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Abstract: Coupling Bayes’ Theorem with a two-dimensional (2D) groundwater solute 

advection-diffusion transport equation allows an inverse model to be established to 

identify a set of contamination source parameters including source intensity ( M ), release 

location ( 0X , 0Y ) and release time ( 0T ), based on monitoring well data. To address the 

issues of insufficient monitoring wells or weak correlation between monitoring data and 

model parameters, a monitoring well design optimization approach was developed based 

on the Bayesian formula and information entropy. To demonstrate how the model works, 

an exemplar problem with an instantaneous release of a contaminant in a confined 

groundwater aquifer was employed. The information entropy of the model parameters 

posterior distribution was used as a criterion to evaluate the monitoring data quantity 

index. The optimal monitoring well position and monitoring frequency were solved by 

the two-step Monte Carlo method and differential evolution algorithm given a known 

well monitoring locations and monitoring events. Based on the optimized monitoring 

well position and sampling frequency, the contamination source was identified by an 

improved Metropolis algorithm using the Latin hypercube sampling approach. The case 

study results show that the following parameters were obtained: 1) the optimal 

monitoring well position (D) is at (445, 200); and 2) the optimal monitoring frequency 

(∆t) is 7, providing that the monitoring events is set as 5 times. Employing the optimized 

monitoring well position and frequency, the mean errors of inverse modeling results in 

source parameters ( 0 0 0, , ,M X Y T ) were 9.20%, 0.25%, 0.0061%, and 0.33%, respectively. 

The optimized monitoring well position and sampling frequency can effectively 

safeguard the inverse modeling results in identifying the contamination source parameters. 
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It was also learnt that the improved Metropolis-Hastings algorithm (a Markov chain 

Monte Carlo method) can make the inverse modeling result independent of the initial 

sampling points and achieves an overall optimization, which significantly improved the 

accuracy and numerical stability of the inverse modeling results. 

 

Keywords: Contamination source identification, monitoring well optimization, Bayes’ 

Theorem, information entropy, differential evolution algorithm, Metropolis Hastings 

algorithm, Latin hypercube sampling. 

1 Introduction 

Sudden releases of contaminants to groundwater occur from time to time, which pose a 

serious threat to human health and can damage the environment. However, the source 

release locations, times, source strength and intensity are often unknown partially due to 

the detections of contaminants in groundwater come long after the release occurrences. 

Therefore, a better evaluation of source conditions is of great and practical significance to 

the remediation of groundwater contamination. 

Using a groundwater flow and solute transport model to back-estimate the potential 

source conditions is here referred as contamination source inverse identification. 

Essentially, it is to use groundwater monitoring data to back-calculate the model input 

parameters (or to define the source conditions). A number of researchers employed the 

Bayes’ Theorem solving inverse problems, such as, Sohn et al. [Sohn, Small and 

Pantazidou (2000)]; Zeng et al. [Zeng, Shi, Zhang et al. (2012)]; Chen et al. [Chen, Izady, 

Abdalla et al. (2018)]. Other methods solving inverse problems include geostatistics 

method [Snodgrass and Kitanidis (1997); Lin, Le, O’Malley et al. (2017)]; differential 

evolution algorithm [Ruzek and Kvasnicka (2001); Ramli, Bouchekara and Alghamdi 

(2018); Zhao (2007)]; genetic algorithm [Giacobbo, Marseguerra and Zio (2002); 

Mahinthakumar and Sayeed (2005); Bahrami, Ardejani and Baafi (2016); 

Bozorg-Haddad, Athari, Fallah-Mehdipour et al. (2018)]; the simulated annealing 

algorithm [Dougherty and Marryott (1991); Marryott, Dougherty and Stollar (1993)], and 

so on. Those above can be divided into deterministic methods and nondeterministic 

methods. Among the nondeterministic methods, the Bayesian statistical method uses the 

monitoring data to adjust the model input parameter, and then combines the sets of 

parameters prior probability density function with the sample likelihood function, so that 

forming a statistical method that is very flexible, intuitive, robust and easy to understand. 

This is why the Bayesian statistical method or Bayes’ Theorem has become extensively 

employed in engineering applications. 

Using the Bayesian statistical approach to reversely identify the model parameters (or the 

source conditions in this study), it is often necessary to solve the posterior estimation 

value or posterior distribution of the parameters. When the parameter dimension is not 

particularly high, a numerical integral method or normal approximation method can be 

used to solve the posterior estimation value or posterior distribution of the parameters 

[Tanner (1996)]. However, with the increase of the parameter dimension, the 

computational complexity of the numerical integral method will increase exponentially, 

which results in the difficulty of the solution process. So, the Monte Carlo Method 
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[Roberts and Casella (2004)] with independent samplings as an approximate solution is 

often used to solve the question. The Markov chain Monte Carlo method, as an efficient 

and rapid sampling method, has been widely used such as by Metropolis et al. 

[Metropolis, Rosenbluth, Rosenbluth et al. (1953)]; Hastings [Hastings (1970)]; Haario et 

al. [Haario, Saksman and Tamminen (2001)]; Xu et al. [Xu, Jiang, Yan et al. (2018)]. 

In real engineering applications, it is impractical to obtain a desired number of 

monitoring wells and samples due to the limitations of funds and/or restrictions of site 

conditions. Therefore, in reality, there is always insufficient data available to use, which 

could potentially result in ill-posed characteristic of inverse problem [Carrera and 

Neuman (1986)]. Therefore, to address the above limitations, the monitoring well 

locations together with the sampling frequency need to be optimized to potential satisfy 

the inverse parameters evaluation requirements. To do so, a few steps should follow. First, 

the data for monitoring plan need to be quantified by setting up an objective function 

[Zhang (2017)], of which the most commonly selected objective function is 

signal-to-noise ratio (SNR) [Czanner, Sarma, Eden et al. (2008)], i.e., the relative entropy 

from the Bayesian formula [Huan and Marzouk (2013); Zhang (2017); Lindley (1956)]. 

The SNR and relative entropy are applicable to nonlinearity models with an assumption 

that the parameter distribution is non-Gaussian [Huan and Marzouk (2013); Lindley 

(1956)]. Groundwater flow and transport models are mostly nonlinear so that the SNR 

approach and Bayesian formula using relative entropy apply. However, the SNR 

approach only factor in the effect of monitoring errors on the monitoring data, while the 

relative entropy does not include the influence of the prior distribution of parameters on 

the posterior distribution. To overcome the limitations of both the SNR approach and the 

relative entropy approach, the information entropy by Shannon [Shannon (1948)] was 

employed since it measures of information uncertainty. The greater of the information 

uncertainty, the greater of the information entropy will be. The information entropy in the 

posterior distribution of model parameters is used as a measurable value of the 

monitoring data. The smaller of the information entropy, the smaller of the uncertainty of 

the model parameters will be, and the better of the parameter inverse estimation results 

will expect. 

This paper provides an example problem with an instantaneous release of a contaminant 

in a confined groundwater aquifer. The information entropy of the posterior distribution 

of the model parameters based on the Bayesian formula was used as the measurement 

value of the monitoring data. And the optimization of the monitoring well position and 

sampling frequency was solved by the Monte Carlo method and a differential evolution 

algorithm under the condition of single well monitoring and determining monitoring 

times. Relying on the optimized monitoring well program, the contamination source is 

identified by an improved Metropolis algorithm based on Latin hypercube sampling. This 

paper could provide reference for the optimization design of groundwater contamination 

monitoring wells and inverse problem of contamination source identification. 

2 Study methods 

2.1  Parameter inversion based on bayesian formula 

The Bayesian formula [Berger (1995)] is expressed as follows: 
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( ) ( ) ( )

( )

p p
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d d
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Where, 

•   is the unknown model parameter;  

• d  is the monitoring data; 

• ( )p d  is posterior probability density function of the model parameter; 

• ( )p   is the prior probability density function of the model parameter; 

• ( )p d   is the conditional probability density function; 

• ( ) ( ) ( )p p p d= d d     is the normalized integral constant, also called appearance 

probability of monitoring data d . 

Assuming that 

• The number of the unknown parameters in the model are m , namely 

1 2( , , , )m  = ; 

• the environmental hydraulic model parameters are all distributed in a specific range; 

• each parameter obeys uniform distribution;  

• 1 2, , , m    are mutually independent.  

So, the prior probability density function of model parameter i  can be defined as: 

1
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                                              (2) 

And the total prior distribution ( )p  can be expressed as: 

1
( ) ( )

m

i
i

p p 
=

=                                                            (3)  

Assuming that the number of monitoring values in the model are n , namely 

1 2( , , , )nd d d=d . Where id  indicates the ith monitoring value. ( , , )iC x y t  indicates the 

corresponding ith predictive value. Then ( , , )i i id C x y t = −  indicates the measurement 

error, 1,2, ,i n= . Assuming that i  obeys normal distribution with mean 0 = ; and 

standard deviation 0.05 = ; and each i  is mutually independent, so the conditional 

probability density function ( )p d   can be expressed as follows: 

2

2 /2 2
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  −   
= − 

  

d


                                 (4) 

Combining the above functions (1), (2), (3) and (4), the posterior probability density 

function ( )p d  of   can be expressed as follows: 
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Due to 1
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 is a fixed value, and independent of parameters , is expressed as 

 . Then, the Eq. (5) can be written as: 
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Eq. (6) can be viewed as a function about parameters   under the condition that the 

measured value is fixed. Since it is difficult to draw the explicit expression of Eq. (6) by a 

numerical integral method, the Markov Chain Monte Carlo method is employed to solve 

the equation. 

The core of Markov Chain Monte Carlo method is Monte Carlo simulation method and 

Markov chain sampling method. When the sample points are sufficient as “probability 

events”, the probability can be approximately represented as frequency, which is the 

essence of the Monte Carlo simulation method. Employing the Markov chain sampling 

method can ensure that the Markov chain select more data points in the area with high 

probability, which can save the workload of the Monte Carlo simulation. The Metropolis 

algorithm is a classic Markov Chain Monte Carlo method, and therefore widely used. The 

Metropolis algorithm is utilized to find the solution in this article. The details of the 

Metropolis algorithm can be found in literature [Metropolis, Rosenbluth, Rosenbluth et al. 

(1953); Hastings (1970)]. 

2.2 Monitoring well design optimization  

The optimization of the monitoring plan mainly includes monitoring well quantity, 

position and monitoring frequency. As an example, a single well is used to illustrate the 

general approach:   

Assuming that the monitoring well position is D , from which the monitoring data is still 

recorded as d . Then the Bayesian formula can be rewritten as: 

( ) ( , )
( , )

( ) ( , )

p p
p

p p d
=



D d D
d D

D d D

 


  
                                           (7) 

Since the prior distribution ( )p D  of parameter   suggests a preliminary set of 

unknown parameters (that is not affected by the monitoring well position, namely 

( ) ( )p p=D  ), the Eq. (7) becomes the following:      

( ) ( , )
( , )

( ) ( , )

p p
p

p p d
=



d D
d D

d D

 


  
                                   (8) 

Normalizing the integral constant ( ) ( , )p p d d D    results in the probability of 
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monitoring data d  at position D expressed as ( )p d D , in the following format: 

( ) ( ) ( , )p p p d= d D d D                                          (9) 

Assuming that the probability density is a function of a random variable X  [expressed as 
( )f x ], the information entropy of X  in the interval [ , ]a b  can be defined as follows 

[Shannon (1948)]: 

( ) ( ) ln ( )
b

a
H X f x f x dx= −                                               (10) 

So we can use the monitoring data d  at position D  to back-calculate the unknown 

parameter  , and then the posterior probability density function ( , )p d D can be 

obtained. The information entropy of the posterior distribution   can be similarly 

expressed as: 

( , ) ( , ) ln ( , )H p p d= −D d d D d D                                         (11) 

The left side of Eq. (11) contains monitoring data d , which can be considered as a 

random variable, with a probability density function ( )p d D . In order to obtain a 

function only containing variable D , both sides of Eq. (11) are multiplied by ( )p d D . 

Then the expectation ( )( , )E H D d  of the information entropy ( , )H D d  can be written as:  

( )( , ) [ ( , ) ln ( , ) ] ( )E H p p d p d= − D d d D d D d D d    

         ( , ) ( ) ln ( , )p p p d d− = d D d D d D d                             (12) 

( )( , )E H D d is associated only with the monitoring well position D , and is a continuous 

function on D . Therefore ( )( , )E H D d  can be expressed as ( )E D . The optimal 

monitoring well position 
D can be found by obtaining the minimum value of ( )E D . 

According to the concept of information entropy, we can use the monitoring value 
d  

from monitoring well at the position 
D  to back-calculate these unknown 

parameters under the condition that the information entropy of the posterior distribution 

of   is minimal as an objective. 

It is difficult to derive the explicit expression of Eq. (12). So, the Monte Carlo method 

[Huan and Marzouk (2013)] is used to find an approximately solution. 

Using Eq. (8), Eq. (12) can be rewritten as follows: 

( )

( , ) ( ) ln[ ( ) ( , ) / ( )]

( , ) ( )[ln ( ) ln ( , ) ln ( )]

( , ) ( ) ln ( ) ( , ) ( )[ ln ( , ) ln ( )]

E

p p p p p d d

p p p p p d d

p p p d d p p p p d d

−

− + −

− − −





 

 D

= d D d D d D d

= d D d D d D d                            

= d D d d D d D d D d

    

    

       

 (13) 

Since the prior distribution ( )p   is given by Eqs. (2) and (3), the information entropy 

( )p   in Eq. (13) can be written as ( , ) ( ) ln ( ) ln ( )p p p d d p− = − d D d     . This 

suggests that the greater of information entropy is, the greater of the uncertainty of  . 
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When ( )p   remains unchanged, ln ( )p−  stays the same. In order to get the minimum 

value of ( )E D , we only calculate the minimum value of 

( , ) ( )[ ln ( , ) ln ( )]p p p p d d− − d D d D d D d    .  

If we name ( )U D  as follows:  

( ) ( , ) ( )[ ln ( , ) ln ( )]U p p p p d d= − −D d D d D d D d                        (14) 

the monitoring value d  in the Bayesian formula could reduce the uncertainty of 

parameters , based on Lindley (1956). 

Eq. (14) can be solved by Monte Carlo method as follows: 

1

1
( ) [ln ( , ) ln ( )]

N
i i i

i

U p p
N =

 − −D d D d D                                   (15) 

Firstly, we can randomly draw N samples from the prior distribution ( )p   of unknown 

parameter  , namely ( 1, 2, )i i N= . Secondly, for each i N , we can get a 

sample i
d  from the conditional probability density function ( , )ip d D  according to Eq. 

(4), and a total of N . Finally, each group of i and i
d  is brought into Eq. (4), and we 

can obtain the ( , )i ip d D  in Eq. (15). From Eq. (9), ( )ip d D in Eq. (15) can be 

rewritten as ( ) ( ) ( , )i ip p p d= d D d D   , which will be solved by the Monte Carlo 

method as follows: 

1

1
( ) ( , )

N
i i j

j

p p
N =

 d D d D                                               (16) 

2.3 Improved metropolis algorithm based on latin hypercube sampling 

The Metropolis algorithm is a classic MCMC method, which is widely used. However, it 

is prone to local optimization, or difficult to converge by using Metropolis algorithm to 

invert the model parameters. Moreover, sampling efficiency is low. This study proposes 

an improved Metropolis algorithm based on Latin hypercube sampling. 

2.3.1 Metropolis algorithm 

The Metropolis algorithm was first proposed by Metropolis et al. [Metropolis, 

Rosenbluth, Rosenbluth et al. (1953)], and further revised by Hastings [Hastings (1970)]. 

Specific steps are as follows: 

(1) The initial samples ( 1)i i =  are generated randomly according to the prior 

distribution of parameters . 

(2) Make the uniform distribution ( , )i iU step step− +   as the proposal distribution, 

and satisfy the symmetric random walk. Here step  represents the size of a random walk. 

Then a candidate sample   is generated from ( , )i iU step step− +  , while u  is 

extracted from the uniform distribution (0,1)U  randomly. 
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(3) In case 
( )

min 1,
( )i

p d
u

p d

  
  

  




, let 1i+ =  . Otherwise, 1i i+ =  . ( )p d . Here 

( )ip d  is calculated using Eq. (6). 

(4) Repeat Steps (2) and (3) till the given iterative times are reached. 

2.3.2 Improved metropolis algorithm based on latin hypercube sampling method   

In order to prevent the local optimization of the inversion results, or to generate problems 

that are difficult to converge, this study uses the Latin hypercube sampling method [Dai 

(2011)] to optimize the sampling process to ensure the randomness and uniformity of the 

initial points of the sample. Latin hypercube sampling is a multi-dimensional hierarchical 

random sampling method with good dispersion uniformity and representativeness. When 

we want to extract q  sets of samples from the prior distribution ranges 

 , ( 1,2, , )i iA B i m=  of m  dimensional model parameters   by Latin hypercube 

sampling method, the specific steps are as follows: 

(1) Dividing m  prior distribution ranges  , ( 1,2, , )i iA B i m=  of m  dimensional 

model parameters into q ranges, which can be recorded as 

, ( 1,2, , ; 1,2, , )i j i jA B i m j q  = =  . Thus, m q  ranges are produced. 

(2) Extracting ij from the range[ , ]ij ijA B randomly, and total m q  numbers are produced. 

The following matrix is formed: 

11 12 1

21 22 2

1 2

q

q

mq

m m mq

  

  

  

 
 
  =
 
 
  

 

(3) Arranging the row vector 1 2[ , , , ] ( 1,2, , )i i iq i m   =  in the matrix mq  randomly 

into a new row vector 1 2[ , , , ] ( 1,2, , )i i iq i m   = . Thus, mq  will be transformed into a 

new matrix, which is: 

11 12 1

21 22 2

1 2

=

q

q

mq

m m mq

  

  

  

 
 
 
 
 
  

 

(4) Each column vector of matrix mq  is a set of samples; and q  sets of samples are 

combined together. 

The specific steps of the improved Metropolis algorithm based on Latin hypercube 

sampling method are as follows: 

(1) A number of q sets of initial samples are randomly obtained from the value ranges of 

model parameters by the Latin hypercube sampling method. 

(2) Taking the q  sets of samples as initial points in Step (1), q Markov Chains are 
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generated by the Metropolis algorithm. 

(3) The averages of the calculated results of q  Markov Chains are taken as the final 

results. 

The improvement of this method lies in reducing the influence of the initial point values 

on the result by the Metropolis algorithm as much as possible, which accords with the 

idea of the Monte Carlo method.  

2.3.3 Convergence judgment of the improved multi-chain metropolis algorithm 

In this study, the convergence of the last 50% sampling process by the multi-chain 

Metropolis algorithm is guided by the Gelman-Rubin convergence diagnosis method 

[Gelman and Rubin (1992)]. The convergence indicator is as follows: 

1 1ˆ i

i

i

Bg q
R

g q W

− +
= +                                                  (17) 

where, 

• ˆ ( 1,2, , )iR i m=  is the thi parameter judgment indicator; 

• g  is half the length of the Markov chain length in the multi-chain Metropolis 

algorithm; 

• q  is the number of Markov chains used for the judgment; 

• iB  is the variance of the means of the last 50% samples in the q Markov chains of 

the thi  parameter; 

• iW  is the average of the variance of the last 50% samples in the q Markov chains of 

the thi  parameter. 

when ˆ 1.2iR  , the Markov chain converges; While when ˆ 1.2iR   the Markov chain 

does not converge. 

3 Example application 

3.1 Example overview 

In a homogeneous and confined aquifer, the (2D) groundwater solute advection-diffusion 

equation [Zheng and Gordon (2009)] can be expressed as: 

( ) ( ) ( )x y

C C C
D D uC

x x y y x t

     
+ − =

     
                                      (18) 

where, 

• C is the concentration of a contaminant at the monitoring position ( , )x y for the time 

t ,(mg/L); 

• t  is the elapsed time from the release time (day); 

• xD  and yD  are diffusion coefficients in the vertical and horizontal directions 

(m2/day), respectively;  
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• u is an average groundwater flow velocity (m/day).  

 

The analytical solution to Eq. (18) for the instantaneous release of a contaminant at a 

position can be expressed as: 

2 2( )
( , , ) exp

4 44 x yx y

M x ut y
C x y t

D t D tkh D D t

 −
= − − 

  
                   (19) 

where,  

• M is the source release intensity (g); 

• h  is the thickness of the aquifer (m);  

• x  and y  are the vertical and horizontal distances from the contamination source 

(m), respectively； 

• k is the effective porosity of the aquifer. 

Providing that the aquifer is homogeneous with a coordinate system in 2D as shown on 

Fig. 1; the release location of a contaminant is in the region of S; groundwater flow 

direction follows the x-axis; and the monitoring well position is D ; the regional 

hydrogeological parameters are presented in Tab. 1. 

 

Figure 1: Schematic diagram of the example problem 

Table1: Known hydrological parameters in the studied area 

Parameter xD  (m2/d) yD  (m2/d) u  (m/d) k  h  (m) 

Value 1.5 0.3 5 0.3 1 

Table 2: Value range of parameter   to be solved in the studied area 

Parameter 

Contamination 

source 

intensity M (g) 

Contamination 

source 

position 0X (m) 

Contamination 

source position 0Y  

(m) 

Release time 

0T (days) 

Value [800,1600] [200,400] [185,215] [40,60] 
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3.2 Monitoring well position optimization 

A certain moment without pollution discharged in S  is taken as the initial time, at this 

time 0t = . The prior distribution ranges of the parameters to be solved in the studied 

area are shown in Tab. 2. The monitoring duration starts from 70t =  and ends at 90t = . 

A monitoring time interval is 4 days. Providing the solute migration velocity is 5 m/day, 

the possible range of optimal monitoring well position 
D  is within this range:  

1 1{400 1000, 0 400}X Y =     . 

The optimization problem of monitoring well position can be generalized as follows: 

( ) min ( ) ln ( ) min ( )
D D

E E p U

 
= = − +D D D                                      (20) 

( )E D  as continuous function of D , so Eq. (20) can be solved by a differential evolution 

algorithm [Zhao (2007)]. In order to reduce the computational complexity, the two-step 

Monte Carlo method is used to reduce the range of position parameter D in the first step. 

In the first step,   is divided into 400 small rectangles; and ( )U D in the rectangular 

grid nodes can be calculated applying Eqs. (15) and (16) by Monte Carlo method (the 

number of samples, N, is 5,000). Then filtering out the region with ( ) 0U D , a narrowed 

range of optimal monitoring well position 
D  is within 

 1 1400 670,140 260X Y =     as shown on Fig. 2(a). In the second step, a smaller 

range of optimal monitoring well position 
D  is expressed as 

 1 1400 500,196 204X Y =     (Fig. 2(b)) following the computation process in the 

first step, but with a number of samples of 10,000 by the Monte Carlo method. Finally, 

the minimum value of the objective function ( )U D  can be solved by the Monte Carlo 

method and differential evolution algorithm in  . As a result, the minimum value 

( ) 4.5369U  = −D , and the optimal monitoring well position (445,200) =D .   

 

(a) The first step                        (b) The second step  

Figure 2: Three dimensional stereograms of the two-step Monte Carlo method to solve 

( )U D  

In order to verify the effectiveness of the monitoring well design optimization using the 

Bayesian formula, the information entropy ( )E D  and the relative root mean square error 

of inversion results ( )RT D  are used as an evaluation to compare the results of using 8 
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monitoring well positions randomly selected in  1 1400 670,140 260X Y =      with 

this settings for 
D  

(1) Information Entropy ( )E D : The coordinates of the 8 monitoring wells are shown in 

Tab. 3. From Eqs. (13), (15), (16), ( )U D  and ( )E D  of the above 8 monitoring 

wells, 
D  can be solved in Tab. 3. As illustrated in Tab. 3, the information entropy at 


D = (445,200) is the smallest. 

(2) Relative Root Mean Square Error of Inversion Results ( )RT D ： ( )iRT D is the 

relative root mean square error between the posterior mean estimate
iDM and real 

parameter R , which demonstrates the comprehensive influence of iD  on the inversion 

results. 20 sets of parameters are randomly and evenly obtained from the prior 

distribution of parameter   as the real values (Tab. 4). Corresponding to the 8 

monitoring positions in Tab. 3, 160 sets of monitoring values with measurement error   

can be calculated using Eq. (18). Then the parameter  can be inversely estimated using 

the generated monitoring values (with a length of the Markov chain of 25,000). In order 

to ensure the accuracy of inversion results, only the last 2,000 samples after a 

stabilization trend are used to calculate the posterior mean value 
iDM . Then applying the 

iDM  and R  in Tab. 4 to Eq. (20) as follows: 

2
20 4

1 1

( , ) ( , )
( ) / 80

( , )

iD

i

j k

M j k R j k
RT

R j k= =

 − 
 =  
   
D

                          (21) 

Where, 

• j is the jth set of parameter ; 

• k is the kth component of parameter . 

According to Eq. (21), ( )iRT D , the inversion results of the 8 monitoring wells can be 

solved, as shown in Tab. 3. 

Table 3: 
iD , ( )iE D  and ( )iRT D  of 8 monitoring wells 

i  1 2 3 4 5 6 7 8 

iD  (445,200) (657,248) (470,184) (590,191) (550,200) (420,190) (460,195) (406,180) 

( )iU D  -4.5369 -4.92*10-3 -2.3546 -0.7079 -2.2596 -3.2233 -4.2440 -1.2195 

( )iE D  13.8430 18.3749 16.0253 17.6720 16.1203 15.1556 14.1359 17.1604 

( )iRT D

 

0.1550 0.1880 0.1787 0.1833 0.1764 0.1575 0.1580 0.1744 
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Table 4: 20 sets of real parameters obtained from the prior distribution 

Number 

Contamination 

source 

intensity M (g) 

Contamination 

source 

position 0X (m) 

Contamination 

source 

position 0Y (m) 

Contamination 

release time 0T  

(days) 

1 1212.8 306.5 200.1 51.8 

2 1252.7 275.5 205.9 47.5 

3 1404.8 287.8 186.5 43.7 

4 1098.9 268.0 190.7 59.4 

5 967.7 327.1 196.1 55.1 

6 1320.6 254.1 190.0 45.7 

7 1434.7 363.0 187.8 52.6 

8 1555.4 298.9 202.2 53.0 

9 1334.7 358.1 211.9 54.1 

10 949.5 208.0 192.8 40.8 

11 1084.4 246.7 193.5 42.8 

12 1366.7 227.7 197.1 46.5 

13 876.5 350.5 191.0 49.9 

14 1022.1 367.5 203.9 57.7 

15 1598.9 264.5 194.1 44.4 

16 1132.3 307.9 200.0 48.1 

17 1470.9 344.8 201.9 57.3 

18 1458.0 323.5 214.2 50.6 

19 916.9 251.5 204.7 47.2 

20 1154.5 374.5 188.6 49.1 

( )iRT D  and ( )iE D  in Tab. 3 are plotted on Fig. 3(a). It can be seen that they 

approximately fit linearly based on the scattered plot on Fig. 3(a). A good positive linear 

relationship ( )=0.0073 ( ) 0.0543RT E +D D can be found with a correlation coefficient of 

0.93. Due to the influence of calculation errors unavoidably generated by the Monte 

Carlo method and the Markov chain Monte Carlo method when ( )E D  and 
iDM  were 

solved, the relationship between ( )iRT D  and ( )iE D  by the 8 monitoring wells can be 

not sufficiently established as a linear fit. Therefore, as an example with a set of 100 

monitoring wells were selected randomly within the prior distribution of parameter   to 

calculate the ( )E D  and ( )RT D . A good positive linear relationship of 

( )=0.01032 ( ) 0.0156RT E +D D  was established with a correlation coefficient of 0.85, 

which suggests that a smaller ( )E D and a better inversion result for parameter  . So, 
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the information entropy ( )E D could be a good indicator for a monitoring well design 

optimization.  

 

(a) 8 monitoring wells                      (b) 100 monitoring wells 

Figure 3: The fitting diagram of the relationship between ( )E D  and ( )RT D  

 

3.3 Monitoring frequency optimization 

Assuming that monitoring well position has been determined, with (445,200) =D ,which 

is the best estimated monitoring position. The monitoring count is set as 5 times, and the 

first monitoring time is set as 70t = . The monitoring interval ( t ) is defined as a time 

interval between 2 monitoring time with only an integer value. The information entropy 

of posterior distribution of parameter  under a monitoring interval can be expressed as 

( , )E t D , and therefore ( , ) ln ( ) ( , )E t p U t  = − + D D . The different monitoring 

intervals are expressed as 
*( , )RT tD . The calculation methods of 

*( , )E tD  and 
*( , )RT tD  are the same as that of ( )E D  and ( )RT D  in Section 3.2. The calculation 

results are shown in Tab. 5. It can be seen from Tab. 5 that both 
*( , )iU tD and 

*( , )RT tD  reach minimum values when 7t = . The optimal monitoring frequency is 

obtained to be 7 at the optimized monitoring well position (445,200) =D . 

Table 5: it 、 *( , )iU tD 、 *( , )iE tD and *( , )iRT tD of 12 monitoring cycles 

it  1 2 3 4 5 6 

*( , )iU tD  -2.1623 -3.0180 -3.8329 -4.5369 -5.1250 -5.4204 
*( , )iE tD  16.2176 15.3619 14.5470 13.8430 13.2549 12.9595 
*( , )iRT tD  0.1829 0.1726 0.1641 0.1550 0.1570 0.1552 

it  7 8 9 10 11 12 

*( , )iU tD  -5.4888 -5.3106 -4.9502 -4.5897 -4.2665 -3.9655 
*( , )iE tD  12.8911 13.0639 13.4297 13.7902 14.1134 14.4144 
*( , )iRT tD  0.1548 0.1561 0.1627 0.1690 0.1617 0.1651 
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The scatter plot for 
*( , )iRT tD  and 

*( , )iE tD  in Tab. 5 is presented on Fig. 4. A 

good linear relationship of ( )=0.0076 ( ) 0.0563RT , t E , t   +D D is found with a 

correlation coefficient of 0.91. This demonstrates further that the information entropy 

of the posterior distribution of parameters is an important parameter for the optimal 

design of monitoring wells. 

 

Figure 4: The fitting diagram of the relationship between *( , )E tD  and *( , )RT tD  

 

3.4 Contamination source identification based on the optimized monitoring plan  

From Sections 3.2 and 3.3, we know that the optimal monitoring well plan for the 

example in this paper is that monitoring well position (445,200) =D , and monitoring 

frequency is 7.  

3.4.1 Solution results by the metropolis algorithm 

In this section, the model parameters are solved by adopting the classic Metropolis 

algorithm to build the Markov chains. However, the iterative curves of the 4 parameters 

0 00M X Y T, , ,  to be estimated vary widely because of the different initial sample points by 

the Markov chains. Taking M  as an example, different initial sample，such as an initial 

sample Set 1 of 0 0 0( , , , ) (1500.1,263.6,193.2,53.5)M X Y T =  and a sample Set 2 of 

0 0 0( , , , ) (1449.4,368.7,212.5,58.9)M X Y T =  are randomly selected，the iterative curves are 

produced as shown on Fig. 5(a) and Fig. 5(b). 
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          （a）Initial sample Set 1               (b)Initial sample Set 2 

Figure 5: Iterative curves of model parameter M  based on the Metropolis algorithm 

with different initial samples 

It can be seen from Fig. 5(a) that when the initial sample point is M1=1500.1 g and the 

Metropolis algorithm is iterated to 5000 times, the parameter M value gradually becomes 

stable, and eventually converges to 1520M g . However, the value is quite different from 

the true value (M=1212.8 g), with an error of 25.3%. Fig. 5(b) shows that when the initial 

sample point is M1=1449.4 g and the iteration reache 50,000 times, the parameter M 

value still does not converge. Therefore, when the classical Metropolis algorithm is used 

to solve the contamination source intensity, the solution result is greatly affected by the 

initial sample point. This suggests that it is prone to local optimum or difficult to 

converge. What’s more, it is speculated that similar problems may occur to another 3 

parameters 0 0 0, ,X Y T . 

3.4.2 Solution results by the improved multi-chain metropolis algorithm 

Giving that the solution results of the Metropolis algorithm are affected by the initial 

sample points, the improved multi-chain Metropolis algorithm is used to solve the same 

problem. The posterior probability histograms of the contamination source parameters are 

drawn by the improved multi-chain Metropolis algorithm, as shown on Fig. 6 (where the 

red line shows the true value). 
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Figure 6: Posterior probability histograms of model parameters based on improved 

Metropolis algorithm 

In the inversion process, each Markov chain has a length of 50,000 for a total of 40 

chains. When the evolutionary generations of the parallel Markov chains reach 40,000, 

the convergence judgment index of 4 parameters are as ˆ 1.0 1.2 ( 1,2,3,4)iR i  = . At this 

time, the Markov chains of all parameters have converged. Then the previous unstable 

40,000 Markov chains results are excluded, so that only the last 10,000 stable results are 

used to perform the posterior statistical analysis. The results are shown in Tab. 6. From 

Tab. 6, it can be seen that the Metropolis algorithm based on the Latin hypercube 

sampling method can achieve overall optimization in inversion results and can effectively 

improve the accuracy of inversion results. 

Table 6: Posterior statistical results of model parameters based on improved Metropolis 

algorithm 

Project Mean 

Mean 

error 

 % 

Median 

value 

The 

median  

error % 

Contamination source intensity M /g 1324.28 9.20 1324.61 9.22 

Contamination source 

coordinates/m 

0X /m 305.70 0.25 305.83 0.21 

0Y /m 200.14 0.0061 200.14 0.0066 

Leakage time from  

first monitoring time 0T /d 
51.62 0.33 51.65 0.27 

3.4.3 Influence of prior distribution range on the parameter inversion results 

Taking the parameter M as an example, 10 sets of parameters prior distribution ranges (as 

shown in Tab. 7) are selected to verify the influence of the prior distribution range on the 

parameter inversion results. All of the observations are observed through the optimal 

observation scheme. ( )U  D , ( )E  D  and ( )RT  D  with different prior 

distribution ranges are calculated in the process as in Section 3.2. The values are shown 

in Tab. 8, and the linear fit between ( )RT  D  and ( )E  D  is shown on Fig. 7. 
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Table 7: 10 sets of parameters prior distribution ranges 

Number 

Contamination 

source 

intensity 

M (g) 

Contamination source 

coordinates 
Leakage time from 

first monitoring time
 

0T (days) 
0X (m) 0Y (m) 

1  [800,1600] [200,400] [185,215] [40,60] 

2  [900,1600] [200,400] [185,215] [40,60] 

3  [1000,1600] [200,400] [185,215] [40,60] 

4  [1100,1600] [200,400] [185,215] [40,60] 

5  [1200,1600] [200,400] [185,215] [40,60] 

6  [1300,1600] [200,400] [185,215] [40,60] 

7  [1400,1600] [200,400] [185,215] [40,60] 

8  [1500,1600] [200,400] [185,215] [40,60] 

9  [700,1600] [200,400] [185,215] [40,60] 

10  [600,1600] [200,400] [185,215] [40,60] 

Table 8: ( )U  D , ( )E  D  and ( )RT  D  with different parameters prior distribution 

ranges 

Number 
D  ( )U  D  ln ( )p−   ( )E  D  ( )RT  D  

1  (445,200) -5.4888 18.3799 12.9151 0.1548 

2  (445,200) -5.5332 18.2463 12.7131 0.1591 

3  (445,200) -5.5596 18.0922 12.5326 0.1431 

4  (445,200) -5.6548 17.9099 12.2551 0.1257 

5  (445,200) -5.6425 17.6867 12.0442 0.1190 

6  (445,200) -5.7471 17.3990 11.6519 0.1074 

7  (445,200) -5.7029 16.9936 11.2907 0.1040 

8  (445,200) -5.7811 16.3004 10.5193 0.0994 

9  (445,200) -5.3915 18.4976 13.1061 0.1645 

10  (445,200) -5.3664 18.6030 13.2366 0.1683 
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Figure 7: The fitting diagram of the relationship between ( )RT  D  and ( )E  D  

A good linear relationship ( )=0.0290 ( ) 0.2198RT E   −D D  can be found with a 

correlation coefficient of 0.95 (Fig. 7). So, the smaller of ( )E  D  is, the better the 

inversion results will be. Based on Eqs. (13) and (14)   obeys uniform distribution; 

and ( )E  D  increases with the increase of the prior distribution ranges of  ; which 

makes the inversion error increase. Therefore, in order to reduce the inversion error, it is 

crucial to keep the prior distribution within a smaller range. 

In Tab. 6, the parameters 0X , 0Y , 0T  have better inversion results since the mean errors 

are all less than 0.5%. However, the inversion mean error of M  is as high as 9.20%. It 

is largely because that the prior distribution range of M  is larger than that of 0X , 0Y  

and 0T  according to the above theory. Therefore, in order to improve the accuracy of the 

inversion results, the prior distribution ranges of parameters should be minimized through 

good field investigation or experiment. 

4 Conclusion 

(a) Using the Bayesian formula to solve the inverse problem of contamination source 

identification could effectively avoid the loss of “truth values” comparing with that in 

the deterministic model solution process, which could improve the reliability in 

identifying the contamination source information (i.e., the contamination source 

intensity, position and release time). 

(b) Both the relative root mean square error of inversion results and the information 

entropy of posterior distribution of parameters show a good positive linear 

relationship, suggesting that the information entropy can be seen as a potent indicator 

for inversion results. The smaller of the information entropy is, the better of the 

parameter inversion result will be. Therefore, the optimize design method using the 

Bayesian formula and information entropy can be an effective method to design a 

groundwater contamination monitoring well plan.  

(c) The computational efficiency of the optimal design of groundwater monitoring wells 
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could be significantly improved by coupling the two-step Monte Carlo method with 

the differential evolution algorithm.   

(d) Utilizing the improved Metropolis algorithm based on Latin hypercube sampling to 

solve the inverse problem of groundwater contamination source conditions could 

achieve the overall optimal results with a significantly improved accuracy. And its 

reliability and stability are better than those of the classic Metropolis algorithm. 
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