor, and ),( nm  is the interferometric phase noise. 

Recovering the real phase from the measured wrapped phase is the most critical step in 

InSAR data processing. This process is called phase unwrapping. However, the 

interferometric phase contains noise caused by the thermal noise, coregistration errors, 

temporal decorrelation, baseline decorrelation, and other factors. This noise increases the 

difficulty of phase unwrapping and DEM inversion. Thus, an effective interferometric 

phase filtering method must be used to remove the noise prior to phase unwrapping.The 

interferometric phase can be generally assumed as a set of sinusoidal signal waves, in 

which the signal with noise can be written as follows [Rouquette and Najim (2001)]: 
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is the wrapped phase, and ( ) Iiff
ii yx ,,1;, =  is the local frequency of pixel ),( nm . The 

interferometric phase filtering problem is transformed into a local frequency estimation 

problem. An interferometric phase signal can be equivalently transformed into a complex 

matrix as follows: 
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From these analyses, we can see the interferometric phase filtering is transformed into a 

local frequency estimation problem. An interferometric phase signal is expressed in the 

matrix. In the next section, we introduce the matrix pencil utilized in this study to estimate 

the local frequency and the linear window mean filter used to obtain the filtered phase.  

3 Proposed filtering method 

3.1 Amended matrix pencil model 

The local frequency of each pixel is difficult to estimate from a large matrix. Thus, a 

window must be established for estimation. We assume that the frequency of each pixel 

in the window is consistent. The window size is )12()12( ++  . Thus, the sampling 

matrix centered on the interferometric phase ),( sa  can be expressed as follows:  
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where ),( eX is the interferometric phase matrix with noise. By decomposing the signal 

),( saX  matrix by SVD-decomposed, we obtain the following equation: 
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where sU  and sV  are the eigenvectors corresponding to the large eigenvalues, i.e., the 

signal vector; and s  is the sum of the large eigenvalues, which is known as the main 

eigenvalue. nU  and nV  are the eigenvectors corresponding to the small eigenvalues, i.e., 

the noise signal vector; and n  is the sum of the small eigenvalues, which is known as 

the nonprincipal eigenvalue. The eigenvector corresponding to the large eigenvalue is 

needed in the sample signal matrix to achieve the filtering the signal matrix. Therefore, 

the filtered eigenvalues can be expressed as follows: 
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, and l is the number of the large eigenvalues. Thus, the first step of 

filtering the sampling matrix is: 
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The sampled signal matrix is dimensionally reduced as follows to further improve the 

denoising effect: 
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0

~
X is SVD-decomposed, and the sampling matrix is further filtered. 

H
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where sU 0 , sV0 , and 
s0

~
 contain only the main eigenvalue corresponding to the data 

signal information. nU0 , nV0  and
n0

~
  are the noise data signals corresponding to small 

eigenvalues. Thus, the filtered dimensionality reduction dimension matrix is as follows: 
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Therefore, the local frequency of the central pixel ),( sa  in the sampling window can be 

obtained by using the following formula: 
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where ),( ),(),( saysax ff  is the local frequency estimation of the pixel ),( sa ; +
1X


 and +
2X


 

are the pseudo inverse matrices of 
1X


 and 
2X


; and )(conj is the conjugate factor of 

the matrix. 

3.2 Linear smoothing of local frequency 

In this part, we further filter the local frequency and convert the local frequency to the 

corresponding phase value. First, the local frequency underwent windowed linearization. 

The size of the linearized window is )12()12( ++ nm  . The linearized matrix can be 

expressed as follows: 
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The conjugate of the linearized matrix and the sampling window signal data are 

multiplied to obtain the frequency spreading matrix as follows: 

)(),( = conjX sa                                                                                                              (13) 

Finally, the filtered phase value is obtained by mean filtering the extended matrix as 

follows: 

),(),( ))((ˆ
sasa meanmeanX =                                                                                       (14) 

where ),(
ˆ

saX  is the final filtered phase value. 

4 Experimental results 

In this section, we verify the validity of our proposed method by using simulation data 

experiment and one real data experiment. First, we analyze the optimal window size 

interval by simulation data experiments and then experiment with the appropriate 

window size. And we compare the proposed method with Lee filter, pivoting mean filter, 

Goldstein filter (=0.5), TS filter and maximum likelihood (ML) filter. The number of 

residuals (NR), the residuals reduction percentage (RRP) and the mean square error 

(MSE) of the remainder phase are calculated to evaluate the performance of noise 

reduction and the ability to preserve the local fringe. The phase discontinuity due to noise 

in the interferogram is defined as the residuals. The principle is to reduce the integral 

closed curve to a range of 4 adjacent pixel points, and find the sum of the 2 moduli for 
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the phase difference kΔ ( k=1,2,3,4) between the adjacent 4 pixels. In an interferometric 

phase, the more residuals, the poorer qualities of the interference phase, and vice versa.  

All experiments in this letter run on a personal computer with Core i7-6700HQ CPU and 

MATLAB (R2016b). The formula for MSE [Suo, Li and Bao (2010)] is as follows: 

 2
))ˆarg(exp( idealjjEMSE  −=

  
                                                                                 (15) 

4.1 Analysis of window size 

The size of window is one of the important parameters that affect the filtering algorithm. 

In this paper, we use simulation data experiments to determine the optimal window size 

range. Fig. 1 shows the simulation data used to determine the optimal window size. We 

test the proposed method with window sizes of 3×3, 5×5, 7×7, 9×9, 11×11, 13×13, 

15×15, 17×17, and 19×19. We also determine the selection interval of the optimal 

window according to the MSE of the remainder phase, NR, and filtering time. Fig. 2 

shows the test results of the window size selection. The MSE is enlarged 100 times, and 

the number of residual points is reduced by 100 times to facilitate the expression. As 

shown in Fig. 2, the time increases with the increasing window size. The NR drops 

rapidly with the increasing window size, and the number of residual points becomes zero 

when the window size reaches a value. This phenomenon occurs because the number of 

calculated samples in the window increases with the increase in window size. Hence, 

when the window size is large enough, the number of residual points becomes zero. 

However, the MSE changes in a U-shape manner when the window size changes because 

the number of samples can increase with the increase in the window size. Excessive 

window sizes can lead to phase loss, thereby reducing the filtering accuracy. Fig. 2 

reveals that the optimal window size is 7×7. However, this window size has a small 

number of samples and thus has poor filtering effect in the fringe density regions. 

Therefore, the window sizes within the two red dashed lines [7×7, 9×9, 11×11, 13×13] 

are the optimal window selection interval. We can select the window size according to 

the actual situation.   

          
(a)                                                     (b) 

Figure 1: The simulated data used for window selection. (a) The simulated wrapped 

phase without noise; (b) The simulated wrapped phase with 0.65 rad2 noise 
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Figure 2: The linear relationship between window size and MSE, Time, NR 

4.2 Simulated dataset  

The simulation data of Fig. 1 are tested in this part. Tab.1 shows 3693 residuals in the 

original phase. The window size of all filtering methods in the simulation experiment is 

set to 7×7 to compare their performance. As shown in Fig. 3 and Table 1, the Lee filter 

removes 87.11% of the residuals. The MSE of the Lee filter is 0.1301 rad2, however, a 

significant data loss occurs in dense fringe regions. The pivoting mean filter has the 

highest efficiency, but the result of pivoting mean filter is the worst. The MSE is 1.0698 

rad2. A total of 342 residuals are found after Goldstein filtering, and 90.74% of these 

residuals have been removed. The filtering time of the Goldstein method is 7.4269 s. 

However, a significant phase loss occurs in the dense fringe regions. TS filtering can 

obtain good filtering accuracy. Its MSE is 0.0208 rad2, and only 6 residuals are found 

after filtering. However, the fringe edge protection ability of this method is poor, and 

there is a significant excessive smoothing phenomenon. The ML filter accuracy is the 

same as that of our proposed method and achieved the ideal 100% denoising. Particularly 

in dense fringe regions, both methods can achieve good denoising effect. The proposed 

method only uses the 11.0129 s filter and improves the efficiency by 78.91% compared 

with the ML filter. The MSE values indicate that the ML filter and the proposed method 

are superior over the other methods except TS filter. However, the efficiency of our 

proposed method is considerably better than that of the ML filter. In addition, the fringe 

edge protection ability of the proposed method is better than that of the TS filtering 

method. The simulated data experiment proves that the proposed method has better 

filtering effect than the traditional methods. 
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 (a)        (b)      (c) 

 (d)          (e)           (f) 

Figure 3: Filtered results of simulated data. The size of simulated data is 256×256 pixels. 

(a) Lee filter. (b) Pivoting mean filter. (c) Goldstein filter (=0.5). (d) TS filter. (e) ML 

filter. (f) The proposed method 

Table 1: Evaluation results of simulation data 

Method MSE/rad2 NR RRP Time/seconds 

Original phase 0.6500 3693 - - 

Lee filter 0.1301 476 87.11% 17.7819 

Pivoting mean filter 1.0698 812 78.01% 0.4546 

Goldstein filter 0.1779 342 90.74% 7.4269 

TS filter 0.0208 6 99.84% 4.4759 

ML filter 0.0192 0 100% 52.2086 

The proposed filter 0.0212 0 100% 11.0129 

4.3 Real dataset 

In this section, one set of experimental TanDEM SAR data is used for InSAR processing. 

The real data is the TanDEM data in the Himalayas, China. Fig. 4 shows the set of 

experimental data. The range of this data is 1000×1000 pixels. The data was obtained on 

September 7, 2012. The master image and the slave image are registered, and an 

interferometric phase is generated. The interferometric phase is flattened to reduce fringe 

density. Then, the dataset is processed by the Lee filter, pivoting mean filter, Goldstein 
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filter (=0.5), TS filter, ML filter and the proposed method. From Section 4.1, the 

terrain of the real data is complex. Thus, the window size for all filtering methods is set 

to 13×13 in this experiment. 

 

          

(a)                                                              (b) 

Figure 4: Experimental Real InSAR Dataset: (a) Original interferogram; (b) 

Corresponding coherence map 

 

   

(a)                                            (b)                                            (c) 

   

(d)                                            (e)                                            (f) 

Figure 5:  Filtered results of real data. (a) Lee filter. (b) Pivoting mean filter. (c) 

Goldstein filter (=0.5). (d) TS filter. (e) ML filter. (f) The proposed method 
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Table 2: Evaluation results of real data 

Method NR RRP Time/seconds 

Original phase 59715 - - 

Lee filter 1151 98.07% 255.8603 

Pivoting mean filter 314 99.47% 12.6940 

Goldstein filter 245 99.58% 139.4579 

TS filter 124 99.79% 54.9642 

ML filter 170 99.71% 850.2027 

The proposed filter 106 99.82% 266.3910 

As shown in Fig. 5 and Tab. 2, the Lee filter can remove 98.07% of the residual points 

but there still remains a lot of noise. The result of pivoting mean filter phase loss occurs 

in the dense fringe regions; however, it only takes 12.6940 s. The result of the Goldstein 

filter is better than that of the Lee filter, which removes 99.58% of the residuals and uses 

139.4579 s for filtering. A total of 124 residuals are found after TS filtering, and 99.79% 

of these residuals are removed. The filtering time of the TS method is 54.9642 s. 

However, excessive smoothing still exists. The ML filter can remove 99.71% of the 

residuals. The filtering effect of ML filter is better than that of the previous two, but it 

takes 850.2027 s to filter the entire process; the filtering efficiency is relatively low. Our 

proposed method removes 99.82% of the residuals, leaves only 106 residuals and 

consums 266.3910 s. The proposed method is more accurate and efficiency than the 

traditional methods. 

As shown in Fig. 6 is the enlarged region marked by black rectangle shown in Fig. 5. The 

Lee filter has significant noise residuals and phase loss in the black square in Fig. 6(a). 

The pivoting mean filter can effectively remove the noise but fail to the phase 

preservation in the fringe density regions in the Fig. 6(b). The result of the Goldstein 

filter is better than the pivoting mean filter but there is still phase loss in the fringe 

density regions in the Fig. 6(c). Although TS filtering has a good filtering effect, the 

edges of the fringe have poor retention. The phase preservation of the fringe density 

regions is also poor. As shown in Figs. 6(e) and 6(f), the effects of the ML filter and the 

proposed method are similar, but the proposed method has better phase preservation than 

the ML filter in the fringe density regions.  

 



 

 

360   Copyright © 2019 Tech Science Press          CMES, vol.119, no.2, pp.349-363, 2019 

   

(a)                                           (b)                                           (c) 

   

(d)                                            (e)                                          (f) 

Figure 6: The enlarged region marked by black rectangle shown in Fig. 2. (a) Lee filter. 

(b) Pivoting mean filter. (c) Goldstein filter (=0.5). (d) TS filter. (e) ML filter. (f) The 

proposed method 

As shown in Fig. 7, two sections of the section data A and B are intercepted in the real 

data. The experiment contrasts the Lee filter, the pivoting mean filter, the Goldstein filter, 

the TS filter, the ML filter, and our proposed method. In Fig. 4(a), we can see that section 

A is in a fringe sparsely region. Therefore, it can be seen in Fig. 7(a) that the cross 

section data of different filtering methods are not much different. However, section A is 

found in the fringe density regions. The corresponding cross-section in Fig. 7(b) reveals 

considerable differences among the results of the different filtering methods. The cross-

sections of the Lee filter, the pivoting mean filter, and the Goldstein filter exhibit 

remarkable undulation. TS filter method produces substantial phase loss due to excessive 

smoothing. The cross sections of the ML filter and our proposed method are nearly 

overlapping. The proposed method is smoother than the others methods. It further 

proving that our proposed method has better filtering accuracy. 
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(a) 

 

(b) 

Figure 7:  Two cross section data of real data. (a) The cross section data of Fig. 4(a) A. 

(b) The cross section data of Fig. 4(a)  

5 Conclusions 

In this letter, an interferometric phase filtering is proposed based on the amended matrix 

pencil and the linear window mean filter. The proposed method first transforms the 

interferometric phase filter into a frequency estimation problem. Then, the local 

frequency is estimated by an amended pencil through a simple calculation but with high 

precision. Finally, linear window mean filtering is used to recover the filtering phase. 

This method obtains the final filter phase by estimating the local frequency. The local 

frequency can reflect topographic changes, so even the method proposed in the fringe 

density regions can still obtain better results. Moreover, the proposed method only uses a 

simple matrix calculation to estimate the local frequency, so the method has higher 

computational efficiency. The Lee filter, the pivoting mean filter, the Goldstein filter, TS 

filter and the ML filter are compared based on simulation and real data experiments. The 

results show that our proposed method is more accurate and efficient than traditional 

methods, particularly in regions of fringe density and low coherence. 
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