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Equivalence of Ratio and Residual Approaches in the Homotopy 
Analysis Method and Some Applications in Nonlinear Science and 

Engineering

Mustafa Turkyilmazoglu1, ∗

Abstract: A ratio approach based on the simple ratio test associated with the terms of 
homotopy series was proposed by the author in the previous publications. It was shown in 
the latter through various comparative physical models that the ratio approach of 
identifying the range of the convergence control parameter and also an optimal value 
for it in the homotopy analysis method is a promising alternative to the classically used 
h-level curves or to the minimizing the residual (squared) error. A mathematical analysis 
is targeted here to prove the equivalence of both the ratio approach and the traditional 
residual approach, especially regarding the root-finding problems via the homotopy 
analysis method. Examples are provided to further justify this. Moreover, it is conjectured 
that every nonlinear differential equation can be considered as a root-finding problem by 
plugging a parameter in it from a physical viewpoint. Two examples from the boundary 
and initial and value problems are provided to verify this assertion. Hence, besides the 
advantages as deciphered in the previous publications, the feasibility of the ratio approach 
over the traditional residual approach is made clearer in this paper.

Keywords: Homotopy analysis method, convergence control parameter, optimum 
value, ratio approach, residual approach.

1 Introduction
Homotopy analysis method (HAM) has been an attractive powerful method in the recent 
literature for obtaining the analytic approximate solutions of really challenging and 
highly nonlinear equations arising from the real-life physical applications. Many such 
mathematical models were treated by the method, one can refer to the books [Liao (2003), 
2012, 2014)], published by Liao; the founder of the method. Particularly, the "steady-
state" resonant waves not detected by traditional analytic methods in the past 60 years 
were successfully discovered by HAM in Liu et al. [Liu and Liao (2014)], whose physical 
existence was also approved via a recent experiment in Liu et al. [Liu, Xu, Li et al. (2015)].
The so-called convergence control parameter constitutes the cornerstone of the HAM,
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since it ensures the convergence of the method, whose absence may lead to an inevitable
divergence in, for instance the special case of HAM; the homotopy perturbation method.
Therefore, determination of a suitable value for the convergence control parameter, even
finding an optimal value for it to get the fastest convergence rate are open problems in the
HAM. The researchers working in the field, either make use of the out of date notion of
h−level curve analysis, from which an appropriate value of convergence control parameter
is tried to be picked up by observing the trend of the curve. Or, as introduced in Liao [Liao
(2010)], the conventional minimization of the error through the squared residual may yield
an optimum value for the convergence control parameter within a spotted interval. Such
an approach is also beneficial for sorting out the applicable range of physical parameters in
nonlinear physical models, refer to Turkyilmazoglu [Turkyilmazoglu (2016)].
A completely new proposal was made by Turkyilmazoglu (see Chapter 5 in the book by
Liao [Liao (2014)]), based on the simple ratio test of the homotopy series terms produced
as a result of HAM method. Accordingly, the proposal was shown to not only generate
the same optimum convergence control parameter like the one from the squared residual
approach, but produce the same interval for the convergence control parameter like the one
from the h−level curve analysis. Besides, more importantly, the novel ratio approach was
used to pursue the convergence of the method itself. All these and further advantages were
clarified in the recent publications by Turkyilmazoglu [Turkyilmazoglu (2015, 2018)].
Homotopy analysis method has been frequently used lately in the literature to solve highly
nonlinear mathematical models. For example, the nanofluid problem in a channel with
MHD effects was investigated by Sheikholeslami et al. [Sheikholeslami and Ganji (2014)].
Hetmaniok et al. [Hetmaniok, Slota, Witula et al. (2015)] used it to solve the one-phase
inverse Stefan problem. It was also used to explore the multi-valued behavior for a two-
level system by Aquino et al. [Aquino and Boot (2016)]. Curato et al. [Curato, Gatheral
and Lillo (2016)] suggested a discrete homotopy analysis for solving the nonlinear transient
market problem. Nonlinear oscillations of micro/nano beams were simulated with the
method given by Roozbahani et al. [Roozbahani, Arani, Zand et al. (2016)].Slip flow
effects were examined via the method by Sravanthi [Sravanthi (2018)]. The backward heat
conduction problem was treated by the homotopy analysis method by Liu and Wang [Liu
and Wang (2018)]. Homotopy analysis method was also successfully used for treating the
nonlinear equations arising from the channel flow, see Rana et al. [Rana, Shukla, Gupta
et al. (2019)]. Fractional differential equations are also easily treated by the homotopy
analysis method, see Martinez et al. [Martinez and Aguilar (2019)]. Very recently, the
convergence of homotopy solution via Banach fixed point theorem approach was presented
by Abbas et al. [Abbas, Kitanov and Longo (2019)] concerning the Lane-Emden problem.
The motivation in the present investigation is to supply a mathematical analysis to prove
the equivalence of both the residual and the ratio approaches concerning the convergence
control parameter on the problems of root-finding by means of HAM. It is also asserted
that boundary and initial value problems may be considered as a root-finding problem by
inserting some parameters in them from a physical standpoint. Moreover, illuminating



Equivalence of Ratio and Residual Approaches 65

further advantages of the ratio approach is the main objective. Particularly when the
physical domain extends up to infinity, the ratio approach seems to be more feasible as
compared to the classical approaches. This is exemplified on a third-order highly nonlinear
boundary value problem representing the fluid flow induced by deforming surfaces as
investigatd by Liao [Liao (2005)]. In addition to this, if the problem is an initial value type
without an explicit interval of interest, there is no need to set up an imaginary interval on
which the convergence control parameter is sought, but the ratio approach is again feasibly
determining the interval of convergence control parameter and optimum value of it without
a domain of definition of the physical problem. This is also demonstrated on the well-
documented van der Pol oscillator problem of physics by Chen et al. [Chen and Liu (2009)]
and Abbasbandy et al. [Abbasbandy, Lopez and Ruiz (2011)].

2 The HAM and the ratio approach
The aforementioned citations are good resources for the definition of the HAM method. In
summary, a convergent homotopy series solution

u(t, h) = u0(t) +

∞∑
k=1

uk(t, h) (1)

is sought regarding the unknown function u(t) generally satisfying a highly nonlinear
differential (algebraic for the root-finding problem) equation due to the mathematical
modeling of a real physical phenomenon. The parameter h appearing in (1) represents the
so-called convergence control parameter determination of whose value is of the paramount
significance in the present research.
In practice, the truncation of the homotopy series (1) at the order M will suffice to get an
M th-order approximate analytic solution

uM (t, h) = u0(t) +

M∑
k=1

uk(t, h). (2)

As a consequence of the Theorem given by Liao [Liao (2014)] (see Chapter 5 in Liao [Liao
(2014))], it was conjectured that under a proper choice of norm (L2 norm unless otherwise
is stated), the ratio defined by

β =
‖uM+1(t, h)‖
‖uM (t, h)‖

, (3)

will provide the necessary information for both the convergence and optimal value for the
convergence control parameter h of the homotopy series (1), in such a manner that (3) is
forced to be minimized (as small as possible, always being less than unity) in the large M
limit.
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It was shown by Liao [Liao (2014)] and Turkyilmazoglu [Turkyilmazoglu (2015)] that
the interval of convergence control parameter h obtained by the constant h-level curves is
considerably recovered by the ratio (3), nonetheless this is an only a local event, from which
the optimum value cannot be located. Nevertheless, if we are interested in the root-finding
problem like f(u) = 0, the version of (3)

β =
|uM+1(h)|
|uM (h)|

(4)

and β < 1 for sufficiently large M will enable us to determine the interval of the
convergence control parameter as well as its optimal value by minimizing (4).
On the other hand, the traditional approach is to minimize the squared residual error

Res(h) = ‖N [

M∑
k=0

uk(t, h)]‖2, (5)

and reach an optimal value of h as a result, for a given nonlinear problem N [u(t)] = 0.
Hence, on a suitable domain of definition, either (3) or (5) (or their discrete versions
as defined by Liao [Liao (2014)] and Turkyilmazoglu [Turkyilmazoglu (2015))] can be
made use of finding the optimal convergence control parameter h. The advantages of
ratio approach (3) over the squared residual approach (5) were discussed by Liao [Liao
(2014)] and Turkyilmazoglu [Turkyilmazoglu (2015)] on a variety of physical phenomena.
However, the question of gaining the same optimal value of convergence control parameter
from both (3) and (5) is yet to be answered which is the prime objective here. Moreover,
there exist two further questions in the squared residual approach; regarding the boundary
value problems having an infinite interval, how the integrations will be performed either
analytically or numerically in (5) is not clear. This is generally accomplished by setting the
infinity at a finite cut. Also, regarding the initial value problem how a proper definition of
the domain will be chosen is not known. Generally, an arbitrary finite region is set by the
user. These issues are discussed and exemplified in the coming sections.

3 Root-finding problems

Theorem. Let the homotopy series

u(h) = u0 +

∞∑
k=1

uk(h), (6)

be the solution of the root-finding problem

f(u) = 0.
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Then, the optimum value of convergence control parameter h as obtained from the residual

Res(h) = |f(u(h))| (7)

coincides with the optimum value of convergence control parameter h as obtained from the
ratio

β = lim
M→∞

∣∣∣uM+1(h)

uM (h)

∣∣∣. (8)

Proof. Minimizing (7) leads to an optimum h satisfying

du

dh
= 0. (9)

Differentiating (6) term by term together with the consideration of (9) results in

∞∑
k=1

duk(h)

dh
= 0. (10)

This clearly implies that series in (10) which is the derivative of the homotopy series (6)
with respect to h is convergent, therefore,

lim
k→∞

duk
dh

= 0. (11)

This obviously means that the optimum h of the residual (7) is also the optimum h of the
ratio (8), because at such a h it holds that
dβ

dh
= 0.

This completes the proof. �

3.1 An algebraic equation

Suppose it is desired to find the roots of

f(u) = u2 + u− 1, (12)

one of which has an exact value ue = 1
2

(
−1 +

√
5
)

= 0.6180339887. With the choices of
initial and auxiliary variables

u0 = 0, L(u) = f(u)− f(u0)
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Figure 1: h−level curves for Eq. (12)

Table 1: Root of (12) and absolute errors for various M at h = −0.36. a Solutions from
the homotopy method (2) and b Solutions from the Newton iteration method (15)

M 6 12 16 22

ua 0.5994939064 0.6170301541 0.6178761830 0.6180225132
erra 1.8540× 10−2 1.0038× 10−3 1.5781× 10−4 1.1476× 10−5

ub 0.5949788985 0.6164734781 0.6179268602 0.6180160167
errb 2.3055× 10−2 1.5605× 10−3 2.6157× 10−4 1.7972× 10−5

and referring to the homotopy given in the references Liao [Liao (2014)] and
Turkyilmazoglu [Turkyilmazoglu (2015)], we define the residual and absolute errors at
the Mth−order homotopy approximation (2) in the forms

Res(h) = u2 + u− 1, (13)
err = |ue − uM |. (14)

The convergence control parameter h versus the root of (12) and its interval of nearly
h ∈ [−0.5, 0) are depicted in Fig. 1 at some selected approximation levels M . The
range of convergence parameter (and its bounds) is seen to settle down as M increases.
Actually, the exact intervals of convergence, though cannot be identified in Fig. 1, solving
the inequality (4) gives rise to exact intervals [-0.4647,0], [-0.4337,0], [-0.4217,0] and [-
0.4146,0], respectively, at M = 8, 12, 16 and 22, which are consistent with figure 1.
Minimizing the residual in Eq. (13) and also minimizing the ratio in Eq. (4) yield the
minimum value for the residual and ratio resulting in approximately h = −0.36 at the
22th-order homotopy approximation, as also observed from Figs. 2(a)-2(b).
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Figure 2: (a) Residual error (13) and (b) ratio (4) associated with Eq. (12) at the
approximation level M = 22

Table 2: The values of optimal h from the residual error (13) and the ratio (4). CPU times
in seconds are in parenthesis. a Eq. (13) and b Eq. (4)

M 10 20 22

ha -0.3796710648(0.33) -0.3595157854(16.70) -0.3575277194(41.59)
hb -0.3796710648(0.23) -0.3595157854(3.19) -0.3575277194(6.52)

Taking into consideration the modified Newton iteration [Liao (2012)].

uk = uk−1 + h
f(uk−1)

f ′(uk−1)
, (15)

Tab. 1 demonstrates the approximate root and also the absolute error from (14) by fixing
the convergence control parameter at h = −0.36. It is anticipated that both methods limit
towards to the same root, more significantly, the HAM solutions are more accurate than
those of the classical modified Newton iteration at h = −0.36, for the tabulated iteration
levels. Tab. 2 reveals the values of optimum h calculated from both the residual error
(13) and the ratio (4) at several approximation orders. In line with the stated Theorem,
the optimums from both approaches are tending to the same value, with a clear advantage
of the ratio approach in terms of the CPU times. To further assess the convergence of the
homotopy series (2) for the considered problem (12), ratios from (4) are depicted in Figs.
3(a)-3(b) at two selected values of h. The figures clearly indicate the convergence of the
employed homotopy technique.
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Figure 3: Ratios from (4) versus the order of homotopy approximation concerning Eq. (12)
for two values of h

Table 3: The values of optimal h from the residual error (13) and the ratio (4). CPU times
in seconds are in parenthesis. a Eq. (13) and b Eq. (4)

M 6 8 10

ha -0.3192170839(1.50) -0.3105890934(9.25) -0.3050661203(440.67)
hb -0.3192170839(0.92) -0.3105890934(2.66) -0.3050661203(230.27)

3.2 A transcendental equation

Suppose it is desired to find the root of

f(u) = u+ 1− sinu, (16)

whose exact solution cannot be written in an elementary way.
As in the previous example, searching for an optimum convergence control parameter h
from both approaches results in the values as tabulated in Tab. 3. A drastic increase in the
CPU time for the evaluation of residual is noticeable necessitating the use of ratio approach.
It can thus be concluded that both the classical residual and present ratio approaches
generate the same interval of convergence control parameters as well as the optimum values
of them. Apparently, the present ratio method is desirable owing to the less time-consuming
feature. Moreover, for the considered problems, at the optimum value of convergence
control parameter, the present procedure is certainly more accurate as compared to the
modified Newton iteration technique. However, it is still an open question whether this is
the case for general root-finding problems.



Equivalence of Ratio and Residual Approaches 71

4 Boundary and initial value problems
We will show in this section that the ratio approach for determining the optimum
convergence control parameter in boundary and initial value problems is more feasible
since it does not require a domain of interest, which must be supplied in the squared
residual approach. It should be remarked that as emphasized by Liao [Liao (2014)] and
Turkyilmazoglu [Turkyilmazoglu (2015)], the convergence of HAM and the optimum
value of convergence control parameter are more easily accessible in the HAM method
if an unknown parameter is involved in the solution. Even if no such a parameter exists,
considering the unknown data from the boundaries one can always be plugged into the
system. In fact, this somewhat reduces the differential equation into a root-finding problem
as highlighted in the subsequent remark.
Remark. Insertion of an unknown parameter into a nonlinear differential equation converts
it to a root-finding problem. Hence, the Theorem given in Section 3 enables us to work out
the optimum convergence control value of h from the root in place of the classical squared
residual error.

4.1 Fluid flow induced by deformable bodies

Consider the fluid flow induced by a deforming surface, having engineering and industrial
applications as explored by Jaluria et al. [Jaluria and Torrance (2003)] and governed by the
following third-order nonlinear differential equation [Liao (2005)].

f ′′′ +
1

2
ff ′′ − βf ′2 = 0, f(ζ = 0) = 0, f ′(ζ = 0) = 1, f ′(ζ →∞) = 0. (17)

We closely follow the homotopy study of Liao [Liao (2005)] and implement the change of
variables

f(ζ) = λ(1− F (η)), η =
1

2
λζ,

with λ = f(ζ → ∞) > 0 and β > −1 for the physical purposes, after which system (16)
turns out to be

F ′′′ + (1− F )F ′′ + 2βF ′2 = 0,

F (η = 0) = 1, F ′(η = 0) = −2Γ, F (η →∞) = F ′(η →∞) = 0, (18)

with Γ = λ−2 is unknown.
Therefore, it is aimed to obtain the homotopy series approximations for (18)

F (η) = F0(η) +

M∑
k=1

Fn(η), Γ = Γ0 +

M∑
k=1

Γn,

by adopting the auxiliary linear operator and the other auxiliary variables as in Liao
[Liao (2005)]. It is noted that the unknown values Γn will be found to comply with the
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assumption of simple exponential base functions as the solutions. Moreover, out of the two
solutions of Γ0 as detected by Liao [Liao (2005)], we only pursue the larger one since it is
inclined to be more physical.
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Figure 4: h-level curves for Eq. (18)

Since F ′′(0) is unknown from (18), the local range of convergence control parameter may
be determined from the plot in Fig. 4(a), suggesting that as the order of approximation is
increased, the interval of convergence is approximately thought of [−1, 0]. Making use of
the ratio in (3) for F ′′(0) and accounting for the inequality

β =
∣∣∣F ′′M+1(0, h)

F ′′M (0, h)

∣∣∣ < 1 (19)

We find that (19) yields the exact intervals

[−0.8124, 0], [−0.9205, 0], [−0.9122, 0], [−0.9051, 0]

at the approximation orders M = 9, 15, 23 and 31, respectively, which are very close to the 
intervals estimated by the h−level curves in Fig. 4(a). The almost same intervals of 
convergence control parameter h can also be observed in Fig. 4(b) from the ratio

β =
∣∣∣ΓM+1(h)

ΓM (h)

∣∣∣, (20)

and imposing β < 1 in (20) yields the exact intervals

[−0.9482, 0], [−0.9292, 0], [−0.9154, 0], [−0.9009, 0]

at the approximation levels M = 9, 15, 23 and 31, respectively. The advantage here is that 
producing Fig. 4(b) takes much shorter time (within 20 seconds) than producing Fig. 4(a)
(over 10 minutes) since functional series are involved in the evaluation of F ′′(0).
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Table 4: The discrete values of optimal h from both approaches for Eq. (18). CPU times
in seconds are in parenthesis. a From Eq. (5) and b From Eq. (3)

M 5 10 15 20

ha -0.9543(12.14) -0.8115(62.39) -0.7933(106.28) -0.7601(210.74)
hb -0.7704(8.55) -0.7576(19.99) -0.7513(54.55) -0.7491(72.20)

As mentioned in Section 2, one of the main drawbacks of the squared residual error
is in the calculation of integrals in (5) whether analytically (almost impossible for the
current problem) or numerically. The infinite domain is another difficulty for the squared
residual, even though ratio can be analytically computed from (3) up to some level of
approximations. By setting infinity at η = 10 and choosing 50 equi-spaced points in the
reduced domain [0, 10], discrete squared residual for (5) and discrete ratio for (3) result
in the better range of convergence control parameter h and also an optimum for that of
approximately h = −0.75 as also demonstrated in Figs. 5(a)-5(b).
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Figure 5: (a) Residual error (5) and (b) ratio (3) for Eq. (18) at approximation levelM = 20

Tab. 4 also tabulates the information regarding the optimum h values from both squared
residual and ratio approaches and the CPU times in seconds.
Instead, minimizing the ratio associated with Γ in Eq. (20) as listed in Tab. 5 does not take
even a minute, refer also to Fig. 6. Hence the ratio approach is indeed superior for the
current problem in identifying a proper convergence control parameter.
To further check out the convergence of the homotopy series solution for the current
problem, the ratios are plotted at three different values of h in Figs. 7(a)-7(c) from (3)
and in Figs. 8(a)-8(c) from (20). Since the ratios approach a finite limit in each case less
than unity, the convergence of the homotopy solution is assured. We may conclude in this
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Table 5: The exact values of optimal h from the ratio (20) for Eq. (18)

M 5 10 15 20

h -0.8168 -0.7708 -0.7535 -0.7415
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Figure 6: Ratio (20) for Eq. (18) at several approximation levels

section that the semi-infinite problems hardening the location of an optimum convergence
control parameter via the classical squared residual error is overcome by the introduction
of a free parameter into such systems and tracing that parameter within the presented ratio
approach.

4.2 Van der Pol oscillator

The traditional van der Pol oscillator problem is given by the subsequent nonlinear second-
order differential equation, as investigated by Chen et al. [Chen and Liu (2009)] and
Abbasbandy et al. [Abbasbandy, Lopez and Ruiz (2011)]

u′′ + ε(u2 − 1)u′ + u = 0, u(t = 0) = A, u′(t = 0) = 0, (21)

modeling the phenomena of many problems of vibration whose amplitude is A, refer to the
publications Dafear et al. [Dafear, Geer and Andersen (1984)] and Buonomo [Buonomo
(1998)]. By means of the transformation τ = Ω t, where Ω is the frequency of the
oscillations, Eq. (21) is now

Ω2u′′ + εΩ(u2 − 1)u′ + u = 0, u(τ = 0) = A, u′(τ = 0) = 0. (22)
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Figure 7: Ratios from (3) for Eq. (18) with various h

In (22) both Ω and A will be treated as unknowns, which will be determined as a result of
removal of secular terms, by assuming a homotopy series solution of (22) in the form

u(τ, h) = u0(τ) +

∞∑
k=1

(u1k cos(kτ, h) + u2k sin(kτ, h)),

Ω(h) = Ω0 +

∞∑
k=1

Ωk(h),

A(h) = A0 +

∞∑
k=1

Ak(h). (23)

Such a solution is achieved following [Chen and Liu (2009)] and [Abbasbandy, Lopez and
Ruiz (2011)] by the auxiliary variables

ε = 1, u0(τ) = A0 cos τ, L =
d2

dτ2
+ 1.

The h−level curves are displayed in Figs. 9(a)-9(b) to determine the interval of 
convergence of h, from the unknown u′′(0), Ω and A, respectively. The convergence of
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Figure 8: Ratios from (20) for Eq. (18) with various h

the HAM solutions in (23) appears to take place at the interval [−1.5, 0] according to
these figures. This is also analytically derived; an exact interval of [−1.1415,−0.0425]
is obtained using (3) for u′′(0), the interval of [−1.2740, 0] using (4) for Ω and the interval
of [−1.2621,−0.0403] using (4) for A at the homotopy approximation level M = 24.
At this level it is found that the optimum value of h is approximately h = −0.93 from
the squared residual (5) (taking the integration domain [0, 2π] and numerical integration
by 50 equi-spaced points), from the ratio (19) for u′′(0) and from the ratio (20) associated
with Ω and A as seen from Tab. 6. Tab. 7 further tabulates the frequency and amplitude
corresponding to h = −0.93 at various approximation levels. Considering that the exact
values are Ω = 0.9429558474 and A = 2.0086198609 from the publication Chen et al.
[Chen and Liu (2009)], the accuracy of the gained HAM solutions is acceptable. In order
to further justify the obtained homotopy series solutions for the current problem, Figs.
10(a)-10(b) show the vibration behavior of van der Pol oscillator (21). It is noted that the
exact solution is given at A = 2.0086198609 shown by thin curves, whereas dotted curves
correspond to initial approximation, dot-dashed curves to first-order HAM solutions and
dashed curves to 5th-order HAM solutions.
Hence, we may conclude that in parallel to our assertion, there is no need to set up any
physical interval as in the current initial value problem, but simply use the ratio approach
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Figure 9: h-level curves for Eq. (22)

Table 6: The optimum values of h evaluated by minimizing discrete squared residual (5),
the ratio (19) for u′′(0) and the ratio (20) for Ω and A. CPU times in seconds are in
parenthesis. a Eq. (5) and b Eq. (19) for u′′(0), and c Eq. (20) for Ω, and d Eq. (20) for A

M 6 12 17 24

ha -0.8437(12.5) -0.9100(39.11) -0.9243(71.14) -0.9287(112.74)
hb -0.9088(8.27) -0.9254(25.92) -0.9357(46.53) -0.9335(93.35)
hc -0.9197(0.1) -0.9236(0.1) -0.9231(0.1) -0.9357(0.1)
hd -0.9349(0.1) -0.9315(0.1) -0.9308(0.1) -0.9324(0.1)
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Table 7: The frequency Ω and amplitude A with h = −0.93

M 6 12 17 25

Ω 0.9429478103 0.9429555606 0.9429558337 0.9429558474
A 2.0088108419 2.0086188961 2.0086198641 2.0086198609
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Figure 10: Views from the van ver Pol oscillator (21). The full solution is shown by thin
curves, the initial approximation is by dotted curves, the first-order HAM solutions by dot-
dashed curves and the 5th-order HAM solutions by dashed curves
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to accurately predict the convergence control parameter h from which physical insight 
can be gained for the considered problem. We should finally remark that the ratio 
approach can also be beneficial to apply to more complicated partial differential 
equations, especially if they contain a free parameter. Otherwise, the traditional 
residual error minimizing would require much extensive CPU time due to the 
evaluation of multiple integrals over the physical domain of considered problem in 
bounded or unbounded types.

5 Concluding remarks

The present work is devoted to the determination of convergence control parameter 
frequently needed in the homotopy analysis method. The recently proposed simple 
method of ratio, in the publications, Liao [Liao (2014)] and Turkyilmazoglu 
[Turkyilmazoglu (2015)], based on the classical calculus is the main focus here. It was 
shown in the latter that the ratio approach has certain definite advantages for identifying 
the optimum convergence control parameter in the homotopy analysis method, and it 
constitutes a promising alternative to the classical h-level curve analysis or to the 
minimizing the squared residual error. A rigorous proof is given here to show that both the 
ratio approach and the traditional residual approach result in the same optimum value for 
the convergence control parameter in solving the algebraic equations. Two examples are 
provided to support this fascinating outcome. It is later conjectured that any boundary or 
initial value problem may be considered as a root-finding problem by inserting unknown 
parameters from the physical boundaries. The feasibility of the ratio approach is then 
exhibited on some selected fashionable initial and boundary value problems by inserting 
unknown parameters into the system and tracing the ratios from these parameters, in place 
of the more time-consuming definition of the ratio. Such an approach seems necessary for 
the physical problems possessing infinity domains since the classical squared residual 
approach may not be trustable even when the discrete version of it is employed. In 
addition to this, if the problem is an initial value type, without an explicit interval of 
interest, there is no need to set up an imaginary interval on which the convergence control 
parameter is sought, but the ratio approach is again feasible determining the interval of 
convergence control parameter without a domain of definition of the physical problem. 
The presented physical examples from the deformable surfaces and the van der Pol 
oscillator justify the assertions made here. To conclude, the advantageous ratio approach 
may be safely used to determine the interval and optimum convergence control parameters 
in the future applications of the HAM method taking into account more complicated 
mechanical and engineering problems in nonlinear science [Hashemi (2015)].
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