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Region-Aware Trace Signal Selection Using Machine Learning 
Technique for Silicon Validation and Debug 

R. Agalya1, R. Muthaiah2, * and D. Muralidharan3

Abstract: In today’s modern design technology, post-silicon validation is an expensive 
and composite task. The major challenge involved in this method is that it has limited 
observability and controllability of internal signals. There will be an issue during execution 
how to address the useful set of signals and store it in the on-chip trace buffer. The existing 
approaches are restricted to particular debug set-up where all the components have 
equivalent prominence at all the time. Practically, the verification engineers will emphasis 
only on useful functional regions or components. Due to some constraints like clock gating, 
some of the regions can be ignored during execution. Likewise, some of these regions can 
be verified deeply and have minimum errors compared to other control regions. The 
proposed system focusses on random signals that identify more errors which are prone to 
signal selection technique with low area overhead. To enhance the observability, a machine 
learning technique is developed. Based on the training samples of smaller designs, a model 
is developed to find out the contiguous neighbours of each flip-flop. This can eliminate the 
obstacles of unknown signals. This system demonstrates using Opencores and ISCAS’89 
benchmark circuits that result in easy and fast error detection compared to the state-of-the-
art of other methods. This is also verified using gate-level error models by cross-validation 
of each debug run.  

Keywords: Controllability, error propagation, machine learning, observability, signal 
selection. 

1 Introduction 
As mentioned earlier, the main challenge of verification or validation is to observe and 
control the internal signal states. To improve those signal states, only a small set of signals 
[Ko and Nicolici (2009); Liu and Xu (2012)] are traced and stored it in the online trace 
buffer because of design overhead constraint. These stored data can be helpful for 
debugging by off-line debug. The problem of limited observability is more challenging so 
that the restoration ratio technique has evolved [Basu and Mishra (2013); Liu and Vemuri 
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(2017)]. Unfortunately, previous approaches are not applicable due to various reasons since 
each region of the design is equally important for debugging and it selects the signals 
accordingly [Basu, Mishra, Patra et al. (2013)]. These methods may assume a spatial and 
temporal uniform distribution for finding the errors. However, in reality, it may not be 
useful for certain regions from various motives. For example, if certain timeframes using 
clock gating [Zhang, Li, Shi et al. (2018)] in multicore architecture, there will be no error 
during that particular frame. Likewise, some regions may have fewer errors associated with 
intensive regions. Sometimes the logical errors can affect the internal memory rudiments 
that can propagate towards the output [Ko and Nicolici (2010)]. During debug, only a small 
number of signals is pertinent for certain time. Hence, a verification engineer likes to trace 
a diverse set of signals at the diverse time frame. The signal selection can be done 
dynamically and it was proposed based on error-prone zones [Prabhakar and Hsiao (2009)]. 
However, this approach is not appropriate for dynamic/random error locations. Therefore, 
this paper focused on dynamic errors to achieve accurate error findings. 
In this article, we recommend an efficient trace signal selection that allied to control the 
design for accurate trace error detection. This makes two significant contributions. So the 
authors proposed a regional based random signal selection technique which helps to select 
a group of lucrative signals based on functional regions associated to error-prone zones 
with low area overhead based on active regions (Ar). The second thing is, we use the 
machine learning algorithm that is suitable to enhance the observability based on mock 
simulation with injected design errors. A contiguous neighbour model is established for 
the circuit design which is independent to characteristics of a particular design. Henceforth, 
this method helps to find out the neighbours of each flip-flop (FF) of any random design. 
The non-traced signals states can be categorised based on contiguous neighbours. The main 
contribution to this approach is to identify the closely related neighbour of each flip-flop 
using a machine learning structural features. The debug methodology is developed to 
pinpoint the errors in the netlist for the smaller region. 
The remaining work of this paper is organized as follows. Section 2 describes the related 
work and background of the research. Section 3 is discussing the methodology used in this 
paper and it illustrates clearly. The Proposed method and experimental setup were 
explained in Sections 4&5 respectively. Finally, this paper concludes in Section 6. 

2 Background and related works 
Limited observability is the major concern while selecting the internal signals of the circuit. 
It is associated with the problem of data mining. Till now, the existing approaches were 
tried to solve the problem using design netlist, untraced signal states (state restoration) with 
the assistance to structural dependencies [Basu and Mishra (2013)].The important aspect 
is to trace the signal in both forward and backward to justify the untraced signal states. 
Conversely, the preeminent signals are selected based on design or netlist by the heuristic 
approach. Selecting the signals based through state restoration is not adequate. The 
clustering algorithms like contiguous neighbours can help to choose the unknown signals. 
These are achieved in this fact to maximize internal visibility. The selection techniques like 
Chatterjee et al. [Chatterjee, McCarter and Bertacco (2011); Prabhakar and Hsiao (2010); 
Han, Yang and Abraham (2013)] have been proposed which is focused only on state 
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restoration, not on error detection. The timing errors have been detected recently and these 
approaches are based on the same set of signals (i.e., static signals) for complete execution 
of the system. Without considering static signal, an alternate signal method was developed 
by Mitra et al. [Mitra and Park (2008)] which is very specific to temporal distribution of 
errors. After that, a multiplexed based signal selection method was developed. However, 
their approach doesn’t consider the heuristic approach of both temporal and spatial 
distribution of errors. The dynamic method describes how to generate the input sequence 
and forgets to focus on trace signal selection that results in an error. Later, this dynamic 
method [Yigit, Zhang, Li et al. (2017)] considers only on state restoration rather than error 
findings. Finally, it concludes that these approaches are based on test vectors, not on active 
regions. Later the dynamic method focused on active region but it forgets to concentrate 
on dynamic errors. Hence, the proposed method focused on the random signal selection 
that considers a different set of active regions which helps to detect the dynamic errors 
easily.  
Instruction Footprint Recording and Analysis (IFRA) technique was proposed [Rahmani 
and Mishra (2017)] to detect the errors using on-chip observability mechanism with 
minimum cost.  This mechanism contains thousands of logic gates that results difficulty in 
debugging at the gate-level. For bug localisation, the Machine Learning Method (MLM) 
have been used recently [Basu and Mishra (2013); Jindal, Kumar, Jindal et al. (2018)] in 
both the stages of verification and validation. During testing, a large amount of information 
can be collected using some learning techniques like regression, clustering, etc. Based on 
the failure states the clustering technique is applied. Hence, this method helps to extract 
the bugs from the obtained results. This paper focused on observability expansion of debug 
data through gate-level error localization technique. These data can be accessed via on-
chip trace buffers. The contiguous neighbor helps to make a decision on unknown signal 
states by increasing the restored signal states and with the traced data. This methodology 
gives a reasonable solution compared to other methods. The first approach helps to find 
the neighbors using distance calculation. The next approach helps to find out the feature 
sets based on the physical structure. These approaches can be extended to localize the errors 
in electrical nature. Finding the neighbors through the distance calculation and through the 
machine learning model helps to achieve accuracy. It will be a promising way for further 
investigation. 

3 Methodology & illustration 
3.1 Signal restoration vs. error detection 
Signal restoration plays a vital role in signal selection for the past few years. Let’s 
contemplate the two-input OR gate, having the inputs of x, y and its output is z. If the output 
is 1, then any one of the inputs should be 1. Fig. 1 shows an example circuit that comprises 
12 number of flip-flops, the signals are traced between input and output. Tracing of flip-flops 
between A and C in the first cycle, it aids to reinstate the D flip-flop value in the subsequent 
cycle since the OR gate input is detached. Likewise, I and K are connected through a NOT 
gate and it can be easily traced in t-1 cycles. From this, we can understand that the tracing 
can be done in both the forward and backward direction. It is evident that backward 
restoration is meaningful for error detection. For e.g., When the flip-flop D is having an error, 
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then it will propagate through forward direction from F to G flip-flops of fan-out cone. To 
identify these bugs, those flip-flops should be traced in a backward direction. Tracing the 
fan-in cone of D is not useful to find out those errors. The errors can be detected with the 
help of restoration property. Concentrating only on restoration performance does not help to 
improve the internal signal observability and controllability. 

 

Figure 1: An example circuit 

As discussed earlier in this section, observability and controllability are the two main 
obstacles for error localisation. This is the most stimulating part at the granularity of FF or 
at the gate-level visibility improvement that delivers very few FFs. There is a large 
mismatch between the simulation phase and validation phase that results the debug process 
more difficult. To manage the disparity of signal value, a matrix completion is used based 
on the machine learning problem. This supports the obtained signal states with the known 
flip-flop values. If the contiguous neighbour of a particular flip-flop is identified then its 
corresponding state also can be identified easily. The state may be either 0 or 1 that aids to 
find all other neighbour flip-flop values. This can find all the signal values in each clock 
cycles of signal restoration that outcomes full internal signal visibility. The flip-flop states 
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may not be identified in all the states. Those states are mentioned as X. Because of 
excessive storage requirements, it is common to assume in the debug stage that not to trace 
the inputs. The contiguous algorithm decides the contiguous flip-flops based on some 
features that are related to the particular circuit design. It may be associated with the design 
structure or simulated values. The netlist is used to perform the simulation of 5 clock cycles 
to identify its behaviour and state restoration compared to original values. 
 

 
Figure 2: An example circuit using flip-flops at the inputs and outputs 

Fig. 2 shows an example circuit of with the flip-flops placed at the inputs and outputs. The 
state restoration ratio (SRR) can be defined as the ratio of the sum of number of traced 
states and number of restored states to the number of traced states. Tab. 1 shows the state 
restoration (SR) that considers flip-flop and it gives the ratio of 2.6 whereas Tab. 2 shows 
the proposed state restoration that considers gate value gives 3.8 as the restoration ratio. 
One can think using of flip-flops at the input and output side can be an area overhead. In 
Fig. 2 and Tab. 2, it is added for better understanding that considers G3=0. 
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Table 1: SRR of [Jindal, Kumar, Jindal et al. (2018)] 

FF/C
C 

C
1 

C
2 

C
3 

C
4 

C
5 

A 0 0 1 0 0 
B x x 1 x x 
C x x X x X 
D 0 0 1 0 0 
E x x 1 x 1 
F x x 1 1 1 

Table 2: SRR of Proposed System 

FF/C
C 

C
1 

C
2 

C
3 

C
4 

C
5 

A x x X x X 
B x 0 0 0 0 
C 0 0 0 0 0 
D x x 0 0 0 
E 0 0 0 0 0 
F x 0 0 0 0 
G x x x 0 0 
H x x 0 0 0 
I x x x 1 1 
J x x X 1 1 
K x x 1 1 1 
L x x X x 0 

3.1 Problem Formulation 
The main aim of this paper is to progress the signal selection process in a random manner 
to maximize the dynamic error detection in each active region. The error detection can be 
done by 

0

n

ii
D=∑ where i is the number of signals that can be detected using Di with the 

trace buffer width ‘w’. According to several industrial studies, errors are not equally 
disseminated in the circuit, whereas they are grouped in several regions. Assume that these 
regions in the post-silicon validation are similar to the pre-silicon stage. The circuit is 
divided into several regions (called functional regions) either based on the highest node 
value or by its components and each region has one or more error zones (Ez). 
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Figure 3: Graphical representation with region separation of Fig. 2 

Assume that pre-silicon engineer gives the information. For example, in a multi-core 
System-on-Chip (SoC) each core can customize the area. If one region has more error zones, 
then it can be divided into several regions provided some functional boundary and these 
zones are present inside the circuit. If the fetch and the decode units are in one region then 
remaining things are in another region. There is a tradeoff between error-prone zones and 
number of regions. If the circuit is divided like one error zone for a single region then there 
will be too many regions and thus creates a computational complexity with area overhead. 
Conversely, a larger region having many error zones can reduce the complexity of random 
signal selection. Fig. 3 shows the graphical representation of Fig. 2 and it is divided into q 
regions and each is having one or more error zones and here we consider single error per 
single region. Contemplate ‘n’ signal states can be stored in the trace buffer for the width 
‘w’. Some of the functional regions are being active for any specific cycle due to clock-
gating or due to some other cause. If the signal transition does not happen in some regions, 
then that region is considered as an inactive region. These are the two extremes. If all the 
regions are active then the useful signals are traced with the help of tracing algorithm and 
it gives proportional importance to all the regions whereas if one region is active then only 
that region will be focused to trace the signals. This methodology follows that select the 
best of ‘s’ signals from q regions from the total set of s×q signals. It should be noted that 
the error detection in Ezi from any of ‘q’ regions. These signal selection techniques were 
implemented in efficient hardware for without area overhead. Fig. 3 shows the region 
separation of Fig. 2 based on highest node value. After separating the regions, we can get 
the restoration ratio in 3 clock cycles because of parallel computation. Each region may 
depend on the other region or an independent region like Fig. 4. Each region may have the 
same or different error zones. These are interconnected to any other regions. 
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Figure 4: Illustrative of regions with error zones 

The contiguous algorithm determines the metric between the points (node). One such 
metric is Euclidean Distance (ED) that measures the dissimilarity between the two points 
in Jindal et al. [Jindal, Kumar, Jindal et al. (2018)]. The distance between the two points a 
and b having the line segment of 𝑎𝑎𝑎𝑎. The coordinates of a and b are (a1,a2,….an) and 
(b1,b2….bn) respectively. The distance between these two points are in Pythagorean format 
is given by, 

𝑑𝑑(𝑎𝑎, 𝑏𝑏) = 𝑑𝑑(𝑏𝑏,𝑎𝑎) = �(𝑏𝑏1 − 𝑎𝑎1)2 + (𝑏𝑏2 − 𝑎𝑎2)2 + ⋯+ (𝑏𝑏𝑛𝑛 − 𝑎𝑎𝑛𝑛)2 

                                 = �∑ (𝑏𝑏𝑗𝑗 − 𝑎𝑎𝑗𝑗)2𝑗𝑗=𝑛𝑛
𝑗𝑗=1  

Since ED is a straight line distance calculating method, it is not suitable for finding the 
length between the two points of the circuit. Because the circuit on the chip may not be 
connected in a straight line. For finding the adjacent neighbours, the existing method used 
K-D tree, Ball tree, etc. But these methods perform poorly for the high dimensional matrix 
(>60) than a brute force linear method. So, the proposed system uses locality sensitive 
hashing that effectively used for the high dimensional matrix with the Manhattan Distance 
(MD) for accurate length/distance calculation. This metric gives accurate measures which 
are having less complexity. For this, we need to pre-process the points in a graph, and the 
new point is assigned to k-nearest neighbours. To find the contiguous neighbour, start from 
a random point and move to the neighbour nodes closest to your target. When its distance 
cannot be improved then that node is your nearest target. Manhattan that finds absolute 
differences between the coordinates. It is also recognized as taxicab, city block distance 
and rectilinear distance. It defines the sum of the length of the projections between the 
coordinates of the line segment. The calculation is given by, 
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𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ��𝑥𝑥𝑗𝑗 −  𝑦𝑦𝑗𝑗�
𝑛𝑛

𝑗𝑗=1

 

 
Figure 5: Difference between Manhattan distance & Euclidean distance 

 
Figure 6: Distance between the neighbours using Manhattan distance 

The Manhattan distance between the gates and the flip-flops are identified using a 
contiguous neighbour algorithm. Fig. 5 shows the basic difference between the two metrics. 
The distance between the flip-flops and the gates has identified in the forward direction for 
G3 and it is shown in Fig. 6 using the Manhattan metric. Based on this calculation the 
neighbours are chosen. This distance helps to determine the unknown values of X. For e.g., 
if 3-input AND gate is having the inputs of 1,X,X respectively the output cannot be 
determined. To trace the unknown value of this gate can be identified using the algorithm. 
If the second input distance is longer than the third input, then the third input value can be 
identified and taken first. If the value of third input is 0, then the output can be traced as 0. 
For cases like this, the proposed technique will be useful. If the third input is 1, then the 
second input should also be identified. In most of the cases, the minimum distance will find 
the value of unknown, so that more number of signals can be traced within the limited 
bandwidth. Fig. 6 has 4 neighbours and the signal states are depicted by alpha. But the 
derived states vary with the neighbours and it is depicted by beta. Tab. 3 shows the 
expanded internal signal state values that illustrations number of disparate states values are 
fewer for less neighbours. 
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Table 3: Expanded Internal Signal States 

FF/CC C1 C2  C3 C4 C5 
A 0 0 1 0 0 
B 0 0 1 0 0 
C 0 1(0αβ) 1 0 1(0αβ) 
D 0 0 1 0 0 
E 0 1(0αβ) 1 0 1 
F 0 1(0αβ) 1 1 1 

The signal states of the neighbours of gates and flip-flops will be updated dynamically. 
However, the distance will justify the choice of the neighbours. It is difficult to vitrine all the 
merits using this simple example here since most of the signal states are restored through state 
restoration. We found around 60% of internal signals are unknown in larger circuits. This 
indicates the necessity of improving the observability even after state restoration.  

4 Proposed methodology 
The first step is to build a graphical representation of a circuit (Fig. 2) to find the error 
propagation probability from each node to the other node in the same region or from a 
different region. The profitable set of signals are selected from each q region using Algorithm 
1. The edge between the nodes is regardless of the type of node. G3 is the node that probable 
sources of error propagation in the forward direction. Any error that propagates through this 
node in region 1 which are regardless of fan-out cones. Consequently, error from gate 3 
propagates through all the gates and the flip-flops towards the output. The probability-based 
node value calculation can be done based on dependent and independent paths of each node. 
However, based on the number of input and output connections the highest node value has 
found and it also gives the same restoration value like Pedregosa et al. [Pedregosa, Weiss and 
Brucher (2011)]. The regions are separated with the help of highest node value. The only 
difference is that the computation time is less when we select the highest node value selection 
than the probability approach. Hence, the proposed method achieves less time compared to 
the existing method in this step. The signal selection can be done using the following 
algorithm. 
Algorithm 1: Region aware signal selection 
In: Circuit, TBW, Ez; Out: list of s selected signals (s1…si) 
1. Generate a graphical illustration of a circuit, then split it into q regions having an error 

zone Ez 
2. Initialize Si=null 
3. Calculate the probability of an error for each node s that propagates to Qi 
4. While the region Qi is empty and signal Si is not having i number of signals do 
5. Select the highest node value j and add this to the list Si=Si U j  
6. Remove the node j from the list after computation to prevent overlap from Qi 
7. for each node in Qi, calculate the error propagation probability of Ezi and then sum it 
8. end 
9. return the list with selected signals 
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4.1 Error propagation computation 
It defines the probability of an error that propagated from input to output of a circuit/ gate. 
For multiple gates, it is essential to describe the dependent and independent paths. This 
paths are well-defined by the sequence of logic gates from the source to destination. These 
probability of an error occurs in the single gate of an AND and an OR gates are 𝑃𝑃𝑖𝑖11 =
 𝜋𝜋2≤𝑘𝑘≤𝑛𝑛𝑃𝑃𝑖𝑖𝑖𝑖1   and  𝑃𝑃𝑖𝑖10 =  𝜋𝜋2≤𝑘𝑘≤𝑛𝑛𝑃𝑃𝑖𝑖𝑖𝑖0   respectively. In detail, for any error (0/1 or 1/0) that 
propagates towards an output, then all the remaining inputs of AND gate must be 1. For 
example: if the output of AND gate is 1, then all the inputs of AND gate must be 1, if the 
output is 0 then any one of the input must be 0 and it is irrespective of i1. So the error may 
be undetected and we can assume that all the remaining inputs of AND gate are 
independent. The probability of all the remaining inputs is represented in the above 
equation that the probability of an error i1 will propagate to the output o1. Similarly, the 
calculation of NAND gate can be done. In place of an OR gate, the tactics is same but the 
state may be held at 0 and the probability of getting an error i1 with respect to 0 is 
mentioned in the above equation. Similar computations for NOR gate. These computations 
are only for an individual gate. For multiple gates, we need to consider both dependent and 
independent paths.  

 
Figure 7: Probability node values for predicting errors in each region 

4.1.1 Multiple gates by dependent path 
In Fig. 7, from a source to destination, the internal signal probability is 50% since the state 
is 0 or 1. This is calculated for Fig. 1 with region Q1 for better understanding. For example, 
there is a single path from A to F and the probability of getting an error through D is 0.25 
since there is an OR gate between A and D, AND gate between D and F. The probability 
of getting an error between these paths are 0.5 and 0.5 respectively. By multiplying these 
paths, the overall probability of getting an error is 0.25. So, the overall error propagation 
is  𝑃𝑃(𝑠𝑠,𝑑𝑑) =  𝜋𝜋1≤𝑘𝑘≤𝑛𝑛𝑃𝑃𝑘𝑘 
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4.1.2 Multiple gates by independent path  
Like the above-said statement, there are two paths between A and G. From those, one such 
path is through A,E,G and A,D,F,G. The computation is similar to the previous one. The 
overall probability of getting an error in the path A,E,G is 0.25 and for A,D,F,G is 0.125. 
The maximum probability is always dominated the detection of an error. So it can be 
calculated as 𝑃𝑃(𝐴𝐴,𝐺𝐺) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝑃𝑃(𝐴𝐴,𝐸𝐸,𝐺𝐺),𝑃𝑃(𝐴𝐴,𝐷𝐷,𝐹𝐹,𝐺𝐺)). In general, the error propagation 
probability is demarcated as 𝑃𝑃(𝑠𝑠,𝑑𝑑) =  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝑃𝑃(𝑒𝑒1,𝑒𝑒2……𝑒𝑒𝑒𝑒)) . From this, the 
proposed system finalizes some of the features that can calculate the error propagation 
score of each gate. Because the training model must be generic and it is applied to Design 
Under Test (DUT) to get the best results. For modeling technique ML, the following 
features are considered. 
1. 𝜀𝜀1(fan-in): number of gates that connected to its input. 
2. 𝜀𝜀2(fan-out): number of gates that connected to its output. 
3. 𝜀𝜀3(connectivity): number of flip-flops and combinational gates connectivity in both 

forward and backward direction. 
4. 𝜀𝜀4(input distance): minimum distance between the primary input and flip-flop/gate. 
5. 𝜀𝜀5(output distance): minimum distance between the flip-flop (gate) and primary output. 
6. 𝜀𝜀6(ed score): ∑ (𝑝𝑝=𝑃𝑃

𝑝𝑝=0 𝜋𝜋𝑔𝑔=0
𝑔𝑔=𝐺𝐺(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)). 

7. 𝜀𝜀7(signal restoration): flip-flop or gates is defined as the number of restored states over 
the process of t cycles of trace signals. 

It should be noted that the features mentioned above are fully based on the physical structure 
of the circuit and how fast it can calculate. Using this structural relationship, the contiguous 
neighbours are obtained. Observability expansion can be made either by structural analysis 
or by error signatures obtained from the netlist. Based on these two the neighbour states of 
all the flip-flops and gates are identified. The main criteria is to find the optimum neighbour 
(ON) to figure out the internal signal states for better visibility. To iterate this, the minimum 
and the maximum number of neighbours have taken as 5 and 500 respectively. To compute 
these, we have implemented K-D tree, Ball tree using locality sensitive hashing to find the 
neighbours in the fastest manner.  Note that flip-flops are derived from error blocks obtained 
from the debug procedure. We define a localization function to quantify the efficacy of gate-
level error localization with the proposed debug methodology. If the error injection and 
subsequent localization experiment is carried out K times, the function has the maximum 
value of K. We report for the two training methods (training_1 and training_2) and various 
error injection scenarios. 
By normalising the parameter values, the variants are denoted by Vi. By training the 
smallest circuits that help to identify the combination of neighbours (фj). The depth of the 
trace buffer is denoted by Cy cycles, the number of iteration is denoted by k and the 
proposed learning model is ML. As mentioned earlier, the training can be performed by 
two ways. The algorithm is given by, 
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Algorithm 2: 
1. Proceduretraining_1 (input: CGe, k; output: ML) 
2. ML∅ 
3.      Ttraced and restored stated for each cycle 
4. Error signature of each gate (CGe) N- states of CGe for Cy cycles 
5. notch value (фj , Vi)  0 
6. for each Vi do 
7. for h= ON (фj) do 
8. for y=1 to K do 
9.            neighborsONmodel(CGe, Vi) 
10.          all standards fill values((neighbors,T) 
11.      notch value  all standards – CGe 
12. end for 
13.           notch value (фj , Vi)∑(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ) 
14. end for 
15. end for 
16.        neighbor score = min (notch value (фj , Vi)) 
17.       M  ON (фj , Vi) 
18. end procedure 
To find out the nearest neighbour is totally depends on the error signature (CGe) and its 
learning model (Vi). After finding the neighbour of a particular node, the traced and 
restored values are identified for observability expansion. The minimum difference 
between the expanded signature and CGe gives the best companion. The Neighbor score 
gives the summation of actual score and observed score of фj and Vi. 
The second model is fully based on the netlist and independent error signatures. Based on 
the features as mentioned above, the estimation of error transmission via each input gate 
can be specified as (1/Ninputs). Once the gate value score is calculated, the error probability 
score can find out easily by calculating all the input paths to each flip-flop. Here, the 
number of gates are G and the number of paths are P to estimate the training model. The 
second training model is developed based on the number of features listed without restoring 
the error signatures from the simulation. The training model is given by, 
Algorithm 3: 
1. Proceduretraining_2 (input: netlist, n, k; output: ML) 
2.    ML∅ 
3.    feature_set∅ and 
4.    Ttraced and restored stated for each cycle 
5.     Error signature of each gate (CGe) N- states of CGe for Cy cycles 
6.     notch value (фj , Vi)  0 
7.         for each CG  1 to xdo 
8.         compute all the features 
9.     feature_set feature of each CG 
10.     end for 
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19.       for each Vi do 
20.          for h= ON (фj) do 
21.             for y=1 to K do 
22.              neighborsONmodel(CGe, Vi) 
23.              all standards fill values((neighbors,T) 
24.              notch value  all standards – CGe 
25.           end for 
26.           notch value (фj , Vi)∑(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ) 
27.       end for 
28.     end for 
29.    neighbors ON model (feature, space, Vi)  
30.    ML  ON (фj , Vi) 
31.  end procedure 

Hence, the resultant model will be M (training_1, training_2) to find the neighbours that 
reduce the requirement and memory space. The missing values are identified with the help 
of neighbours. This helps to increase the observability that debugs efficiently. This is 
verified by a higher level of abstraction that localises the error exactly. The error 
localisation is very difficult at the gate level, so the proposed method tries to achieve at the 
granularity of each gates/flip-flop. The basic principle to debug is that the difference 
between the golden reference and obtained signatures. So the problem of unknown signal 
values has been resolved using the random signal selection algorithm. From this, we can 
understand that for localising the smaller circuit, the error signatures are divided into a 
certain number of blocks. Based on the dissimilarity, the error signatures are localized. It 
can be done by ranking of all the flip-flops or gates out of which the top most thing should 
be chosen.  

4.2 Random signal selection 
Algorithm 4: In: Circuit, tbw, Ar, related region ar, selected signal list; Out: List of n traced 
signals 
1. Signal to be traced (ST)∅ 
2. Let ar = ∑ 𝑎𝑎𝑖𝑖=𝑚𝑚

𝑖𝑖=1 ri 
3. Find the influence from Ar, Cr = 𝑛𝑛 𝑥𝑥 𝑎𝑎𝑎𝑎𝑎𝑎

𝑎𝑎𝑎𝑎
 

4. Select Cr from selected list 
5. Place the selected list in ST and then repeat Step 4 and 5 
6. Return selected ST 

During the active region, the duration depends on (1≤k≤m) for m x n1 signals. The total 
number of possible states is 2m-1.For example, the active region of size m=2 and n1=2, the 
two selected signals from each region (RA, RB) is represented as A0, A1 and B0, B1 
respectively. If the current state is (0,1) then the selected signals will be (B0, B1) of Fig. 8 
that uses ‘x’ multiplexers in Random Signal Tracing (RST). Likewise, if it is (1,0) and (1,1) 
then the signal states are (A0, A1) and (A0, B0) respectively. The output is given to the trace 
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buffer and the controller that controls the signals towards multiplexer that operates under 
the same clock. An external knob is given to the active error zone information of a circuit 
for validation. 
 

 
 Figure 8: Block diagram for Random signal Tracing 

Note that, modeling 1 is not been probable for larger extent. So the design bugs are mapped 
into netlist level [Choi, Jung, Oh et al. (2018)] such as unintended wire exchange, gate 
level random gate replacement, etc. If the two wires are exchanged due to the design error 
and it slips to fabricated silicon, then that error will propagate to the logical cone of a 
connected path. If there is an unintended inverter is present in the design then this also can 
propagate towards the output cone. 

5 Experimental setup  
We have verified the region-aware trace signal selection and random signal tracing 
algorithms with the help of ISCAS’89 benchmark and Opencores circuits. Consider each 
region has one error-prone and we have introduced 50 random errors to the active regions 
and the error density is directly proportional to region size. Here, we executed two kinds 
of simulation one with an ideal case and the other with the erroneous signals. The error 
detection is defined by,  

Error detection ratio= 𝑁𝑁𝑁𝑁.𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑁𝑁𝑁𝑁.𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
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We have pragmatic our algorithm to various regions and active regions. We have obtained 
the results for two regions to different scenarios. In global signal selection, they assumed that 
the errors are uniformly distributed without considering active regions and error zones [Jindal, 
Kumar, Jindal et al. (2018); Kumar, Jindal, Fujita et al. (2017)] whereas the proposed 
technique considers error detection and restoration. After this, error-one technique has 
evolved and this approach was focused only on static region that considers all the regions are 
active. But the proposed technique focused on the active region, error zones, different or 
random region that can reduce the time and memory space. The comparison for error 
detection ratio for a single region is active is shown in Fig. 9.  

 
 Figure 9: Comparison of error detection ratio for single active region 

GSS-Gate-level Signal Selection 
E-GSS-Error zone based Gate-level Signal Selection 
RASS+ML+RST-Region-aware Machine Learning Random Signal Tracing 

A Verilog module is developed that parameterised m regions and n1 traced signals. Then 
the proposed module is synthesized using Synopys design complier using lsi_10k 
technology. A typical size of trace buffer size is 32×1024 bits. Usually, the debug 
technology occupies more space than a controller, whereas the proposed technique uses 
only 5360 µ while using the same library. Therefore, this approach detects two times more 
errors compared to existing methods. With the help of Scikit-learn [Pedregosa, Weiss and 
Brucher (2011)] library, the above-mentioned the proposed learning model implements 
benchmark circuits. The training_1 model has used single design error (e.g., exchange of 
wire). For the same configuration of trace buffer size (32×1024 bits), the neighbours 
(фj=10) are identified using the learning model (Vi). Using the training model 1, the 
observability expansion is achieved. When the number of neighbours are less or if it is 
larger, the accuracy falls. So the neighbours should not be less than (like 5 or 10) or greater 
than 500, this condition occurs. Then the accuracy range lies between 8% and 15% in Fig. 
10. Using the training_2 algorithm, the accuracy increases by more than 25% for 50 
neighbours when choosing the combinational gate rather than the flip-flop with the help of 
training_2 model the accuracy increases. This simply justifies the simulation based 
observability technique works better than the usual reconstruction method. However, the rate 
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of accuracy (increases/decreases) is lower compared to training_1. After analyzing the model, 
the proposed method hooks the least but it catches the most important aspirants.  

 
Figure 10: Training_1 observability expansion 

Using the training model, the error localisation values obtained and it is shown in Tab. 4. 
There is a smaller variation in obtaining the error localisation between the two training 
models. Correspondingly, there is a smaller variation when the number of neighbours and 
the learning model that is used for contiguous neighbour mode M. 

Table 4: Results of Two Training Models with the Number of Error Localization 

Benchmark 
Circuit 

Training_1 
Error injection 

Training_2 
Error injection 

s35932 41 39 
s38417 45 42 
s38584 48 46 

The methodology is verified with the help of cross-validation of the debug data on designs 
injected with gate-level error models. To avoid over-fitting in our model, we have used 5-
fold cross-validation technique (20%-test/validation vectors; 80%-training vectors). The 
problem of over-fitting occurs when the model is too specific to the training data that results 
in low accuracy of the new data and high accuracy in training data. Here we have used the 
smallest set of ISCAS’89 benchmark circuits to train our signal selection model and for 
running the modeling techniques, 5-fold cross validation have been used. This system is 
validated by comparing the obtained results with the Icarus Verilog simulator output.  

6 Conclusion 
Limited observability and controllability is the basic problem of post-silicon validation and 
debug. The rudimentary hypothesis of existing methods was developed using uniform 
errors that distributed over the circuit. The proposed technique selects the most beneficial 
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set of signals in each divided region based on error zones. The regions which are active are 
traced dynamically at a certain time with the help of contiguous neighbours. This 
methodology uses Manhattan distance for the distance calculation from simulated values 
for neighbour findings. Finding of neighbours using machine learning model helps to detect 
two times more errors than the existing methods.  
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