
 
 
 
Copyright © 2019 Tech Science Press                  CMES, vol.120, no.1, pp.123-156, 2019 

CMES. doi:10.32604/cmes.2019.06562                                                                   www.techscience.com/cmes 

      
 

A Multiscale Method for Damage Analysis of Quasi-Brittle 
Heterogeneous Materials 

 
Filip Putar1, Jurica Sorić1, *, Tomislav Lesičar1 and Zdenko Tonković1 

 
 
Abstract: A novel multiscale algorithm based on the higher-order continuum at both 
micro- and macrostructural level is proposed for the consideration of the quasi-brittle 
damage response of heterogeneous materials. Herein, the microlevel damage is modelled 
by the degradation of the homogenized stress and tangent stiffness tensors, which are 
then upscaled to govern the localization at the macrolevel. The C1 continuity finite 
element employing a modified case of Mindlin’s form II strain energy density is derived 
for the softening analysis. To the authors’ knowledge, the finite element discretization 
based on the strain gradient theory is applied for the modeling of damage evolution at the 
microstructural level for heterogeneous materials for the first time. The advantage of the 
novel C1 finite element formulation in comparison with the standard finite element 
discretization in terms of the regularization efficiency as well as the objectivity has been 
shown. An isotropic damage law is used for the reduction of the constitutive and nonlocal 
material behaviour, which is necessary for the physically correct description of the 
localization formation in quasi-brittle materials. The capabilities of the derived finite 
element to capture the fully developed localization zones are tested on a random 
representative volume element (RVE) for several different loading cases. By employing 
the conventional second-order computational homogenization, the microstructural 
material constitutive response is averaged over the whole RVE area. In order to model 
the loss of structural integrity when sharp localization is formed across RVE, the specific 
conditions which detect a completely formed localization zone are developed. A new 
failure criterion at the microstructural level has been proposed. The derived finite element 
formulation, as well as the multiscale damage algorithm, are implemented into the finite 
element program ABAQUS. The capabilities of the presented multiscale scheme to 
capture the effects of the deformation localization are demonstrated by few benchmark 
numerical examples. 
 
Keywords: Multiscale analysis, second-order computational homogenization, damage, 
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1 Introduction 
Physically, formation of damage and macroscopic cracks is a direct result of the cascade 
of events happening at the microstructural level [Lemaitre (1992); Murakami (2012); Liu, 
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Han, Rajendran et al. (2006)]. Due to this strong interconnection, numerical calculation 
of the macroscopic damage is usually based on the employment of the so-called nonlocal 
parameter [Pijaudier-Cabot and Bažant (1987)], which takes into account the 
microstructural heterogeneities and interactions. Assessment of this parameter can be 
especially difficult for the materials with complex and heterogeneous microstructures, 
which, e. g., consist of multiple constituents embedded in the matrix material. Therefore, 
a more accurate evolution of damage at the macrostructural level could be made if the 
assessment of damage is firstly done at the microstructural level, where the material can 
be modelled more precisely. Therein, multiscale modelling can help significantly, 
enabling consistent bridging of the material behaviour at different length scales, usually 
macro- and microscale [Kouznetsova (2002); Luscher (2010); Lesičar (2015)]. 
Essentially, majority of multiscale techniques are homogenization techniques, where 
certain properties are averaged over a representative volume element (RVE), which is 
assumed to be statistically representative for the macroscopic material point [Kanit, 
Forest, Galliet et al. (2003); Kouznetsova, Geers and Brekelmans (2004a); Gitman, Askes 
and Sluys (2007)]. The RVE is a bounded segment of the microstructural material, where 
all the relevant microstructural properties needed for the analysis are modelled explicitly. 
Within homogenization techniques, the computational homogenization (CH) scheme is 
shown to be most accurate and versatile, mainly due to the reason that it does not require 
an explicit a priori constitutive relation at the macrolevel. Constitutive behaviour is being 
determined during simulation and it is dependent on the RVE homogenization results. 
This allows the modelling of nonlinear behaviour of complex and evolving 
microstructures in a rather straightforward manner. Two boundary value problems (BVPs) 
have to be solved simultaneously during the calculation, one for the macroscale and the 
other for the underlying microstructure, where the transfer of the solution variables 
between two BVPs represents a crucial and most challenging part of the multiscale 
framework. This is particularly relevant when damage modelling is included at the 
microscale, where the efficient and accurate upscaling of the variables is still a very 
delicate research topic. 
Beside multiscale techniques, one of the possible ways to model a material, where 
localization at the microscale has arisen is by using direct numerical simulation. Here, the 
exact microstructure is explicitly modelled at the coarse scale. Although this method 
provides very accurate results, its applicability is still very limited due to high 
computational costs. Among multiscale methods, the main challenge is, as already 
mentioned, bridging the evolution of the microscopic localization towards material 
failure at the large scale, i.e., engineering level. This problem is tackled only with a 
partial success by development of so-called local mesh refinement techniques. In 
multigrid or superposition-based methods hierarchical decomposition of macro- and 
microscale effects is employed, such that the coarse macroscopic mesh is locally overlaid 
with a detailed microscale description in an area where localization is expected [Loehnert 
and Belytschko (2007); Gitman, Askes and Sluys (2008)]. Similarly, domain 
decomposition methods are based on disassembly of the macroscale in several subsets, 
where each of them can have different spatial resolutions with appropriate length scales, 
which allows to resolve a strain localization in the zone of interest, and thereby save the 
computational costs [Zohdi and Wriggers (1999); Guidault, Allix, Champaney et al. 



 
 
 
A Multiscale Method for Damage Analysis                                                         125 

(2008); Sofi, Bishay and Atluri (2018); Sane, Padole and Uddanwadiker (2018)]. Given 
local mesh refinement techniques are mainly efficient if only a mild and small 
localization zone is expected, position of which is known a priori. 
However, the most progress in the multiscale modelling of the microscopic localization is 
achieved by utilization of CH methods. Through the homogenization process, response of 
the heterogeneous microstructure is averaged over an RVE, whereby a new, effective 
homogeneous material is formed. Classical homogenization techniques are built upon the 
principle of separation of scales, which states that the RVE size should be much smaller, 
than a characteristic length over which the macroscopic loading varies in space. In other 
words, the uniform distribution of the macro-strain over the entire RVE domain is 
assumed. This, however, is violated when the first-order CH schemes, which are based on 
classical continuum formulation at both scales, as described in Kouznetsova et al. 
[Kouznetsova, Brekelmans and Baaijens (2001); Miehe and Koch (2002); Temizer and 
Zohdi (2007)], are used with the problems where strain softening occurs at the microlevel. 
When there is no clear separation of scales, capturing of the propagation of the 
underlying rapidly fluctuating responses can be remedied to some extent by higher-order 
enrichment of the macroscopic continuum. Besides, standard continuum formulation at 
the macroscale cannot regularize the formation of the strain localization, which in 
addition leads to the ill-posedness of the macrostructural BVP. As an improvement to the 
first-order CH, second-order CH is proposed [Kouznetsova, Geers and Brekelmans 
(2004b)], which is shown to be successful in treating only the mildly softening materials, 
specifically the materials not exhibiting the deformation beyond a quadratic nature in the 
displacements, as stated in Geers et al. [Geers, Kouznetsova and Brekelmans (2010)]. 
Classical homogenization in its essence implies the averaging of some physical 
phenomenon, and it is believed that, in the case of the sharp localization which is 
characteristic to the certain RVE, it should not be performed. Additionally, with the 
occurrence of the sharp strain localization, homogenized response stops being objective 
with the respect to the size of the RVE-by increasing the size of the micro-sample, the 
macroscopic structural response becomes more brittle [Gitman, Askes and Sluys (2007)]. 
In that case RVE stops being statistically representative for the macroscopic material 
point and should be called a microstructural volume element (MVE) instead, as stated in 
Coenen et al. [Coenen, Kouznetsova and Geers (2011)]. Another class of homogenization 
methods which deal with the strain softening problems is based upon the enrichment of 
the macroscale continuum with a discontinuity, where the microscale strain localization 
band is lumped into a macroscale cohesive crack. Such way of thinking emanates from 
the standpoint that the failure of the MVE cannot be extrapolated to the neighbouring 
material, resulting in the introduction of the equivalent discontinuity at the macroscale 
integration point, rather than continuous display of localized deformation. Taking into 
account the techniques used for the extraction of the equivalent discontinuity from the 
localized MVE and formation of the corresponding macrostructural effective constitutive 
relation, several different procedures can be found in the literature. For example, this can 
be done by assuming that continuum which is not comprehended by the localization 
behaves as a liner-elastic material [Massart, Peerlings and Geers (2006); Verhoosel, 
Remmers and Gutiérrez (2009); Nquyen, Lloberas-Valls, Stroeven et al. (2011)], by 
employing the additional RVE for the homogenization of the bulk material [Belytschko, 
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Loehnert and Song (2007); Nquyen, Stroeven and Sluys (2012)], or by employing the 
same MVE for the extraction of both the discontinuity and the stress-strain response of 
the neighbouring material [Coenen, Kouznetsova and Geers (2012)]. The existence of an 
RVE for softening quasi-brittle materials undergoing localized damage has been 
confirmed in Nquyen et al. [Nquyen, Lloberas-Valls, Stroeven et al. (2010)], where a new 
averaging technique based on extraction of the deformation of just a localization band is 
proposed. By using this technique, a CH scheme for discrete macroscopic crack 
modelling that is objective with respect to the size of the RVE is presented in Nquyen et 
al. [Nquyen, Lloberas-Valls, Stroeven et al. (2011); Nquyen, Stroeven and Sluys (2012)]. 
It is clear from the given overview that development of the multiscale models which deal 
with the damage localization problems still needs to be improved in order to enable their 
employment in practical, engineering considerations. 
When it comes to advanced multiscale schemes, a new second-order CH scheme is derived 
recently in Lesičar et al. [Lesičar, Tonković and Sorić (2017)], where the C1 continuous 
finite elements are employed at both macro- and microlevel. Employment of the nonlocal 
theory at the microscale has shown better efficiency compared to available homogenization 
schemes, additionally offering an advanced frame for damage modelling. A new damage 
model employing the strain gradient theory embedded into C1 continuous finite element is 
recently presented in Putar et al. [Putar, Sorić, Lesičar et al. (2017)], where the exceptional 
regularization capabilities of such model are demonstrated. Not only the numerical results 
obtained are independent on the discretization, but also the spurious damage growth 
reported in Geers et al. [Geers, de Borst, Brekelmans et al. (1998); Simone, Askes, and 
Sluys (2004); Poh and Sun (2017)] is completely eliminated. As shown in Poh et al. [Poh 
and Sun (2017); Putar, Sorić, Lesičar et al. (2017)], due to decrease in the size of the 
microstructural interaction domain with increasing loading, a physically acceptable 
formation of the localization of the deformation can be described, where a macrocrack 
comes into existence from the initially scattered network of microcracks. 
The topic of this paper is the consideration of utilization of the damage model presented 
in Putar et al. [Putar, Sorić, Lesičar et al. (2017)] at the microstructural level of the two-
scale scheme presented in Lesičar et al. [Lesičar, Tonković and Sorić (2017)], and the 
main objective is to demonstrate the algorithm’s ability to describe the formation of the 
localization zone at the macrostructural level. Both scales are described as a higher-order 
continuum, which necessitates the employment of the C1 continuity. Since the nonlocality 
is intrinsically included in the theory, neither objectivity issues related to discretization 
nor spurious damage growth are expected, i.e., a full regularization of the localization 
problems at both scales should be achieved. A following approach is employed for the 
consideration of the microstructural damage. Due to nature of the macrocrack formation 
in the quasi-brittle materials which is preceded by a diffuse network of microcracks, an 
assumption can be made that the material locally has a similar structural response. In that 
sense, the formation of the sharp localization at microlevel does not necessarily mean the 
initiation of the macrocrack, but a situation where the macrostructural material point 
loses its stiffness while still remaining a part of the continuum. By doing so, the 
conventional homogenization can be applied to obtain the averaged stiffness behaviour 
and stresses from the observed damaged RVE until the full formation of the localization 
zone, when the material conditions that account for the loss of material integrity have to 
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be applied at the appropriate macrolevel integration point. During the evolution stage of 
the microstructural localization, the homogenization process can be interpreted as the 
means for transformation of the localized deformation band and the rest of elastically 
unloading area of an RVE, into the equivalent RVE where damage is homogeneously 
dispersed, as represented graphically in Fig. 1. The topic regarding the preservation of the 
objectivity with respect to the size of the RVE is not included in this consideration. 

 
Figure 1: Homogenization of the localized deformation 

The paper is organized as follows. In Section 2 the finite element developed in Putar et al. 
[Putar, Sorić, Lesičar et al. (2017)] is modified in order to coincide with the underlying 
continuum theory as presented in Lesičar et al. [Lesičar, Tonković and Sorić (2017)]. Its 
capabilities in describing the localization are tested on an RVE example for three 
different loading cases. In Section 3 the basic relations of the existing two-scale 
framework that employs the gradient continuum at both structural levels are given. In 
addition, RVE cracking conditions, i.e., conditions that indicate the formation of the 
localization band at the RVE level and consequential change of the macrostructural 
stiffness are derived. The algorithm’s capability to provide mesh objective results are 
given in Section 4 by employing the homogenous microstructure. Afterwards, a set of 
benchmark examples is presented, where the macrostructural localization of the 
deformation is achieved by utilizing the heterogeneous microstructure. Section 5 is 
dedicated for some concluding remarks. 

2 C1 continuity finite element for softening analysis of microstructure 
2.1 Weak formulation 
In the work presented in Lesičar et al. [Lesičar, Tonković and Sorić (2017)] both macro- 
and microlevel are discretized by C1 continuity finite elements based on the modified 
Mindlin’s form II strain energy density as described in Altan et al. [Altan and Aifantis 
(1992); Ru and Aifantis (1993)]. In order to make use of this setting, a modification of 
the finite element based on strain gradient theory derived in Putar et al. [Putar, Sorić, 
Lesičar et al. (2017)] and presented in Fig. 2 has to be made.  
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Figure 2: C1 continuity triangular finite element 

The element consists of three nodes and 36 degrees of freedom with the displacement 
field approximated by the condensed fifth order polynomial. The nodal degrees of 
freedom are the two displacements and their first- and second-order derivatives with 
respect to the Cartesian coordinates. The physical interpretation of the mentioned nodal 
degrees of freedom is comprehensively described in Lesičar et al. [Lesičar, Tonković and 
Sorić (2017)]. In comparison to the constitutive model described in Lesičar et al. [Lesičar, 
Tonković and Sorić (2014)], in this manuscript only the classical constitutive tensor σεC  
is employed, while the higher-order variables are expressed as the gradients of the strain 
field in form of 
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1η
B  and 

2η
B  in the upper relations contain gradients of the interpolation matrix εB  with 

respect to Cartesian coordinates 1x  and 2x , while v is the vector of the nodal degrees of 
freedom. Interpolation matrix εB  contains adequate first derivatives of the element shape 
functions N , needed for the description of the element displacement field u in form  

=u Nv .             (3) 

The strain tensor ε , defined as 
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is coupled with its work conjugate Cauchy stress tensor, given as 

σε ε=σ C B v .              (5) 
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The work conjugates of strain gradients 
1xε  and 

2xε  are defined respectively as 
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The principle of virtual work is written in terms of strain gradient tensors as 

( ) ( ) ( ) ( ) ( )
1 1 2 2

: δ d δ d δ d δ d : δ dx x x x
A A A s s

A A A s s+ + = ⋅ +  ∇⊗  ∫ ∫ ∫ ∫ ∫σ ε μ ε μ ε t u T u              (8) 

with s and A representing the perimeter and the surface of the element, while t and T 
stand for the traction and the double traction tensor, respectively. In addition to Eq. (8), 
the boundary conditions expressed by the displacement and the normal derivative of 
displacement ( )∇⊗ ⋅u n  should be prescribed to solve the boundary value problem. 
After the application of discretization given by Eqs. (1)-(4), Eq. (8) adopts the following 
form 
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            (9) 

Considering a nonlinear problem described by (9), the displacement vector u, the stress 
tensor σ  and the double stress tensors 

1xμ  and 
2xμ  are updated according to 

1i−= + ∆u u u ,            (10) 
1i−= + ∆σ σ σ ,            (11) 

1 1 1

1i
x x x

−= + ∆μ μ μ ,            (12) 

2 2 2

1i
x x x

−= + ∆μ μ μ ,            (13) 

where the exponent ( )1i −  refers to the last converged equilibrium state, and the symbol 
∆  indicates an incremental change and mathematically acts as a differential operator. 
Considering Eqs. (10)-(13), the incremental form of the principle of virtual work given in 
matrix notation reads as 

( ) ( )
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Linearized incremental constitutive relations are expressed by 

:σε∆ = ∆σ C ε ,            (15) 

( )1 1

2 :x xl σε∆ = ∆μ C ε ,            (16) 

( )2 2

2 :x xl σε∆ = ∆μ C ε ,                        (17) 

where l represents an internal length scale parameter which introduces the nonlocal 
material behaviour in the model. In the same manner as shown in Putar et al. [Putar, Sorić, 
Lesičar et al. (2017)], softening behaviour is implemented by employing the isotropic 
damage law given by 

( )eff 1 D= −C C ,            (18) 

where D is the scalar damage variable [Lemaitre and Chaboche (1990)], and effC and C  
denote the effective and the elastic stiffness tensors, respectively. By inserting Eq. (18) 
into the non-linearized form of relations represented by Eqs. (15)-(17), damage enhanced 
constitutive model can be written in the following way: 

( )1 :D σε= −σ C ε ,            (19) 

( )
1 1

2 1 :x xl D σε = − μ C ε ,            (20) 

( )
2 2

2 1 :x xl D σε = − μ C ε .            (21) 

Next, by employing the following updates  
1i−= + ∆ε ε ε ,            (22) 

1 1 1

1i
x x x

−= + ∆ε ε ε ,               (23) 

2 2 2

1i
x x x

−= + ∆ε ε ε ,            (24) 

1iD D D−= + ∆ ,            (25) 
the constitutive damage model represented by Eqs. (19)-(21) can be rearranged in the 
incremental form as 

( )1 11 i iD Dσε σε
− −∆ = − ∆ − ∆σ C ε C ε ,            (26) 

( )
1 1 1

2 1 2 11 i i
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− −∆ = − ∆ − ∆μ C ε C ε ,            (27) 

( )
2 2 2

2 1 2 11 i i
x x xl D l Dσε σε

− −∆ = − ∆ − ∆μ C ε C ε .            (28) 

Implementation of the constitutive relations given by Eqs. (26)-(28) into Eq. (14), leads 
to the finite element equation 

( )
1 2 e ix xσ µ µ+ + ∆ = −K K K v F F ,            (29) 
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with the particular element stiffness matrices defined as 
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and the external and internal forces eF  and iF  described by the first and second term on 
the right-hand side of Eq. (14), respectively. The algorithm derived above is implemented 
into the commercial finite element software ABAQUS/Standard [Abaqus (2014)] via 
user-defined subroutine UEL. 

2.1 Numerical test 
Applicability of the finite element for softening analysis derived in previous section is 
tested on an RVE of the side length of 0.5 mm representing a high-strength porous steel, 
depicted in Fig. 3.  

 

Figure 3: RVE discretized by 2205 C1 triangular finite elements 

In order to examine the damage response, three elementary loading cases are applied on 
the RVE, namely, tensile, compressive and shear. The straight edges at the left and right 
RVE sides are enforced by suppressing the following degrees of freedom: 1,11u , 1,22u , 

1,12u , 2,12u , 1,2u  and 2,1u . The matrix material is considered homogeneous with the elastic 
behaviour described by the Young’s modulus 5 22.1 10 N/mmE = ×  and the Poisson ratio 

0.3ν = , while the microstructural nonlocal behaviour is described by the internal length 
scale parameter 0.01l =  mm. For the description of the damage evolution, the 
exponential softening law, defined in Peerlings [Peerlings (1999)], is employed as 
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( ){ }0
0 01 1 exp ifD κ

α α β κ κ κ κ
κ

= − − +  −  >  ,            (33) 

where κ is the monotonically increasing scalar history parameter which governs the 
damage state and can be determined as the largest value of the equivalent strain eqε  

reached in a material point during the loading history. 0κ  denotes the threshold 
equivalent strain needed the start of the damaging process, while the parameters α  and 
β  determine the stress decrease and the damage rate, respectively. For the description of 
the equivalent strain eqε , modified von Mises’ definition is used, given as 

( ) ( )

2

eq 1 1 22

1 1 1 12
2 1 2 2 1 2 1

k k kI I J
k k

ε
ν ν ν

− − = + + − −  +
,            (34) 

where the parameter k represents the ratio between uniaxial compressive and tensile 
strength of the material, and 1I  and 2J  are the first invariant of the strain tensor and the 
second invariant of the deviatoric strain tensor, respectively, defined in de Vree et al. [de 
Vree, Brekelmans and van Gils (1995)]. Following parameters are employed for the 
description of material damage behaviour: 0 0.0002κ = , 0.99α = , 200β = , 10k = . The 
same absolute displacement 0.002u v= =  mm is applied on the appropriate loading 
edges. The computational models and deformed shapes of the RVEs with damage 
contour plots observed in the failure stages for tensile, compressive and shear loading 
case are given in Figs. 4-6, respectively. 

 

Figure 4: Tensile loading case: (a) computational model and (b) deformed shape with 
distribution of damage D in failure stage 
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Figure 5: Compressive loading case: (a) computational model and (b) deformed shape 
with distribution of damage D in failure stage 

 

Figure 6: Shear loading case: (a) computational model and (b) deformed shape with 
distribution of damage D in failure stage 

The load-displacement diagrams for the all three loading cases are depicted in Fig. 7. As 
evident, the compressive structural response is associated with much higher values of the 
reaction forces reached due to postponed initiation of damage. This is a consequence of 
the utilization of parameter 10k =  in the modified von Mises’ equivalent strain definition 
given by Eq. (34), causing the elastic equivalent strain in compressive loading case to 
increase with the ten times slower rate compared to tensile loading case. 

 
Figure 7: Structural responses for three different RVE loading cases 
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Furthermore, as obvious from the presented figures, the derived finite element is capable 
of capturing the localization of the deformation over the RVE for different loading 
situations. In order to assess the influence of different internal length scales on the 
deformation responses, an additional analysis is made with a tensile loading case on the 
RVE employing two length scales, 0.01l =  mm and 0.02l =  mm. The structural 
responses for both internal length scales are shown in Fig. 8. It can be concluded that 
smaller nonlocal parameter results in more brittle softening, which is in accordance with 
the nonlocal theory and numerical results presented in Putar et al. [Putar, Sorić, Lesičar et 
al. (2017)]. In Figs. 9 and 10, evolutions of the damage localization zones are given for 
several different loading steps for internal length scales 0.01l =  mm and 0.02l =  mm, 
respectively. 

 
Figure 8: Structural responses for two tensile RVE loading cases with different internal 
length scale parameters 

 
Figure 9: Distribution of the damage D through several loading stages for internal length 
scale parameter l=0.01 mm 
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Figure 10: Distribution of the damage D through several loading stages for internal 
length scale parameter l=0.02 mm 

A different formation of the localization zones can be noted in above figures, which is 
obviously a consequence of utilization of different internal length scales that define different 
nonlocal behaviours. When the nonlocal effect is wider, i.e., when a bigger area of 
neighbouring material is in the interaction, one predominant and wider localization zone is 
formed, as evident from Fig. 10. In contrast, for the weaker nonlocal effect, two narrower 
localization bands are formed, as shown in Fig. 9. This phenomenon would probably not 
exist in reality, since a crack would be initiated in a dominant localization zone, across 
which the fracture would eventually happen. The constitutive model presented in Eqs. (19)-
(21) does not consider the crack formation, allowing in this way for the loading to be carried 
over the localization zone. As discussed in Putar [Putar (2018)], the definition of the damage 
variable should probably be written in terms of both strain and strain-gradient tensors in 
order to reduce the internal forces in the localization zone and overall reaction force 
response. However, in both examples the localization zones are fully formed, where no 
additional damage growth outside of it can be noticed. In other words, RVEs still have the 
load-carrying capacity, with the change of strain level allowed only in the middle of the 
localization band. This trait is important because it allows the simple assessment of the RVE 
failure, which will be incorporated into the multiscale scheme in the next section. From the 
presented numerical tests it can be concluded that the proposed C1 continuity finite element 
formulation can successfully predict the damage evolution and it is suitable for the 
implementation in the multiscale algorithm. 

3 Nonlocal multiscale scheme for damage analysis 
Employment of the nonlocal continuum at the macrolevel instead of the classical one is 
beneficial for two main reasons. First, since both strain and strain gradients are used in 
formulation of the RVE boundary conditions, the more complex and realistic RVE 
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deformation modes can be obtained, and consequently a more realistic prediction of the 
damage growth can be made. The second reason is concerned with the regularization 
capabilities of the strain gradient theory, which enables the transfer of the nonlocal 
parameters from the microstructure by homogenization of additional higher-order 
constitutive tensors. The C1-C1 multiscale scheme is given in Fig. 11 and can be briefly 
described in the following way. Starting from the converged global macrolevel nonlinear 
boundary value problem (BVP), described by e i∆ = −K V F F , the global vector of 
incremental nodal degrees of freedom ∆V  is used for the formulation of the local vector 
∆v  related to the observed finite element. By computing the increment of the 
macrostrain deformation tensor M∆ε and the macrostrain deformation gradient tensor 

M∇⊗∆ε  in one of the element’s integration points, the increment of the RVE boundary 
displacement vector b∆u  can be then formulated by the appropriate micro-to-macro scale 
transition relations, which will be discussed later. The microlevel BVP is formed and 
solved afterwards, followed by the homogenization of the resulting microlevel variables 
needed for the formation of the macrolevel constitutive behaviour. Here, the Cauchy 
stress tensor Mσ , double stress tensor Mμ  and nine constitutive tensors MC  have to be 
homogenized in the most general case. Once computed, the homogenized stresses and 
stiffness are transferred back to the macrolevel finite element integration point, where 
they contribute in the calculation of the finite element stiffness matrix k and internal 
forces vector if . When the homogenized response is obtained in all integration points for 
all macrolevel finite elements, the global stiffness matrix K and internal force vector iF  
are formulated, and the updated macroscale BVP can then be established. From this point 
the process repeats in the loop until the convergence for the given loading conditions at 
the macrolevel is reached. The presented routine has already been described in more 
detail in Lesičar et al. [Lesičar, Tonković and Sorić (2017)] for the consideration of 
linear-elastic material behaviour, where the nonlinear phenomena have not been 
considered. The contribution of this work is the implementation of the damage algorithm 
presented in Section 2 at the microstructural level of the multiscale scheme, while all 
other procedures remain the same. 
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Figure 11: Scheme of C1-C1 multiscale algorithm 

3.1 Basic macro-micro scale transition relations 
All relevant relations regarding the transition of variables from macro- to microscale are 
presented in Tab. 1 and will be briefly discussed here for the clarity reasons only. Again, 
a detailed derivation of presented relations can be found in Lesičar et al. [Lesičar, 
Tonković and Sorić (2017)]. Formation of the RVE displacement field is made by a 
Taylor series expansion of the macrolevel strain Mε  and macrolevel strain gradient strain 

M∇⊗∆ε  as shown in Eq. (35), where x is the microlevel spatial coordinate vector, while 
r represents the microfluctuation field, i.e., the microlevel contribution to the RVE 
displacement field, as stated in Lesičar et al. [Lesičar, Tonković and Sorić (2014)]. Eqs. 
(36) and (37) represent the microlevel strain mε  and strain gradient tensor m∇ ⊗m ε , 
respectively, which can be easily obtained by applying the microlevel gradient operator 
∇m  on Eq. (35). The integral constraints given by Eqs. (38) and (39) have to be satisfied 
by the appropriate boundary conditions, which are chosen in this contribution as periodic, 
where the equality of the microfluctuation fields on the opposite sides of the RVE is 
prescribed. The displacement values are directly prescribed in the RVE corner nodes by 
using Eq. (40), while the displacements of the opposite RVE sides are connected via 
periodicity Eqs. (41) and (42). In order to completely define the microstructural BVP, the 
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microfluctuation integrals represented by Eqs. (43) and (44) have to be prescribed, in 
which the integration is performed by trapezoidal rule. iD , 1iH  and 2iH  represent the so-
called coordinate matrices. Detailed derivation of the coordinate matrices can be found in 
Lesičar [Lesičar (2015)]. 

Table 1: Macro-to-micro scale transition relations in nonlocal multiscale scheme [Lesičar, 
Tonković and Sorić (2017)] 

RVE boundary displacement field: 

( )m M M
1
2

= ⋅ +  ⋅ ∇⊗ ⋅  + u ε x x ε x r .                                                                              (35) 

Microlevel strain tensor: 

( )m M M= + ∇⊗ ⋅ +∇ ⊗mε ε ε x r .                                                                                    (36) 

Microlevel strain gradient tensor: 

( )m M∇ ⊗ =∇⊗ +∇ ⊗ ∇ ⊗m m mε ε r .                                                                             (37) 

Constraints on the microfluctuation field: 

( ) ( )m
1 1d d

V A

V A
V V

∇ ⊗ = ⊗ =∫ ∫r n r 0 ,                                                                             (38) 

( ) ( )m m m
1 1d d

V A

V A
V V

∇ ⊗ ∇ ⊗  =  ⊗ ∇ ⊗  =   ∫ ∫r n r 0 .                                                  (39) 

RVE displacement of the ith node on the RVE boundary: 

( ) ( ) ( ) ( )1 2M 1 2M M
, 1, ...,T T T

i i x x ii i
i m+ =u = D ε + H ε + H ε r .                                            (40) 

Periodicity equations: 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2R L R L M 1 1 2 2R L R LM M

T T T T T T
x x

   − − − −   u u = D D ε + H H ε + H H ε ,       (41) 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2T B T B M 1 1 2 2T B T BM M

T T T T T T
x x

   − − − −   u u = D D ε + H H ε + H H ε .       (42) 

Microfluctuation integrals: 

( ) ( ) ( ) ( )
L L L L

L L M 1 1 2 2M ML L
d d d , d ,T T T

A A A A

A A A A
     

= + +          
     

∫ ∫ ∫ ∫u D ε H ε H ε ,                           (43) 

( ) ( ) ( ) ( )
B B B B

B B M 1 1 2 2M MB B
d d d , d ,T T T

A A A A

A A A A
     

= + +          
     

∫ ∫ ∫ ∫u D ε H ε H ε .                          (44) 
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The most important relations and variables related to the homogenization process are 
given in Tab. 2. The derivation of the consistent micro-to-macro transition relations for 
the nonlocal multiscale scheme starts with the Hill-Mandel energy condition, which 
correlates the work variation done at the RVE level with the work variation at the 
macrostructural material point, in form of Eq. (48). After some straightforward 
mathematical manipulations in Eq. (48), the relations for the homogenized stress and 
double stress tensors can be obtained, shown in Eqs. (49) and (50). The constitutive 
relations given by Eqs. (51)-(53) contain nine constitutive matrices, which take into 
account the contribution of all the heterogeneities and the interactions taking place at the 
microstructural level. Since the constitutive tangents are dependent on the microstructure, 
a proper regularization of the damage effects at the macrolevel is expected. The tangent 
stiffness matrices shown in Eq. (54) are formulated by the employment of only external 
RVE boundary nodes through the condensed stiffness matrix bbK , derived in Lesičar et 
al. [Lesičar, Tonković and Sorić (2014)]. The condensed RVE stiffness matrix is 
constructed from the stiffness response of the whole RVE, which is, on the other hand, 
composed of the finite element stiffness matrices, obtained here by Eqs. (30)-(32). As 
obvious from the given relations, the finite element stiffness matrices are dependent on 
the damage variable D, which implies that the condensed RVE stiffness matrix is 
implicitly dependent on the damage variable, i.e., 

( )bb bb D=K K  .             (45) 

Generally, in the second-order computational homogenization procedure, the 
macrostructural stiffness is obtained as a function of the condensed stiffness matrix, which 
can be written in the form of 

( )M M bb=C C K  .             (46) 

By insertion of Eq. (45) in Eq. (46), the following relation holds 

( )M M D=C C ,            (47) 

from which it is clear that the homogenized macrostructural stiffness is directly 
influenced by the damage growth observed at the microstructural level. Due to this 
degradation effect, the capability of the proposed multiscale scheme in capturing the 
macrostructural localization of the deformation is expected. 

Table 2: Micro-to-macro scale transition relations in nonlocal multiscale scheme [Lesičar, 
Tonković and Sorić (2017)] 

Hill-Mandel energy condition: 

 ( )( ) ( )3 3
m m m m m M M M M

1 : δ δ d : δ δ
V

V
V

+ ∇ ⊗ = + ∇⊗∫ σ ε μ ε σ ε μ ε 
.                             (48) 

Homogenized stress tensors: 
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M m
1 d

V

V
V

= ∫σ σ ,                                                                                                              (49) 

( )3 3
M m m

1 d
V

V
V

= + ⊗∫μ μ σ x .                                                                                        (50) 

Macroscopic constitutive relations: 

1 21 2

4 5 3 5 3:
x xx xσε σε σε∆ = ∆ + ∆ + ∆σ C ε C ε C ε  ,                                                                (51) 

1 1 21 1 1 1 2

3 5 6 3 6 3:
x x x x xx x xµ ε µ ε µ ε∆ = ∆ + ∆ + ∆μ C ε C ε C ε  ,                                                      (52) 

2 1 22 2 1 2 2

3 5 6 3 6 3:
x x x x xx x xµ ε µ ε µ ε∆ = ∆ + ∆ + ∆μ C ε C ε C ε  .                                                     (53) 

Tangent stiffness matrices: 

1 2

1 1 1 1 2

2 2 1 2 2

bb bb 1 bb 2

1 bb 1 bb 1 1 bb 2

2 bb 2 bb 1 2 bb 2

1 1 1, , ,

1 1 1, , ,

1 1 1, , .

x x

x x x x x

x x x x x

T T T

T T T

T T T

V V V

V V V

V V V

σε σε σε

µ ε µ ε µ ε

µ ε µ ε µ ε

= = =

= = =

= = =

C DK D C DK H C DK H

C H K D C H K H C H K H

C H K D C H K H C H K H

  

  

  

                                      (54) 

3.2 RVE failure conditions 
With the formation of sharp localization zone inside an RVE, as depicted in Fig. 12, the 
macrolevel material point represented by that particular RVE should not be able to carry 
the load anymore. The presented numerical model considers that material remains the 
part of the continuum, where in reality cracks should form, which is done by keeping the 
stiffness values close to zero by the application of the isotropic damage law. When the 
homogenization of the tangent stiffness is performed over an RVE, both the points inside 
and outside the localization zone are included in the calculation. When the localization 
zone is formed, there is practically no contribution to homogenized stiffness from this 
area, since the damage is maximum there. On the other hand, the material points 
excluded from the localization zone still possess an intact or a slightly degraded stiffness, 
which makes a significant contribution to the homogenized RVE stiffness tangents. In 
order to prevent this spurious contribution, the conditions used for the detection of the 
occurrence of fully formed localization zone are developed here.  
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Figure 12: Localization zone inside an RVE 

First condition that has to be fulfilled is given as 
1

1
i
d

d

A
A

−

≈ ,            (55) 

where dA  represents the localization area, i.e., area of all integration points which 
experienced the damage growth. If the ratio of the localization area from the last 
converged increment 1i

dA −  and the new converged value dA  is close to the value of 1, it 
means that formation of the zone is most likely finished. Additionally, check over all 
integration points is performed to acquire the maximum value of the damage variable 

maxD  inside the localization zone, which leads to the second condition 
maxD α> ,            (56) 

where α  stands for a threshold value, usually taken very close to the critical value of 
damage. Two described conditions are necessary for the evaluation of the fully formed 
localization zone, since one without the other could provide the misleading information 
in some loading cases. 

4 Numerical examples 
4.1 Plate subjected to tensile load, homogeneous microstructure 
In the following example plate with an imperfect zone subjected to tensile load, already 
analysed in Putar et al. [Putar, Sorić, Lesičar et al. (2017)] for numerical testing of the 
one-scale damage model, is utilized for the damage analysis by employing the nonlocal 
multiscale scheme, whereby the homogeneous microstructure is considered. By 
elimination of all effects resulting from the microstructural heterogeneities, clear 
conclusions can be made regarding the macrolevel structural response. The 
computational model of the problem is shown in Fig. 13, while the two different 
discretizations for the C1 continuous macrolevel are given in Fig. 14. In order to show the 
shortcomings of employing the C0 continuous macrolevel discretization, three additional 
discretizations are considered where second-order rectangular finite elements with 
reduced integration provided by ABAQUS/Standard are used, as depicted in Fig. 15. 
Regarding the scale transition relations between the macro- and microstructural levels in 
the C0-C1 multiscale scheme, they become much simpler once the higher-order variables 
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at the macrolevel vanish. Only the macrostructural deformation tensor is involved in the 
formulation of the RVE boundary conditions, which in turn cannot induce complex RVE 
deformation modes. Hence, the prediction of the microstructural damage evolution might 
not be as accurate as in the case of the C1 continuous macrolevel discretization. The 
major deficiency of the model employing the C0 continuous macrolevel discretization is 
the inability to include the nonlocal effects at the macrostructural level, since only the 
classical tangent stiffness and Cauchy stress are present in the constitutive model. The 
detailed derivation of all scale transition relations for the C0-C1 multiscale scheme can be 
found in Putar [Putar (2018)]. 

    

Figure 13: Geometry and boundary conditions of the plate subjected to tensile load 

 

Figure 14: Macrolevel discretization consisting of: (a) 48 and (b) 96 C1 continuity 
triangular finite elements 



 
 
 
A Multiscale Method for Damage Analysis                                                         143 

 
Figure 15: Macrolevel discretization consisting of: (a) 24, (b) 54 and (c) 48 C0 continuity 
rectangular finite elements (CPE8R) 

The homogeneous microlevel is considered as a rectangular MVE with uniform C1 
continuity discretization, as shown in Fig. 16. The periodic boundary conditions are 
considered at the MVE boundaries during the calculation. In the example, Mazars’ 
equivalent strain measure defined in Mazars and Pijaudier-Cabot [Mazars and Pijaudier-
Cabot (1989)] as 

3
2

eq
1

i
i

ε ε
=

= ∑ ,               (57) 

is used together with the damage evolution governed by the linear softening law given in 
Peerlings [Peerlings (1999)] as 

( )
( )
u 0

0 u
u 0

u

if ,

1 if .
D

κ κ κ
κ κ κ

κ κ κ
κ κ

 −
≤ ≤ −= 

 >

              (58) 

In Eq. (57), ( )1, 2, 3i iε =  represents the principal strains, where only positive 
contribution is taken into consideration. In Eq. (58), uκ  is material parameter representing 
the strain at which material completely loses its stiffness, while the definition for 0κ  
remains the same as in the case of exponential softening law shown by Eq. (33). The 
material data for the MVE matrix material are: the Young’s modulus 220000 N/mmE = , 
the Poisson’s ratio 0.25ν = , the limit elastic strain 0 0.0001κ = , the equivalent strain 
corresponding to the fully damaged state u 0.0125κ = . The horizontal displacement of 
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0.0325u =  mm is prescribed at the right edge of the coarse scale model. In order to 
trigger the localization, the Young’s modulus is reduced by 10% in the 10 mm wide 
hatched area of the plate. Along the vertical edges the second-order derivatives 1,11u , 1,22u , 

1,12u  and 2,12u  are suppressed. The first-order derivatives 1,2u  and 2,1u , are also set to zero. 
These boundary conditions yield the straight vertical edges. Here, the indices 1 and 2 
refer to the Cartesian coordinates x and y, respectively. 

 

Figure 16: Homogeneous MVE consisting of 32 C1 continuity triangular finite elements 

In the following multiscale analyses, the microstructural nonlocal parameter of 
micro 0.6608l =  mm is considered at the MVE level, while the MVE size is taken as 

2.6L =  mm. The same numerical example is then calculated by the one-scale model 
based on the modified case of Mindlin’s form II strain energy density described in [Altan 
and Aifantis (1992); Ru and Aifantis (1993)], while an adequate microstructural 
parameter according to the consideration in [Lesičar, Tonković and Sorić (2017)] is taken 
into account. Herein, 1l =  mm is used. The structural responses for the three different 
macroscale discretizations shown in Fig. 15 and used in the C0-C1 multiscale scheme, 
together with the structural response obtained by the converged one-scale damage model 
are depicted in Fig. 17. Obviously, three different mesh densities provide three different 
structural responses for C0-C1 multiscale scheme. Increase in the mesh density, i.e.,  
decrease in the finite element width in the damage process zone, where energy dissipation 
takes place, leads to more brittle response. Such behaviour can be attributed to the local 
continuum model where the strain tends to localize in the smallest possible volume, or a 
narrowest band of finite elements in this case. With this example it is proven that it is not 
possible to obtain the objective results in multiscale damage analysis by the employment 
of C0 continuity at macrolevel.  
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Figure 17: Load-displacement diagrams obtained by three different macrolevel 
discretizations, presented in Fig. 15, used in C0-C1 multiscale scheme and by one-scale 
damage model 

The reaction force diagrams obtained by the two multiscale analyses with the macroscale 
discretizations depicted in Fig. 14 and by the one-scale damage model are given in Fig. 
18. As evident, the results obtained by the multiscale analyses are now basically identical, 
which confirms that, generally, in the multiscale problems which involve the damage 
analysis at the microlevel, the macrolevel has to be discretized by the numerical scheme 
which enables the regularization of the strain localization phenomenon. A slight deviation 
from the results obtained by the one-scale damage model can be ascribed to the treatment 
of the nonlocality. While in the one-scale model the initial nonlocal material behaviour is 
degraded by the isotropic damage law as shown in Eqs. (20) and (21), in multiscale 
analyses the nonlocality continuously changes with the evolution of the microstructure. It 
can be seen that the reaction forces are closest at the onset of softening and then start to 
deviate as the nonlinearity progresses.  

 

Figure 18: Load-displacement diagrams obtained by two different macrolevel 
discretizations, presented in Fig. 14, used in C1-C1 multiscale scheme and by one-scale 
damage model 



 
 
 
146   Copyright © 2019 Tech Science Press          CMES, vol.120, no.1, pp.123-156, 2019 

4.2 Plate subjected to tensile load, heterogeneous microstructure 
Herein, the same example analysed by both C0-C1 and C1-C1 multiscale procedures and 
the consideration of the homogeneous microstructure, is analysed for the heterogeneous 
microstructure, included via the RVE presented in Fig. 19.  

 
Figure 19: RVE of side length L=2.6 mm, average hole radius ave 0.559r =  mm and 
porosity e=0.13 

In order to get intense localization zones, the microstructural internal length scale is taken 
as micro 0.025l =  mm, while the size of the RVE is left 2.6L =  mm. The computational 
model of the macroscale analysis remains the same as shown in Fig. 13, and all material 
parameters and softening characteristics are kept the same as described previously. The 
discretization of the macrostructural model is made by employing 48 triangular finite 
elements, as it is depicted in Fig. 14(a). Considering that such finite element mesh density 
provided converged results in case of the homogenous microstructure, as can be seen 
from Fig. 18, it can be assumed that accurate solutions will also be reached in case of the 
heterogeneous microstructure. Besides, a finer discretization would lead to a significant 
slowing down of the already very time-consuming computational process. This is a 
consequence mainly of the computationally very expensive matrix inverse calculations 
needed for the formation of the condensed stiffness matrix bbK , as explained in Lesičar 
et al. [Lesičar, Tonković and Sorić (2014)]. The load-displacement curve obtained by the 
presented model is depicted in Fig. 20, where also the previously obtained structural 
response for the homogeneous microstructure is plotted for the comparison purpose. 
Obviously, the softening is initiated at a smaller reaction force level for the 
heterogeneous material. After the peak is reached, a very steep drop of the reaction force 
is noticed. In the peak stage of the analysis, the area of the localization zone is already 
formed at the macrostructural level, and few subsequent converged incremental steps lead 
only to the rise of the deformation level in the centre of the zone. It should be mentioned 
that, in order to cross the peak, the convergence criteria have to be relaxed slightly for the 
ABAQUS/Standard solver. However, the continuation of the analysis is not possible 
anymore at some point after the peak when the problems with the convergence increase, 
as shown in Fig. 20. 
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Figure 20: Structural responses of the plate subjected to tensile load obtained by the C1-
C1 multiscale scheme for homogeneous and heterogeneous microstructure 

The deformed shape of the plate at the final stage of the analysis with the distribution of 
the strain tensor component in the direction of the x axis is depicted in Fig. 21. Due to 
very sparse mesh, smooth visualization of the variables at the macrolevel is difficult to 
obtain. The physically acceptable localization can clearly be seen from the figure, which 
indicates that for the heterogeneous microstructure the damage initiation and subsequent 
position of the macrocrack can successfully be captured by the proposed nonlocal 
multiscale algorithm.  

 
Figure 21: Deformed shape with the distribution of strain component 11ε  for 
heterogeneous microstructure with the internal length scale 0.025l =  mm at final stage of 
the analysis 
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Figure 22: Distribution of damage variable D over some characteristic RVEs for 

0.025l =  mm at final stage of the analysis 

The distribution of the damage over several characteristic RVEs in the macrostructural 
localization zone is presented in Fig. 22. It can be observed that the most intense damage 
bands are formed in the middle of the plate, where the localization is the strongest. By 
moving away from the localization, the damage bands at the microlevel are becoming 
milder, until they eventually become negligible and disappear. Obviously, the material 
behaviour can be interpreted as realistic at both scales. 

4.3 Shear band problem 
In the final example C1-C1 multiscale scheme is employed for the analysis of the shear 
band problem, as considered in Putar et al. [Putar, Sorić, Lesičar et al. (2017)] for 
numerical testing of the one-scale damage model. The computational model for the 
analysis of the heterogeneous macrostructure, presenting a quadrilateral plate with the 
dimension h = 60 mm, is given in Fig. 23(a). The compressive loading is prescribed at 
both the top and the bottom edges of the model, where the vertical displacement of 

0.08v =  mm is imposed. The matrix material of the RVE is characterized by the Young’s 
modulus 220000 N/mmE =  and the Poisson’s ratio 0.2ν = . For modelling of the 
damage responses, the modified von Mises’ equivalent elastic strain measure (34) 
together with the exponential softening law (33) is used, for which the parameters are set 
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to: 0 0.0001κ = , 0.99α =  and 300β = . To induce localization, the reduced value of 

0 0.00005κ =  as a material imperfection is imposed on the small region of 10 10h h×  as 
shown in Fig. 23(a). Since the loaded edges have to remain straight during the analysis, 
the boundary conditions for the straight edge are enforced there by supressing the degrees 
of freedom 2,11u , 2,22u , 1,12u , 2,12u , 1,2u  and 2,1u . 

The finite element mesh of the whole model is depicted in Fig. 23(b). Homogenous 
microstructure is modelled by the MVE of side length 2.6L =  mm, as presented in Fig. 
16, same as in the previous example. On the other hand, for the modelling of 
heterogeneous microstructure the RVE given in Fig. 19 is used, where the side length of 

2.6L =  mm and the microstructural size of the nonlocal interactions micro 0.025l =  mm 
are considered. The load-displacement curves for both the homogeneous and the 
heterogeneous microstructure are given in Fig. 24. The softening initiation happens at a 
smaller reaction force level for the heterogeneous material, while the subsequent drop, 
although pronounced, is very short due to emergence of convergence problems.  

 
Figure 23: (a) Geometry and boundary conditions of the plate with an imperfection and 
(b) discretization consisting of 96 C1 continuous triangular finite elements 
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Figure 24: Structural responses of the plate subjected to compressive load obtained by 
the C1-C1 multiscale scheme for homogeneous and heterogeneous microstructure 

The distribution of the equivalent elastic strain at the onset of the softening for the 
heterogeneous material can be seen in Fig. 25. Obviously, the localization zones have started 
to develop as expected for the shear band problem. The distribution of the damage over 
several characteristic RVEs in the macrostructural localization zone at the onset of the 
softening is presented in Fig. 26. The direction in which the damage has evolved so far 
suggests that the lower shear band would eventually become dominant. The similar situation 
is already predicted by using the one-scale damage model where the microstructural 
evolution is excluded from the analysis, as shown in Putar [Putar (2018)]. 
As evident from the results of the considered numerical examples, C1-C1 multiscale scheme 
is able to successfully predict the initiation of the localization at the macrostructural level. 
By taking into account that the constitutive behaviour of the macrostructure is obtained 
directly from the analysis of the evolving heterogeneous microstructure, it can be said that 
such algorithm represents a step forward with respect to the one-scale damage model 
presented in Putar et al. [Putar, Sorić, Lesičar et al. (2017)]. Although the structural 
responses can be qualitatively interpreted as physically acceptable, the additional 
comparison with the experimental results is desirable. It should also be stressed that, once 
the formation of the initial localization zone at the macrolevel is reached, convergence issues 
can be noticed in the computational process. It is not yet clear why this happens, and further 
research is needed to reach some reasonable conclusions.  
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Figure 25: Distribution of the equivalent elastic strain eqε  on the macromodel at the 
onset of softening 

 
Figure 26: Distribution of damage over some characteristic RVEs at the onset of softening 
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It is to note that the computation performed is time consuming. To increase the 
computational efficiency, the parallelization of the macroscale computations by 
computing several elements at the same time has been used, which is provided within the 
Abaqus software infrastructure. An additional parallelization inside of the macroscale 
element has been applied too, where the RVEs appointed to material points of a single 
macrolevel element are computed simultaneously. In this manner, the multiscale 
computation of one complete macrolevel element using the RVE depicted in Fig. 19 can 
be finished relatively fast. Due to the linear elastic material employed, the 
homogenization of the constitutive behaviour can be done only once as a pre-processing 
step, since it remains constant until development of the damage, which also contributes to 
the faster multiscale computation. Hence, prior to damage initiation inside of the RVE, 
the multiscale computation can be significantly boosted. However, after damage initiation 
at specific macrolevel material points, the complete homogenization of the RVE 
behaviour is required due to the nonlinearities involved, which results in the decrease of 
the macroscale loading increment and increased computational time.  

5 Conclusion 
The presented paper is concerned with the multiscale modelling of materials exhibiting 
the strain localization phenomena, whereby the evolution of damage is observed at the 
microstructural level described by the appropriate representative volume element. In 
order to simplify the problem at the microscale, the theory based on the modified case of 
Mindlin’s form II strain energy density is employed, where only a classical constitutive 
tensor and the internal length scale parameter are required in constitutive relations. The 
triangular C1 finite element for softening analysis is derived in the similar manner as 
presented in Putar et al. [Putar, Sorić, Lesičar et al. (2017)], by the application of the 
isotropic damage law to the constitutive relations of the gradient elasticity theory. This 
finite element formulation employing microstructural length scale parameter and damage 
variable is applied for the modeling of damage evolution at the microstructural level of 
heterogeneous materials for the first time. Applicability of the finite element is tested on 
the RVE example, where several loading conditions are applied, and the results show the 
expected material behaviour. It is found that the change in the size of the nonlocal 
interaction zone leads to the formation of completely different localization paths. 
Implementation of the derived finite element at the microstructural level of the multiscale 
model is carried out by the user defined subroutine UEL in scope of the FE software 
ABAQUS/Standard. In order to test the applicability of both C0 and C1 continuous 
discretization at the macroscale, a standard benchmark example with different finite 
element meshes is considered, where a homogeneous microstructure is analysed. The 
objectivity of the novel finite element formulation has been discussed and its advantage 
over the standard finite element procedure is proved. As expected, the results obtained by 
the local-to-nonlocal multiscale scheme are dependent on the discretization and the 
convergence to physically acceptable solution cannot be reached. In contrast, the 
nonlocal multiscale scheme shows almost identical structural responses for different finite 
element mesh densities, and the results are comparable with the one-scale damage model 
solution. In order to assess the complete formation of the localization zone across the 
RVE, and to emulate the formation of the crack in the macrostructural integration point, 
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the so-called RVE failure conditions are derived. Two examples including heterogeneous 
microstructure are considered, where it is shown that the presented multiscale damage 
model can successfully describe the initiation of the macrostructural localization. 
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