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Abstract: In this article, we adopt the C-type spline of degree 2 to model and blend basic 
shapes including conics and circle arcs. The C-type spline belongs to the ωB-spline 
category of splines that are capable of blending polynomial, trigonometric and hyperbolic 
functions. Commonly used basic shapes can be exactly represented by these types of 
splines. We derive explicit formulas for the convenience of modeling the basic curves. 
The entire blending curve is C1-continuous. In comparison with the existing best blending 
method by rational G2 splines, which are rational splines of degree 3, the proposed 
method allows simpler representation and blending of the basic curves, and it can 
represent numerous basic shapes including the hyperbolic types. We also design a 
subdivision method to generate blending curves; this method is precise for the basic 
curves and approximate for the blending sections. The subdivision process is efficient for 
modeling and rendering. It has also proven to be C1-continuous by the asymptotically 
equivalent theory and the continuity of stationary subdivision method. In addition, we 
extend the proposed methods to cases involving the modeling and blending of basic 
surfaces. We provide many examples that illustrate the merits of our methods. 
 
Keywords: Basic shapes, blending, C-type splines, subdivision, C1-continuous. 

1 Introduction 
The modeling and blending problems of basic shapes are classical problems in computer-
aided geometry design (CAGD) and very important in many other application domains 
[Karciauskas and Peters (2011); Shen, Hu and Fan (2017); Wang, Lin and Fang (2017)]. 
Many types of methods have been continuously proposed in the past decade [Shen, Hu 
and Fan (2017); Hui (1999); Erich (2001); Kouibia, Pasadas, Sbibihb et al. (2013); Kiciak 
(2013); Lin, Xiong and Liao (2014)]. The Rational G2 spline proposed in Karciauskas et 
al. [Karciauskas and Peters (2011)] allows the modeling of multiple basic shapes, 
including segments of conics and circle arcs in one structure; This is important in 
conceptual design to avoid the posteriori need to stitch the conceptual pieces together. 
This method was also extended to cases that require blending of the basic surfaces for 
more background information [Karciauskas and Peters (2011)]. The traditional 
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approaches of representing and blending basic curves include modeling them as 
projections of C2-continuous curves in a homogeneous space and of individually 
representing each piece of the basic curve by a rational Bernstein-Bezier form [Boehm 
(1987); Bangert and Prautzsch (1997); Farin (2006)]. The first approach leads to a high 
degree of parameterizations and the second approach lacks smooth transitions between 
the two adjacent pieces of the basic curves. Actually, the structure of rational G2 splines is 
similar to the structure of cubic rational B-splines, which can reproduce basic curves and 
implement G2-continuity between blended basic shapes. However, the weight coefficients 
for B-splines need to be computed by very complicated formulas. In addition, sampling 
on basic curves before blending them is also troublesome and subjective. In these 
blending methods, technologies relative to splines, parameterizations and subdivisions 
are often used; please refer to Salomon et al. [Salomon (2006); Floater and Hormann 
(2005); Andersson and Stewart (2010); Ma (2005)] to acquire more knowledge of these 
methods. Actually, the ωB-splines proposed in Fang et al. [Fang and Wang (2008)] can 
easily be used to construct many types of basic curves, which are B-like-splines spanned 
over the blending space of polynomial space, trigonometric space and hyperbolic space. 
The control points and weight coefficients need to be computed by very complicated 
formulas. In addition, sampling on basic curves before blending them is also troublesome 
and subjective. To blend basic shapes, we adopt the C-type ωB-splines of degree 2 (C-
type splines for short), which are C1 and able to exactly represent basic shapes. In this 
paper, we derive their representation formula and develop a blending method using C-
type splines. A C1 subdivision scheme of blending basic curves is also proposed. The 
subdivision scheme can generate exact basic curves and approximate blending segments, 
which converge to the corresponding C-type spline curves. In comparison with the 
blending method by rational G2 splines, which are rational splines of degree 3, the 
proposed method makes it simpler to represent and blend basic curves.  
This article is organized as follows. In Section 2, C-type spline bases and curves are 
defined. Section 3 describes the detailed algorithms for representing and blending basic 
shapes, including curves and surfaces. Section 4 proposes a subdivision scheme. Section 
5 concludes the paper. 

2 C-type spline curve of degree 2 
The ωB-splines proposed in Fang et al. [Fang and Wang (2008)] used a frequency 
sequence to determine their types and corresponding coefficients. Therefore, blending 
different types of curves is permitted when different frequencies are included in the 
frequency sequence. Moreover, the ωB-splines space is blended by polynomial, 
trigonometric and hyperbolic spaces, thus many analytical curves are exactly reproduced 
by ωB-splines. For conics and circular arcs, C-type splines of degree 2 are sufficient, and 
the lower degree is beneficial for modeling suitable blending segments. Therefore, we 
select C-type splines of degree 2 to represent and blend basic curves. The definitions for 
the C-type spline basic functions and curves of degree 2 are given below. 

Definition 2.1 (C-type spline bases) Let T be a given knot sequence{ }+∞∞−it  with 1+≤ ii tt ,

{ }+∞∞−= iωω  be a given frequency sequence. Ci,2(t) constructed by the following formulas 
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are called C-type spline bases in the span of { }2,,1,sin,cos tttt ii ωω  for [ ]3, +∈ ii ttt . 

( ) ( ) ( )( )∫ ∞− ++−=
t
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As for ω, we set iii βαω = , where { }iii ,1,0, ∈ℜ∈ + βα ，where i denotes the unit of 
imaginary numbers and ( ) πα ≤−+ iii tt 1  when 1=iβ .Therefore, iω   can be zero (when 

0=iβ ), a positive real number (when 1=iβ ) or a pure imaginary number (when
ii =β ). 𝛽𝛽𝑖𝑖 determines the type of basis function on its corresponding interval and affects 

the shape together with the value of iα . 

Definition 2.2 Let { } ( )tCP i
n
ii 2,

3
0 ,ℜ∈=  be C-type spline bases corresponding to the 

partition { }+∞
−∞=

=
jjtT of the parameter axis t. Then ( ) ( )∑ =

=
n

i ii PtCtP
0 2, , where

2,12 ≥≤≤ + nttt n , is called a C-type spline curve corresponding to the knot vector T. 
( )niPi ,,1,0 =  are control points. 

Because different frequencies can be set for different knot intervals, C-type splines can 
represent numerous types of curves. Corresponding to the value of β, 0, 1 or i, C-type 
spline curves are polynomial, trigonometric polynomial and hyperbolic polynomial types 
respectively. For the basic surfaces, they can be modeled by revolving around the basic 
curves. For more details please refer to Fang et al. [Fang and Wang (2008)]. 

3 Blending basic shapes with C-type splines of degree 2 
C-type splines span the space { }2,,1,cos,sin tttt ii ωω , which can exactly reproduce basic 
curves. Their representation structure is similar to polynomial B-splines, without rational 
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forms. According to the standard equations and the corresponding parameters of the basic 
curves, we can use C-type splines to derive the explicit formula for computing control 
points that are necessary for representing basic curves. Corollary 3.1, 3.2, and 3.3 show 
these formulas for parabolas, hyperbolas and Lissajous curves respectively. Please note 
that ellipses are special cases of Lissajous curves. We can see that these formulas are very 
simple and regular. 
Corollary 3.1 The sufficient conditions that a piece of parabola 
( ) ( )( ) ( ) [ )21

2 ,,,, tttcbtatttytx ∈++= can be exactly reproduced by C-type curve
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0 2,i ii PtCtP . 
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Corollary 3.2 The sufficient conditions that a piece of hyperbola 
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Corollary 3.3 The sufficient conditions that Lissajous curve 
( ) ( )( ) ( )( ) ( )( ) [ )λθλθλδλ 21 ,,sinh,sinh, ∈+= ttbtatytx can be exactly reproduced 
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All these formulas are derived from the standard equations of basic curves and there are 
no quality issues. We know all basic curves with the same type can be obtained through 
executing coordinate transformations to the standard equations mentioned above. Their 
control points can also be obtained from the corresponding results through corresponding 
transformations. 
Based on above representation of basic curves, the algorithm of blending basic curves by 
C-type spline curves are described as Algorithm 3.1. 
Algorithm 3.1 Giving the general equation representations (x(t), y(t)) of basic curves 

( ) KkC k ,,2,1, = waited to be blended. We need to blend them into a whole curve 
represented by C-type splines. The control polygon P and the frequency sequence ω are 
determined by the following procedures: 

• For each piece of basic curve ( )kC , we transform it into the standard form 
( ) ( ) ( )( )tytxC k ′′′ ,:  through a total coordinate transformation T (k), including rotation, 

translate and scale transformations.  

• For each piece of basic curve ( )kC′ , we determine a suitable number num(k) of segments 
according to its parameter interval. Then the frequency parameter ( ) ( ) ( )kkk βαω ⋅=  can 
be determined by the formulas listed in the first condition of the above corollaries. We 
extend it to the parameter sequence as 

( ) { } ( ) ( ) ( )kjkkjkk
k

jkjkk kkkk numj ββααβαω ≡≡+== ,,,, ,,1,,1,  ; 
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• Computing the control point sequence according to its type and the formulas listed in the 
latter two conditions of those corollaries for each ( )kC′ ; 

• Implementing converse transformation ( ) 1−kT  to control points matrices computed in the 
above step. Then we obtain the control sequence ( ) ( ){ }2,,1,, +== k

k
jk numjPkP k

 ; 

• In order to blend these ( ) KkC k ,,2,1, = ,  we combine their parameter sequences 

control points sequences as ( ) ( ) ( )
( )

( ){ }K
insert

K
insertinsert K

ωωωωωωωω
,121

,,,,,, 121
−

−=′  , 
( ) ( ) ( ){ }KPPPP ,,, 21

=′  , where 𝜔𝜔𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  is new frequency parameters for those edges 
generated because of joining adjacent two basic curves. These new parameters can be set 
by users. 
• As for the shape of each blending segment between two adjacent blended basic shapes, 
the number of control points can be set by users to frequently control this shape.  
• Let the final frequency sequence and control points sequence through above procedures 
be { } { } 22

11
, Q

qq
Q
qq PP

==
== ωω , where 21 QQ =  for close blending curves and 121 −= QQ  

for open ones. Then a C-type spline curve ( ) ( ) i
Q

i i PtCtP ∑=
= 2

0 2,  generates, which blends 

i=0 those basic curves ( ) KkC k ,,2,1, = . 

                     

(a)                                                               (b) 



 

 

Blending Basic Shapes By C-Type Splines                                                                         51 

            

(c)                     (d) 

Figure 1: some examples of representing and blending basic curves by C-type splines 

Given a piece of circular arc ( ) ( ) ( )( ) ( ) [ )π,0,sin,cos,:1 ∈= ttttytxC  and a piece of 

parabola ( ) ( ) ( )( ) [ )3.1,3.1-,4
69.1
4,,: 22 ∈






 −= ttttytxC , we use Corollary 3 and 

Corollary 1, respectively, to determine their C-type spline representations. As illustrated 
in Fig. 1(upper-left), C(1) is represented by four segments of C-type spline curves (red) 
with ( )8cos πω =i , and C(2) is represented by 16 segments of C-type spline curves 
(black) with 0=iω . By directly connecting their control polygon (blue), we obtain a 
blending C-type spline curve (Fig. 1(upper-right)). Certainly, one can also insert, delete 
or adjust some control points to locally change the shape of the blending curve. Please 
look at Fig. 1 (bottom-left); a new control point marked with a black square is inserted 
and the four original control points marked with red squares are deleted. For the entire 
blending curve, only the shapes of two segments of the circular arcs and four segments of 
the parabolas are locally changed. In Fig. 1(bottom-right), the simple drawing of a cup is 
blended with a piece of ellipse C(1), a piece of hyperbola C(2) and two pieces of parabolas 
C(3) and C(4) by C-type splines. Additionally, several new control points are inserted 
between each two adjacent blended basic curves to frequently control the shapes of the 
blending segments. 
The experiment in Fig. 1 illustrated in Karciauskas et al. [Karciauskas and Peters (2011)] 
is like the first experiment here. Also, two basic curves are blended where parabola is 
common. Another basic curve is with circular, not trigonometric form. We can compare 
the proposed method and G2-spline method through these two experiments. Please refer 
to the following Tab. 1.  
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Table 1: Experimental comparison 

 Representing basic shapes Representation 
form 

Degree Continuity 
order 

G2-spline 
method 

Exactly for conics,  

While approximately for 
trigonometric shapes 

Rational 3 G2 

Ours Exactly for all Non-rational 2 C1 

From Tab. 1, we can see that C-type splines of degree two are non-rational, one degree 
lower than them, but persist C1-continuous. In fact, C-type splines of degree two can be 
easily elevated to C2-continuous (naturally G2-continuous) C-type splines of degree three. 
Further, our method is more convenient to model and blend basic curves. All computation 
formulas are simple and direct because C-type splines have similar representation forms 
like B-splines. While by G2 rational splines method, one needs to sample on the basic 
curves and compute B-spline-like control points and weights according to very 
complicated transformation formulas. 
As we all know, by taking a piece of basic curve as a generatrix we can easily model 
different types of basic surfaces. Fig. 2 shows the process of generating a hyperbolic 
surface from its generatrix, a piece of hyperbolic curve. Similarly, the blending problem 
between basic surfaces can be solved by an extended method from the cases of various 
curves discussed above. Fig. 3 illustrates some examples. Compared to the blending 
method of basic surfaces by rational bicubic G2 splines proposed in Karciauskas et al. 
[Karciauskas and Peters (2011)], our method is much simpler. 

       

(a)         (b) 

Figure 2: (a) A piece of red hyperbolic curve modeled by C-type splines with a black 
control polygon; (b) Revolving the hyperbolic curve to generate a pink hyperbolic surface 
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(a)                                                (b)                                                 (c) 

Figure 3: 2-way blending between (a) hyperbola and hyperbola, (b) semisphere and 
conic, (c) semisphere and cylinder, which are all modeled by C-type splines of degree 2. 
Here, the basic surfaces are opaque, and the blending surfaces are transparent 

4 Blending basic curves by subdivision 
In this section, we propose a subdivision method to blend the basic curves. In addition, 
the subdivision blending curve also reproduces the basic curves to be blended. However, 
in this section the blending segments are different from the C-type spline blending curve 
proposed in the last section, and the subdivision blending curve uses a common control 
polygon and parameter sequence. In fact, the blending segments are also very 
approximate. In this section, we derive the subdivision scheme and prove its C1-
continuity. To introduce the subdivision scheme, we first discuss its special case of using 
the constant frequency parameter. In this case, the subdivision curve converges to the 
corresponding C-type spline curve. 
D-type spline curves belong to B-like spline curves. Therefore, it has the optimal 
properties of B-spline curves including control polygon refinement. In Proposition 4.1, 
we derive its refinement formula when using the constant frequency parameter. 
Proposition 4.1 (The case of using the constant frequency parameter 𝜔𝜔0) Let ( )tCi ,2,   be 

C-type bases defined on knot vector { } 



,1,0, ±=== iiltT i , ( )tlCi ,22,  defined on 

{ } 



,1,0,2 ±==′=′ iiltT i . A C-type curve which is defined over the original set of 
knots {𝑡𝑡𝑖𝑖} by 

( ) ( ) ( )[ ] 1,3,,2,1
+∈=∑ =

nlttCPtP i
n

i i , 

can also be defined over the refined knots �𝑡𝑡𝑖𝑖′� as 
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Proof According to the definition of ( )tCi ,1,   and ( )tCi ,21,  , we can easily get their 
representation formula by Eq. (1). In addition, there exists the following relationship 
between the two sets of bases: 
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Because of the above, we derive the subdivision scheme of C-type splines with the 
constant frequency parameter as follows: 
Algorithm 4.1 (the subdivision scheme for constant parameter curves) In l-th level of the 
subdivision, we assume that the current control polygon is { }lnll PPP ,,1 =  and the 

current parameter sequence is { } 1
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il
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l
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l uuuU  , where ( )2cos 01 ω=u . Then, the l-

th level of C-type spline subdivision for the case of the constant frequency parameter can 
be described as (taking open curves as examples). 
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(a)      (b) 

Figure 4: The tooling paths of a mold represented by circular splines can also be 
represented by C-type splines and can be generated by our subdivision scheme 

Circular splines are very popular in the domain of NC machining, while control-point 
curves such as B-splines, NURBS and B-like splines are more commonly used during the 
modeling period. The control-point curves usually have to be approximated by circular 
splines before machining. It would be ideal if these two forms could be precisely 
transformed and generated by subdivision. However, this ideal has never been 
implemented. Generating circular splines by subdivision has only been researched and 
has never been implemented, for example Ahmad et al. [Ahmad, Nasri, Overveld et al. 
(2001)]. As an application of Algorithm 4.1, Fig. 4 illustrates such an example. In Fig. 
4(left), we can see two similar tooling paths represented by circular splines. Taking the 
inside one as an example, it consists of 12 pieces of circular arcs, where each of the 6 
yellow pieces spans a π angle and each of the 6 pink pieces spans a 2𝜋𝜋

3
 angle. First, we 

split them into three segments and two segments of circular arcs, each segment spanning 
a  𝜋𝜋

3
 angle. Then, according to Corollary 3.3, we derive their representations by C-type 

splines with 𝜔𝜔𝑖𝑖 ≡
√3
2

 and the control points marked with blue circles in Fig. 4(right). 
Based on this, both tooling paths can be generated by the subdivision scheme described 
in Algorithm 4.1 and are marked with black curves in Fig. 4(right). 
In the following section we further derive the subdivision formula for general C-type 
spline curves. However, it is very complicated. Under the premise of reproducing basic 
curves, we adopt a simpler method to generate blending segments by subdivision. In 
addition, the entire blending curve is very approximate to the corresponding C-type 
spline curve. This new subdivision scheme is described in the following algorithm: 
Algorithm 4.2 (the subdivision scheme for blending curves) In l-th level of the 
subdivision, we assume that the current control polygon is { }lnll PPP ,1=  and the 
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current parameter sequence is { } 1
1
−

==
n
i

l
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l uU . Then, the l-th level of the C-type spline 
subdivision for the case of the constant frequency parameter can be described with the 
following pseudo-code (taking open curves as examples). 
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Fig. 5 illustrates the front two levels of subdividing { }6
1

1
== iiPP with 

{ }1,42.1,62.0,1,88.11 =U  by the subdivision scheme for blending curves. Both the 
corresponding control points and the parameter sequences computed by Algorithm 4.2 are 
shown in this figure. 
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{ }1,42.1,62.0,1,88.11 =U  

{ }1,0,1.10,9.0,0,1,0,2.12 ，=U  

{ }1,1,0,05.1,05.1,05.1,0,95.0,95.0,95.0,0,1,1,1,0,1.1,1.13 =U  

Figure 5: The first two levels of subdividing { }6
1

1
== iiPP  with { }1,42.1,62.0,1,88.11 =U  

by the subdivision scheme for blending curves 

 

                                     (a)                                                            (b) 
Figure 6: Compare the blending curves respectively generated by C-type splines (red) 
and our subdivision scheme for blending curves (black). Those blending segments 
existing a little deviation between them are circled by gray ellipses 

Algorithm 4.2 simplifies the refinement rule for C-type spline curves. When using it to 
blend basic curves, we set the subdivision parameter 𝑢𝑢𝑖𝑖𝑙𝑙 to zero for blending segments. In 
fact, it is just a special mark. We can see that 𝑢𝑢𝑖𝑖−1𝑙𝑙  is used to compute the left new control 
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point and 𝑢𝑢𝑖𝑖+1𝑙𝑙  is used to compute the right point in the formulas for computing control 
points in Algorithm 4.2. This ensures that each piece of the basic curve is generated by 
the same rule of Algorithm 4.1, which converges to those basic curves exactly 
represented by C-type splines. Actually, the entire blending curve obtained by Algorithm 
4.2 is approximate to the corresponding C-type spline curve. In Fig. 6, the red curves and 
the black curves, respectively, are generated by C-type splines and our proposed 
subdivision scheme for blending curves with common control polygons and 
corresponding parameter sequences. We can see that those basic curves exactly coincide 
and only those blending segments in the gray ellipses have a small deviation. 
Furthermore, according to the theorem proposed in Dyn et al. [Dyn and Levin (1995)] 
and similar proofs in Tang et al. [Tang, Fang and Wang (2018)], we prove that the 
proposed subdivision scheme for blending curves is also C1-continuous. 
Let 𝑚𝑚2,𝑙𝑙 be the mask of the subdivision scheme described in Algorithm 4.2 of the l-th 
level. Obviously, it is a nonstationary subdivision scheme. To prove its C1-continuity, we 
propose corresponding theorems between it and its relative stationary scheme. 
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According to asymptotical equivalence theory [4], if 
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then { } { }2,2
s

l mm ≈ .The detailed proof of formula (4.4) refers to that of formula (4.5) in 
the following Theorem 4.2. 
Theorem 4.2 The subdivision scheme for blending curves in Algorithm 4.2 generates C1-
continuous limit curves. 
Proof  From Theorem 1, we know { } { }2,2

s
l mm ≈ . The stationary subdivision scheme with 

mask 𝑚𝑚𝑠𝑠
2 obviously converges to C1-continuous B-spline curves of degree 2. According 

to Theorem 8a proposed in Dyn et al. [Dyn and Levin (1995)], Theorem 4.2 holds if we 
can further prove that 
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In the following section, we prove this conclusion. 
First, from formula (4.2) and (4.3), we get 
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Based on the D’Alembert criteria for convergence of positive series, the series 
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 is convergent. That is +∞<−
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So { }lm ,2  is C1, Theorem 4.2 is proved. 
Please note, the proposed subdivision method and corresponding theories can be naturally 
extended to the case of tensor product surfaces. 

5 Conclusions 
Compared with rational G2 splines used to blend basic shapes, the C-type splines adopted 
in this paper have shown many advantages such as a nonrational form, one degree lower, 
a B-spline-like representation, C1-continuity, and simpler blending procedures and 
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computational formulas. Furthermore, the subdivision scheme for blending shapes, which 
also reproduces basic shapes and wholly approximates the C-type spline shapes is 
proposed. Both blending methods proposed in this paper are C1-continuous. However, 
rational G2 splines can be reparameterized to obtain its C2 transitions. C-type splines of 
degree 2 are only C1-continuous at most. Certainly, C2-continuity can do this if we 
elevate to C-type splines of degree 3. Because of the simplicity of the blending method 
and formulas used to reproduce basic shapes, we choose C-type splines of degree 2. In 
the future, we will develop more applications, with the exception of applications for 
blending problems of C-type splines. For example, the C-type spline is also very suitable 
for an iso-geometric analysis (IGA) and the boundary element method (BEM), which 
have become hot topics in the recent ten years [Austin, Thomas and Yuri (2009); Nguyen, 
Anitescu, Bordas et al. (2015); Zhang, Sabin and Cirak (2018); Beer and Duenser 
(2019)]. Basic shapes are commonly used, especially for IGAs relative to CAD/CAM. If 
we adopt C-type basic functions both for modeling and analysis, there is some merit for 
modeling geometry, interpolating physical items and making refinements.  
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