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Abstract: This writing is an attempt to explain a reliable numerical treatment for stochastic 
computer virus model. We are comparing the solutions of stochastic and deterministic 
computer virus models. This paper reveals that a stochastic computer virus paradigm is 
pragmatic in contrast to the deterministic computer virus model. Outcomes of threshold 
number C∗ hold in stochastic computer virus model. If C∗ < 1 then in such a condition 
virus controlled in the computer population while C∗ > 1  shows virus persists in the 
computer population. Unfortunately, stochastic numerical methods fail to cope with large 
step sizes of time. The suggested structure of the stochastic non-standard finite difference 
scheme (SNSFD) maintains all diverse characteristics such as dynamical consistency, 
boundedness and positivity as defined by Mickens. The numerical treatment for the 
stochastic computer virus model manifested that increasing the antivirus ability ultimates 
small virus dominance in a computer community. 
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1 Introduction 
A computer virus is a program that can copy itself and infect a computer without the 
permission or knowledge of the user. Virus stands for vital information resources under 
siege. A computer virus has two features as the potential to duplicate itself and the potential 
to affix itself to an alternative computer folder. They spread via disks, network or services 
such as email. Earlier viruses were propagated by computer programs or by hiding in 
floppy disks. Modern viruses transmit in a subtler way such as phishing which is a 
fraudulent practice of sending emails inquiring personal information [Patil and Jadhav 
2014)]. A virus infected computer shows various symptoms. A small number of signs that 
may inform that a computer has the virus are slow response time, random hard drive crashes 
and great pop-up ads. A carefully engineered computer virus can disrupt production and 
cause billions of dollars in damages. For example, the con-flicker also known as down up 
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virus which was discovered in 2008, had infected millions of computers across the world. 
The estimated damage was over $9.1 billion [Zhu, Yang and Ren (2012)]. Viruses have 
evolved over a period. Their numbers are increasing each day, and they are becoming more 
sophisticated and harmful. Each new virus assimilates new features along with the old ones, 
thus making it more difficult to detect and erase [Albazzaz and Almuhanna (2016)]. The 
computers that we usually use do not have adequate built-in security measures as compared 
to larger systems thus leaving it to the users to purchase, install and utilise anti-virus 
software. Among significant types of computer viruses, the first type is called the boot 
sector virus. The boot sector is that first portion of our hard disk where routines to load our 
operating system reside. If these routines are disturbed or modified, our computer will not 
be able to work. As the name suggests, the boot sector virus modifies the boot sector 
program and is loaded in the memory whenever the computer is turned on. The virus is 
attached with the system executable files, for example, exe, .com etc. Chernobyl virus 
detects all the Microsoft office files and corrupts them. It also deletes the logical partition 
information of the disks. Users cannot access their files from the drives, because of this 
virus. Logic bomb virus occurs only when a particular condition is met. The condition 
could be any date or any completion of the process (time). After the condition is met, the 
virus is invoked. This virus can be discovered by chance. Trojan horse virus is embedded 
in the computer programs. When we run these programs, this virus is activated. Its primary 
purpose is destruction. The Redlof virus is a polymorphic virus, which is written in VB 
Script (language). When instructions are being written, this virus is embedded in the 
programs. It corrupts the folder data file, which is the part of windows active desktop. 
An ideal structure of a computer virus holds three subroutines. The task of first sub-routine, 
known as infect-executable, is to find executable files and infect them by copying its code 
into them. Second sub-routine, namely do-damage also called the payload of the virus, is a 
code which delivers the malicious part of the virus. The final sub-routine trigger-pulled 
inspects if the required conditions are met in order to deliver its payload [Patil and Jadhav 
(2014)]. Much work has been done on the concept of computer viruses such as new 
techniques for virus detection and its prevention. New researches help us to understand 
how sophisticated viruses work. To inspect computer viruses, the compartment modelling 
technique of infectious diseases was proposed [Cohen (1987); Murray (1988)]. 
1n last decade of the twentieth century the authors were the first ones to typical the 
spreading behaviour of the computer virus. This paved the way for developing 
mathematical models for computer virus propagation [Billings, Spears and Schwartz 
(2002); Han and Tan (2010); Mishra and Jha (2007); Piqueira and Araujo (2009); Piqueira, 
Vasconcelos, Gabriel et al. (2008); Ren, Yang, Yang et al. (2012); Ren, Yang, Zhu et al. 
(2012); Wierman and Marchette (2004); Yuan and Chen (2008)]. Just like any biological 
virus the computer virus also contains a dormant period. During this period a single 
computer is vulnerable to a computer virus but is not infectious yet. An exposed computer, 
which is an infected computer in dormancy, will not transmit the virus to other computers 
quickly; but it still can be infected. The delay used in some models of computer virus is 
also based on these characteristics. It shows that although the exposed computer does not 
infect other computers, it still has infectivity [Han and Tan (2010); Zhu, Yang and Ren 
(2012)]. The authors proposed SLB and SLBS models in which they observed that the 
computer has latency [Yang, Yang, Zhu et al. (2013); Yang, Yang, Wen et al. (2012)] and 
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in this period of latency it also has infectivity. Multilayer networks can be responsible for 
spreading computer viruses. Examples of computer virus include mobile phone virus, 
which can use 3G, 4G, Wi-Fi, or Bluetooth as a tool to communicate with other networks. 
Founded on the notion of multilayer network, the IBMF (Individual-Based Mean Field) 
was applied to the SLBS model by Zhang [Zhang (2018)]. A model was developed to 
expect the activities of worm on the network. A time-delayed SIQVD worm propagation 
model with variable infection rate was framed. This model can be utilized for internet 
worms [Yao, Fu, Yang et al. (2018)]. A research has been conducted on the susceptible, 
latent, breaking-out, quarantine and susceptible (SLBQRS) computer virus model. Three 
finite difference patterns have been used to solve the epidemic system [Fatima, Ali, Ahmed 
et al. (2018)]. HAM (Homotopy Analysis Method) has been utilized to solve the modified 
nonlinear SIR epidemiological model of computer viruses [Noeiaghdam, Suleman and 
Budak (2018)]. The propagation mechanism of computer viruses is explored by the node-
based models. To examine the dynamic behavior of a computer virus a model named SLIS 
which is node-based has also been proposed which demonstrated that the virus-free 
equilibrium is asymptotically or exponentially stable [Yu, Hu and Zeng (2019)]. 
However, the influence of installing anti-virus software and the period of inactivity was 
not taken into account. The interaction frequency of afresh entered computers on the 
internet from vulnerable status to unprotected status is the same as that of vulnerable status 
entering into infected status. This tabloid works on the stochastic model of computer virus 
namely SEIR model. It describes the vulnerability of susceptible computer and how they 
can get infected by other infected or exposed computers and thus changing to exposed 
status. This model based on fake immunity considers the bilinear incident rate for the latent 
period and infection status. We suppose that computers which freshly join the internet are 
susceptible. The computers interact with exposed computers, let their adequate contact rate 
is denoted by β1 and computers also interact with infected computers, let their adequate 
interaction be denoted by β2  Anti-virus software will compel the segments that newly 
entered the internet to enter the class R(t), and the segments of computer that come in 
contact with exposed and infected computers will be in latent state before becoming 
infectious and enter the class E(t). A threshold factor C∗ is used to determine the dynamic 
characteristics of the suggested model. 
Scientific demonstrating has appeared as an efficient tool for the extraction of 
comprehensive insight about widespread viruses. For inspecting the comparison and 
sensitivity of conjuncture paradigms, the construction and the likely imitations of the model 
are used. These models’ outcomes are expected to predict certain parameters that are 
crucial to the public’s health. The parameters include a biological factor, host and mediator. 
This critical information develops health services which are used by the authority that is 
responsible for the public health policy [Anwar, Goldberg, Fraser et al. (2014)]. Many 
types of research have been done on various computer virus transmission dynamics models 
[Cai and Li (2010); Peng, He, Huang et al. (2013)]. It had already been established that 
non-linear IVPs do not always hold analytical solutions. Runge-Kutta and Euler methods 
cause disorder and fraudulent oscillations for some parameters of the discretisation 
parameters [Zafar, Rehan and Mushtaq (2017); Zafar, Rehan, Mushtaq et al. (2017); Zafar, 
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Rehan and Mushtaq (2017); Bayram, Partal and Buyukoz (2018)]. Such models prove to 
be less advantaged choices, due to uncertainties.  
Stochastic differential equation models play an essential role in many branches of applied 
sciences such as industries, including population dynamics, finance, mechanics, medicine 
and biology as they provide an extra degree of realism compared to their deterministic 
counterpart. [Bayram, Partal and Buyukoz (2018)]. 
Generally, the elasticity of stochastic differential equations (SDEs) is difficult, and the 
solutions of stochastic differential equations do not exist explicitly. Different numerical 
schemes utilized to join the indicated equations in understanding convergence is difficult 
[Mickens (1994, 2005); Cresson and Pierret (2014); Pierret (2015)]. An obvious question 
can be raised on numerical schemes despite the convergence analysis: Are the dynamical 
characteristics of the original system protected by the numerical scheme [Mickens (2005)]? 
In the case of deterministic modelling, Euler and Runge-Kutta- usual pragmatic 
numerical schemes do not protect the dynamical characteristics of the initial system. 
Neither is it protected by stochastic Euler, stochastic Runge-Kutta and Euler Maruyama 
scheme which begs the question: Is there any stochastic numerical method that can 
protect all dynamical properties?  
Our foremost persistence in this paper is to propose a method which we call stochastic non-
standard finite difference scheme (SNSFD). It is built on the model proposed by Mickens 
in the deterministic case [Mickens (1994, 2005)].  
This paper is further divided into the following segments: 
In Section 2, we have given all the basic details of SDEs. Section 3 deals with the invention 
of stochastic models. Section 4 is dedicated to the discussion of deterministic computer 
virus paradigm and the points of equilibrium. In Section 5, we look for the construction of 
stochastic computer virus model. In Section 6, different stochastic numerical schemes’ 
outcomes are compared with deterministic results. Finally, in Section 7, we will reach our 
deduction and provide our forthcoming work. 

2 Preliminaries 
Einstein gave the idea of stochastic differential equations in (1905) [Gard (1988); Karatzas 
and Shreve (1991); Platen (1991); Mickens (2005); Allen (2007); Britton (2010)]. These days 
the stochastic differential equations are catching much attention because of their growth in 
systems of our daily life. One of the reasons for their growth is that the ODEs (Ordinary 
Differential Equations) do not support randomness and stochastic ideas. A stochastic calculus 
distributes a mathematical constituent for the manner of SDEs. Generally, the stochastic 
differential equation with continuous time t  and variable 𝐶𝐶𝑡𝑡 can be written as 

dCt = u(t, Ct)dt + v(t, Ct)dB(t).                                      (1) 

moreover, the integral form is  

C(t) = c + ∫ u(s, Cs)dst
to

+ ∫ v(s, Cs)dBs
t
to

.                         (2) 

The differential Eq. (1) is termed as the Ito stochastic differential equation. Here u(t,  
Tt) and v(t, Tt) are the drift coefficient and diffusion coefficient. The casual variable  at 
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an instant to is utilised as an initial value. An outcome Tt of equation one and two is known 
as a stochastic process.  

3 The building of stochastic models 
Epidemics are usually twisted by non-linear systems pragmatic through patchy noisy data. 
There are two types of epidemic models as deterministic and stochastic models. The 
deterministic epidemic models do not preserve the natural uncertainty of virus dynamics, 
but the idea of stochastic epidemic models preserves all types of the uncertainty of virus 
dynamics. Deterministic epidemic models can be diffused to stochastic epidemic models 
by numerous conducts [Allen, Allen, Arciniega et al. (2008)]. Ito SDEs did the stochastic 
epidemic modelling. The theme of Ito SDEs gives a more convenient way to study the 
stochastic epidemic models. The idea of the Ito stochastic differential equation can be 
pronounced by methods such as parametric and non-parametric perturbations. In the former 
technique, we select a parameter from the model and transform it into the model’s random 
variables. In the latter, we propose the Brownian motion in each differential equation (or 
propose the extra stochasticity parameter). In comparison, the non-parametric perturbation 
is more convenient by Allen [Karatzas and Shreve (1991); Platen (1991); Allen and Burgin 
(2000); Holt, Davis and Leirs (2006); Allen (2007); Britton (2010)]. We will simulate the 
way of non-parametric perturbation into deterministic epidemic models and will check its 
efficacy by using different numerical models on stochastic epidemic models. Here, the idea 
is to examine the relationship between deterministic and stochastic models. 

4 Deterministic computer virus model 
Figures and tables should be inserted in the text of the manuscript. 
Here, we consider the deterministic computer virus model [Peng, He, Huang et al. (2013)]. 
Let at any non-specific time t , the defined variables are S (t)(exemplifies susceptible 
computers’ fraction), E (t) (exemplifies exposed computers’ fraction), I (t)(exemplifies 
infected computers’ fraction) and R (t)(exemplifies recovered computers’ fraction). The 
communication dynamics of computer virus model is illustrated below. 

           
Figure 1: Flow map of computer virus model 
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The parameters of model are pronounced as 𝑝𝑝  (pronounces the susceptible computer 
recovery rate under the influence of antivirus capability), 𝑁𝑁  (pronounces the external 
computers connection rate to the network), 𝛽𝛽1  (pronounces the susceptible computers 
contact rate to the infected computer, which ultimates their transformation to exposed 
status. However the computer has not crashed), 𝛽𝛽2 (pronounces the susceptible computers 
contact rate to exposed computer, which results its transformation to exposed status), µ  
(pronounces the withdrawn computer rate from the network), 𝑘𝑘  (pronounces the exposed 
computer recovery rate in network, under the influence of anti-virus capability) 𝛼𝛼  
(pronounces the exposed computer rate that cannot be treated by anti-virus software and 
crashed), 𝑟𝑟  (pronounces the infected computers recovery rate that are treated). 

The governing equations of the computer virus model as follows: 

 

dS(t)
dt

= (1 − p)N − β1S(t)I(t)− β2S(t)E(t) − pS(t) − µS(t)      
dE(t)
dt

= β1S(t)I(t) + β2S(t)E(t) − kE(t) − αE(t) − µE(t)             
dI(t)
dt

= αE(t) − rI(t) − µI(t)                                                                  
dR(t)
dt

= pS(t) + kE(t) + rI(t)                                                                ⎭
⎪⎪
⎬

⎪⎪
⎫

           (3) 

 N(t) = S(t) + E(t) + I(t) + R(t)               (4) 

with conditions S(t) ≥ 0, E(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0 

The reduced form of computer virus model is 

 

dS(t)
dt

= (1 − p)N − β1S(t)I(t)− β2S(t)E(t)− pS(t) − µS(t)       
dE(t)
dt

= β1S(t)I(t) + β2S(t)E(t)− kE(t) − αE(t) − µE(t)             

 dI(t)
dt

= αE(t) − rI(t) − µI(t)                                                                  

          (5) 

4.1 Steady states of the computer virus model 
Given below are two ways of equilibrium point to categorize the steady states of computer 
virus model (3) as shadows: 

Virus-free equilibrium is V1 = (So, Eo, Io) = �A
a

, 0, ,0� 

Endemic equilibrium is E1 = (So, Eo, Io) = � A
aC∗

, A(C∗−1)
bC∗

, Aα(C∗−1)
bcC∗

� 
where, 
 C∗ = A(β1α+β2c)

abc
, a = p + µ, b = k + α + µ, c = r + µ, A = (1 − p)N 

Note that C∗  is the reproductive number of the computer virus model (5). It has an 
important part in virus dynamics. If  C∗ < 1 then this helps us to control the virus and if 
C∗ > 1 then this will be an alarming situation of virus in the computer population. 
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5 Stochastic computer virus model 
Let C(t) = [S(t), E(t), I(t)]T tformulates the SDEs of computer virus model (1). We want 
to calculate the expectations E∗[∆C] and  E∗[∆C∆CT]. In order to find them the likely 
changes and their related transition probabilities are in the following table (Tab. 1). 

Table 1: Possible changes in the process for the computer virus model (5) 

Transition Probabilities 

 (ΔC)1 = [1 0 0]T  P1 = (1 − p)NΔt  
 (ΔC)2 = [-1 1 0]T  P2 = �β1S(t)I(t) + β2S(t)E(t)�Δt  
 (ΔC)3 = [-1 0 0]T  P3 = (p + µ)S(t)Δt  
 (ΔC)4 = [0 -1 1]T  P4 = αE(t) Δt   
 (ΔC)5 = [0 -1 0]T  P5 = (k + µ)E(t) Δt   
 (ΔC)6 = [0 0 -1]T  P6 = (γ + µ)I(t)Δt  

The expectation of computer virus model (5) is defined as 
 E∗[∆C] = ∑ Pi6

i=1 (∆C)i 

.Expectation =E∗[∆C] = �
(1 − p)N − �β1S(t)I(t) + β2S(t)E(t)� − (p + µ)S(t)
�β1S(t)I(t) + β2S(t)E(t)� − αE(t)− (k + µ)E(t)

αE(t) − (γ + µ)I(t)
� Δt  

The variance of the computer virus model is defined as Var= E∗[∆C∆CT] =
∑ Pi6
i=1 [(∆C)i][(∆C)i]T. 

E∗[∆C ∆CT] = �
W11 W12 W13
W21 W22 W23
W31 W32 W33

� Δt . 

where, 
. W11 = (1 − p)N + �β1S(t)I(t) + β2S(t)E(t)� + (p + µ)S(t), W12 = −�β1S(t)I(t) +
β2S(t)E(t)�, W13 = 0 , W21 = −�β1S(t)I(t) + β2S(t)E(t)�, W22 = �β1S(t)I(t) + β2S(t)E(t)� +
αE(t) + (k + µ)E(t), W23 = −αE(t), . W31 = 0, W32 = −αE(t), W33 =  αE(t) + (r + µ)I(t).  
The SDE satisfy the diffusion processes, therefore, 
dC(t)
dt

= G(C(t), t) + H(C(t), t) dB(t)
dt

. 

If drift = G(C(t), t) = E∗[∆C]
∆t

 and diffusion = H(C(t), t) = �E∗[∆C ∆CT]
∆t

 , then the SDE of 
computer virus model (5) is  
dC(t) = G(C(t), t)dt + H(C(t), t)dB(t).              (6) 
with initial conditions C(0) = Co = [50, 40, 20]T , 0 ≤ t ≤ C  and B(t) is the Brownian 
motion. 
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5.1 Euler maruyama scheme 
The Euler Maruyama scheme [Maruyama (1955)] to determine the numerical result of SDE (6) 
by using the parameters values given in literature [Peng, He, Huang et al. (2013)] (Tab. 2). 

Table 2: Values of Parameter [Peng, He, Huang et al. (2013)] 

 
Parameters 

Values (Days) 
VFE EE 

µ 0.001 0.02 
p 0.7 0.5 

k 0.02 0.4 
Α 0.09 0.6 
r 0.04 0.6 
N 10 100 
β1 0.002 0.7 
β2 0.003 0.8 
𝜎𝜎1 0.9 0.9 
𝜎𝜎2 0.8 0.8 
𝜎𝜎3 0.7 0.7 

The Euler Maruyama scheme of stochastic differential Eq. (6) shadows: 
 Cn+1 = Cn + f(Cn, t)Δt + L(Cn, t)dB(t). 
where ‘Δt ’ is the time step size. The confidence interval holds the solution to stochastic 
differential equations for both equilibriums as presented in the above numerical 
experiments. The solution of deterministic computer virus model for the virus-free 
symmetry V1∗ = (96.15,0,0) and the procreative number C∗ = 0.2858 < 1  helps us to 
control this virus in the computer population. The endemic equilibrium E1∗ =
(1.2573, 48.3787, 0.7803) and the reproductive number C∗ = 76.4791 > 1 shows that 
the virus is endemic in the computer population. The graphical behaviour of Euler 
Maruyama scheme for both virus-free equilibrium and endemic equilibrium at different 
sub-computers as shown in Fig. 2. 
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Figure 2: Comparison in solutions of euler maruyama and deterministic (a) Susceptible 
computers fraction at VFE Point for h=0.1 (b) Susceptible computers fraction at VFE Point 
for h=4 (c) infectious computers fraction at EE Point for h=0.01 (d) infectious computers 
fraction at EE Point for h=0.1 

5.2 Non-parametric perturbation of stochastic computer virus model 
An additional way to establish the stochastic differential equations from the deterministic 
ordinary differential equations is to instigate the non-parametric perturbation in every 
single differential equation of computer virus model (5) as shadows [Raza, Arif and Rafiq 
(2019)]: 

 
dS(t) = �(1 − p)N − β1S(t)I(t)− β2S(t)E(t)− (p + µ)S(t) + σ1dB1(t)S(t)�dt    
dE(t) = �β1S(t)I(t) + β2S(t)E(t)− αE(t) − (k + µ)E(t) + σ2dB2(t)E(t)�dt          
dI(t) = � αE(t) − (γ + µ)I(t) + σ3dB3(t)I(t)�dt                                                             

� (7) 

with initial conditions C(0) = [S(0), E(0), I(0), ]T = [50, 40, 20]T  where σ1,σ2, and σ3 
is casualness of each cubicle of the computer virus model and Bj(t), (j = 1,2,3) are the 
sovereign Brownian gestures. This type of computer virus model does not have a specific 
result because of a non-differentiability span of Brownian gesture. For this, we shall 
introduce the new stochastic numerical methods. 

5.2.1 Stochastic Euler scheme 
The designed form of stochastic Euler scheme for the model (7) as shadows [Raza, Arif 
and Rafiq (2019)]: 

 
 Sn+1(t) = Sn(t) + h[(1 − p)N − β1Sn(t)In(t) − β2Sn(t)En(t) − (p + µ)Sn(t) + σ1dB1(t)Sn(t)]   
En+1 = En(t) + h[β1Sn(t)In(t) + β2Sn(t)En(t) − αEn(t) − (k + µ)En(t) + σ2dB2(t)En(t)]            
In+1 = In(t) + h[αEn(t) − (r − µ)In(t) + σ3dB3(t)In(t)]                                                                            

� 

                              (8) 
We pretend the solutions of the model (8) by using the Matlab database and parameters 
values assumed in Peng et al. [Peng, He, Huang et al. (2013)] (Tab. 2) and h is any time 
step size. 
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      (e)      (f) 

Figure 3: Comparison in solutions of stochastic euler and deterministic (a) Susceptible 
computers fraction at VFE Point for h=0.01 (b) Susceptible computers fraction at VFE 
Point for h=2 (c) Exposed computers fraction at EE Point for h=0.01 (d) Exposed 
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computers fraction at EE Point for h=2 (e) Infectious computers fraction at EE Point for 
h=0.01 (f) Infectious computers fraction at EE Point for h=2 

5.2.2 Stochastic runge-kutta scheme 
The designed form of stochastic runge-kutta scheme for the model (7) as shadows [Raza, 
Arif and Rafiq (2019)]: 
First Stage 
 A1 = h[(1 − p)N − β1Sn(t)In(t) − β2Sn(t)En(t)− (p + µ)Sn(t) + σ1dB1(t)Sn(t)]. 
. B1 = h[β1Sn(t)In(t) + β2Sn(t)En(t) − αEn(t)− (k + µ)En(t) + σ2dB2(t)En(t)]. 
. C1 = h[αEn(t)− (r − µ)In(t) + σ3dB3(t)In(t)]. 
Second Stage 

. A2 = h �(1− p)N − β1(Sn(t) + A1
2
� �In(t) + C1

2
� − β2(Sn(t) + A1

2
)(En(t) + B1

2
) − (p +

µ)(Sn(t) + A1
2

) + σ1dB1(t)(Sn(t) + A1
2

)]. 

.  B2 = h[β1(Sn(t) + A1
2

)(In(t) + C1
2

) + β2(Sn(t)+ A1
2

)(En(t) + B1
2

) − α(En(t) + B1
2

) −

(k + µ)(En(t) + B1
2

) + σ2dB2(t)(En(t) + B1
2

)]. 

. C2 = h �α �En(t) + B1
2
� − (r − µ) �In(t) + C1

2
� + σ3dB3(t) �In(t) + C1

2
��. 

Third Stage 

. A3 = h �(1− p)N − β1(Sn(t) + A2
2
� �In(t) + C2

2
� − β2(Sn(t) + A2

2
)(En(t) + B2

2
) − (p +

µ)(Sn(t) + A2
2

) + σ1dB1(t)(Sn(t) + A2
2

)]   . 

.  B3 = h[β1(Sn(t) + A2
2

)(In(t) + C2
2

) + β2(Sn(t)+ A2
2

)(En(t) + B2
2

) − α(En(t) + B2
2

) −

(k + µ)(En(t) + B2
2

) + σ2dB2(t)(En(t) + B2
2

)]. 

. C3 = h �α �En(t) + B2
2
� − (r − µ) �In(t) + C2

2
� + σ3dB3(t) �In(t) + C2

2
��. 

Fourth Stage 

. A4 = h �(1− p)N − β1(Sn(t) + A3
2
� �In(t) + C3

2
� − β2(Sn(t) + A3

2
)(En(t) + B3

2
) − (p +

µ)(Sn(t) + A3
2

) + σ1dB1(Sn(t) + A3
2

)]. 

.  B4 = h[β1(Sn(t) + A3
2

)(In(t) + C3
2

) + β2(Sn(t)+ A3
2

)(En(t) + B3
2

) − α(En(t) + B3
2

) −

(k + µ)(En(t) + B3
2

) + σ2dB2(En(t) + B3
2

)]. 

. C4 = h �α �En(t) + B3
2
� − (γ + µ) �In(t) + C3

2
� + σ3dB3 �In(t) + C3

2
��. 

Final Stage 
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Sn+1(t) = Sn(t) + 1
6

[A1 + 2A2 + 2A3 + A4]

En+1(t) = En(t) + 1
6

[B1 + 2B2 + 2B3 + B4]

In+1(t) = In(t) + 1
6

[C1 + 2C2 + 2C3 + C4]   ⎭
⎪
⎬

⎪
⎫

             (9) 

We pretend the solutions of the model (9) by using the Matlab database and parameters 
values assumed in Peng et al. [Peng, He, Huang et al. (2013)] (Tab. 2) and h is any time 
step size. 
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     (e)                  (f) 

Figure 4: Comparison in solutions of stochastic runge kutta and deterministic (a) 
Susceptible computers fraction at VFE Point for h=0.01 (b) Susceptible computers fraction 
at VFE Point for h=3 (c) Exposed computers fraction at EE Point for h=0.01 (d) Exposed 
computers fraction at EE Point for h=3 (e) Infectious computers fraction at EE Point for 
h=0.01 (f) Infectious computers fraction at EE Point for h=3 

5.2.3 Stochastic NSFD scheme 
The recommended frame works of SNSFD for the model (7) as shadows [Raza, Arif and 
Rafiq (2019)]: 

 

Sn+1(t) = Sn(t)+φ(h)[(1−p)N+σ1dB1(t)Sn(t)]
�1+ φ(h)β1In(t)+φ(h)β2En(t)+φ(h)(p+µ)�

                    

En+1(t) = En(t)+φ(h)[β1Sn(t)In(t)+β2Sn(t)En(t)+σ2dB2(t)En(t)]
�1+φ(h)α+φ(h)(k+µ)�

 

In+1(t) = In(t)+φ(h)[αEn(t)+σ3dB3(t)In(t)]
�1+φ(h)(r−µ)�

                                   ⎭
⎪
⎬

⎪
⎫

                      (10) 

We pretend the solutions of the model (8) by using the Matlab database and parameters 
values assumed in Peng et al. [Peng, He, Huang et al. (2013)] (Tab. 2) and h is any time 
step size. 

5.2.4 Stability Analysis 
We consider the suggested framework of stochastic NSFD scheme as follows: 

 𝐹𝐹 = 𝑆𝑆(𝑡𝑡)+ℎ𝐴𝐴+ℎσ1dB1(t)𝑆𝑆(𝑡𝑡)
1+ℎ𝛽𝛽1𝐼𝐼(𝑡𝑡)+ℎ𝛽𝛽2𝐸𝐸(𝑡𝑡)+𝑎𝑎ℎ

 

 𝐺𝐺 = 𝐸𝐸(𝑡𝑡)+ℎ𝛽𝛽1𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡)+ℎ𝛽𝛽2𝑆𝑆(𝑡𝑡)𝐸𝐸(𝑡𝑡)+σ2dB2(t)𝐸𝐸(𝑡𝑡)
1+ℎ𝑏𝑏

 

 𝐻𝐻 = 𝐼𝐼+𝛼𝛼ℎ𝐸𝐸(𝑡𝑡)+σ3dB3(t)𝐼𝐼(𝑡𝑡)
1+ℎ𝑐𝑐

 

We define, The Jacobian matrix  as follows: 
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  𝐽𝐽 =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆(𝑡𝑡)

𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸(𝑡𝑡)

𝜕𝜕𝜕𝜕
𝜕𝜕𝐼𝐼(𝑡𝑡)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆(𝑡𝑡)

𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸(𝑡𝑡)

𝜕𝜕𝜕𝜕
𝜕𝜕𝐼𝐼(𝑡𝑡)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆(𝑡𝑡)

𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸(𝑡𝑡)

𝜕𝜕𝜕𝜕
𝜕𝜕𝐼𝐼(𝑡𝑡)⎦

⎥
⎥
⎥
⎤

 

where,  𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆

= ℎσ1dB1(t)
1+ℎ𝛽𝛽1𝐼𝐼+ℎ𝛽𝛽2𝐸𝐸+𝑎𝑎ℎ

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆

= ℎ𝛽𝛽1𝐼𝐼+ℎ𝛽𝛽2𝐸𝐸
1+ℎ𝑏𝑏

 and  𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆

= 0. 

  𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸

= − (𝑆𝑆+ℎ𝐴𝐴)ℎ𝛽𝛽2
(1+ℎ𝛽𝛽1𝐼𝐼+ℎ𝛽𝛽2𝐸𝐸+𝑎𝑎ℎ)2, 

𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸

= 1+ℎ𝛽𝛽2𝑆𝑆
1+ℎ𝑏𝑏

 and 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸

= 𝛼𝛼ℎ
1+ℎ𝑐𝑐

. 

   𝜕𝜕𝜕𝜕
𝜕𝜕𝐼𝐼

= − (𝑆𝑆+ℎ𝐴𝐴)ℎ𝛽𝛽1
(1+ℎ𝛽𝛽1𝐼𝐼+ℎ𝛽𝛽2𝐸𝐸+𝑎𝑎ℎ)2,  

𝜕𝜕𝜕𝜕
𝜕𝜕𝐼𝐼

= ℎ𝛽𝛽1𝑆𝑆
1+ℎ𝑏𝑏

 and 𝜕𝜕𝜕𝜕
𝜕𝜕𝐼𝐼

= 1
1+ℎ𝑐𝑐

 

 𝐽𝐽 =

⎣
⎢
⎢
⎢
⎡

1
1+ℎ𝛽𝛽1𝐼𝐼+ℎ𝛽𝛽2𝐸𝐸+𝑎𝑎ℎ

− (𝑆𝑆+ℎ𝐴𝐴)ℎ𝛽𝛽2
(1+ℎ𝛽𝛽1𝐼𝐼+ℎ𝛽𝛽2𝐸𝐸+𝑎𝑎ℎ)2 − (𝑆𝑆+ℎ𝐴𝐴)ℎ𝛽𝛽1

(1+ℎ𝛽𝛽1𝐼𝐼+ℎ𝛽𝛽2𝐸𝐸+𝑎𝑎ℎ)2
ℎ𝛽𝛽1𝐼𝐼+ℎ𝛽𝛽2𝐸𝐸

1+ℎ𝑏𝑏
1+ℎ𝛽𝛽2𝑆𝑆
1+ℎ𝑏𝑏

ℎ𝛽𝛽1𝑆𝑆
1+ℎ𝑏𝑏

0 𝛼𝛼ℎ
1+ℎ𝑐𝑐

1
1+ℎ𝑐𝑐 ⎦

⎥
⎥
⎥
⎤
 

By using the virus-free equilibrium �𝐴𝐴
𝛼𝛼

, 0,0� we have 

 J �𝐴𝐴
𝛼𝛼

, 0,0�=

⎣
⎢
⎢
⎢
⎢
⎡ 1
1+𝑎𝑎ℎ

−
�𝐴𝐴𝛼𝛼+ℎ𝐴𝐴�ℎ𝛽𝛽2

(1+𝑎𝑎ℎ)2 −
�𝐴𝐴𝛼𝛼+ℎ𝐴𝐴�ℎ𝛽𝛽1

(1+𝑎𝑎ℎ)2

0
1+ℎ𝛽𝛽2𝐴𝐴𝛼𝛼
1+ℎ𝑏𝑏

ℎ𝛽𝛽1𝐴𝐴
𝛼𝛼

1+ℎ𝑏𝑏

0 𝛼𝛼ℎ
1+ℎ𝑐𝑐

1
1+ℎ𝑐𝑐 ⎦

⎥
⎥
⎥
⎥
⎤

 

The eigen value of the Jacobean matrix as follows: 
  
𝜆𝜆1 = 1

1+𝑎𝑎ℎ
< 1,  

Because the stochasticity like as σ1,σ2, and σ3 is small noise disturbance with Brownian 
motions Bj(t), (j = 1,2,3) in each compartment of the computer virus model. So, each 
stochastic term σj . (j = 1,2,3) < a, where the parameter a is the sum of the recovery rate 
of susceptible computer due to the antivirus ability of network and rate of computer 
removed from network [Peng, He, Huang et al. (2013)]. 

 J = �
a+hβ2A+ahσ2dB2

a(1+hb)
hβ1A

a(1+hb)
αh
1+hc

1+hσ3dB3
1+hc

�. 

  Trace of the Jacobean matrix. 
  The determinant of the Jacobean matrix. 

 A = a+hβ2A+ahσ2dB2
a(1+hb)

+ 1+hσ3dB3
1+hc
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 B = (a+hβ2A+ahσ2dB2)(1+hσ3dB3)
a(1+hb)(1+hc) − ah2β1A

a(1+hb)(1+hc) 

Lemma 5.2.5 
For the quadratic equationλ2 – C1λ +  C2 = =  0 , |λi|  <  1, i =  1, 2 ; if and only if 
succeeding conditions are satisfied [Brauer and Chavez (2001)]: 
 (i) 1 +  C1 +  C2 >  0 

 (ii) 1−  C1  + C2 >  0 
 (iii) C2 < 1 

(i). 1 +  C1 +  C2 > 0 
  
∵ 1 > 0 , C1 > 0 , To prove C2 > 0. 

 ⇒ (a+hβ2A+ahσ2dB2)(1+hσ3dB3)
a(1+hb)(1+hc)

− ah2β1A
a(1+hb)(1+hc) >0 

 ⇒ (a + hβ2A + ahσ2dB2)(1 + hσ3dB3) − ah2β1A>0. 

 ⇒ h2(aβ1A − β2Aσ3dB3-aσ2σ3dB2dB3) -h (aσ3dB3 + aσ2dB2 + β2A) < a. 

 ⇒ h2- h (aσ3dB3+aσ2dB2+β2A)
(aβ1A−β2Aσ3dB3-aσ2dB2dB3)

< a
(aβ1A−β2Aσ3dB3-aσ2σ3dB2dB3)

 

 ⇒ h2- 2h (aσ3dB3+aσ2dB2+β2A)
2(aβ1A−β2Aσ3dB3-aσ2dB2dB3)

+ ( (aσ3dB3+aσ2dB2+β2A)
2(aβ1A−β2Aσ3dB3-aσ2dB2dB3)

)2 <

a
(aβ1A−β2Aσ3dB3-aσ2σ3dB2dB3)

+ ( (aσ3dB3+aσ2dB2+β2A)
2(aβ1A−β2Aσ3dB3-aσ2dB2dB3)

)2 

 ⇒ ( (aσ3dB3+aσ2dB2+β2A)
2(aβ1A−β2Aσ3dB3-aσ2dB2dB3)

− h)2 < ( (aσ3dB3+aσ2dB2+β2A)
2(aβ1A−β2Aσ3dB3-aσ2dB2dB3)

)2 +

a
(aβ1A−β2Aσ3dB3-aσ2σ3dB2dB3)

 

where “h” is any step size and always positive. 

(ii). 1 −  C1  + C2 > 0 

 ⇒ 1 − a+hβ2A+ahσ2dB2
a(1+hb)

− 1+hσ3dB3
(1+hc)

+ (a+hβ2A+ahσ2dB2)(1+hσ3dB3)−ah2Aβ1
a(1+hb)(1+hc)

> 0 

 ⇒ a(1 + hb)(1 + hc) − (1 + hc)(a + hβ2A + ahσ2dB2) − a(1 + hσ3dB3)(1 + hb) +
 h + (1 + hσ3dB3)(a + hβ2A + ahσ2dB2) > 0 
 ⇒ h2(abc + β2Aσ3dB3 + aσ2σ3dB2dB3 − cAβ2 − acσ2dB2] > 0 
 ⇒ h2 > 0 
 ⇒ h > 0 
where “h” is any step size and always positive. 

(iii). C2 < 1 
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 ⇒ (a+hβ2A+ahσ2dB2)(1+hσ3dB3)
a(1+hb)(1+hc)

− ah2β1A
a(1+hb)(1+hc)

< 1 

 ⇒ (a + hβ2A + ahσ2dB2)(1 + hσ3dB3) − ah2β1A < a(1 + hb)(1 + hc) 
 ⇒ h2(abc + aβ1A − β2Aσ2dB2−aσ2σ3 dB2dB3 + h(ab + ac − β2A − aσ2 dB2 −
aσ3 dB3) > 0 

 ⇒ h2 + 2 h(ab+ac−β2A−aσ2dB2−aσ3 dB3)
2(abc+aβ1A−β2Aσ2dB2−aσ2σ3 dB2dB3)

+ ( (ab+ac−β2A−aσ2dB2−aσ3 dB3)
2(abc+aβ1A−β2Aσ2dB2−aσ2σ3 dB2dB3)

)2 >

+( (ab+ac−β2A−aσ2dB2−aσ3 dB3)
2(abc+aβ1A−β2Aσ2dB2−aσ2σ3 dB2dB3)

)2 

 ⇒ � (ab+ac−β2A−aσ2dB2−aσ3 dB3)
2(abc+aβ1A−β2Aσ2dB2−aσ2σ3 dB2dB3)

+ h�
2

> � (ab+ac−β2A−aσ2dB2−aσ3 dB3)
2(abc+aβ1A−β2Aσ2dB2−aσ2σ3 dB2dB3)

�
2
 

 ⇒ (ab+ac−β2A−aσ2dB2−aσ3 dB3)
2(abc+aβ1A−β2Aσ2dB2−aσ2σ3 dB2dB3)

+ h > (ab+ac−β2A−aσ2dB2−aσ3 dB3)
2(abc+aβ1A−β2Aσ2dB2−aσ2σ3 dB2dB3)

 

 ⇒ h > 0. 
This condition is always valid [Peng, He, Huang et al. (2013)]. So, the suggested framework 
of stochastic nonstandard finite difference method is locally asymptotical stable (LAS). 
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Figure 5: Comparison in solutions of stochastic NSFD and deterministic (a) Susceptible 
computers fraction at VFE Point for h=0.1 (b) Susceptible computers fraction at VFE Point 
for h=100 (c) Exposed computers fraction at EE Point for h=0.1 (d) Exposed computers 
fraction at EE Point for h=100 (e) Infectious computers fraction at EE Point for h=0.1 (f) 
Infectious computers fraction at EE Point for h=100 

6 Outcomes and analysis 
The Euler Maruyama scheme meets the factual steady states of the computer virus model 
whereas Fig. 2, also illustrates that a deterministic outcome is the mean of Euler Maruyama 
outcome for h=0.01 at different sub-computer fractions respectively. In Fig. 2, if we enlarge 
the time step size, the Euler Maryuama scheme is unable to keep boundedness and 
positivity for virus free equilibrium and endemic equilibrium at different sub-computer 
fractions. Consequently, for any time step size, Euler Maryuama scheme fails to work. 
Fig. 3 depicts that the stochastic Euler scheme converges the factual steady states 
equilibrium whereas the mean of the stochastic Euler solution is the deterministic outcome 
for discretization h=0.01 at different sub-computer fractions. In Fig. 3, if we enlarge time 
step size, the stochastic Euler scheme is unable to keep positivity and boundedness for 
virus free and endemic equilibrium at different sub-computer fractions as well. Ultimately 
for obtaining the solutions of stochastic computer virus model the stochastic Euler scheme 
is not a reliable method. 
Fig. 4 represents that the stochastic Runge-Kutta scheme converges the virus-free 
equilibrium and endemic equilibrium whereas the mean of the stochastic Runge-Kutta 
solution is the deterministic outcome for discretization h=0.01 at different sub-computer 
fractions respectively. In Fig. 4, if we enlarge the time step size, the stochastic Runge-Kutta 
scheme is unable to keep boundedness and positivity for virus free equilibrium and also for 
endemic equilibrium at different sub-computer fractions. Finally, the stochastic Runge-
Kutta scheme fails for any time step size. Hence aforesaid stochastic schemes do not 
support all dynamical properties [Mickens (1994, 2005)]. 
In Fig. 5, we have concluded that the stochastic NSFD scheme converges both virus free 
equilibrium and endemic equilibrium whereas the mean of stochastic NSFD solution is the 
deterministic outcome for any discretization like h=0.1 and h=100 at different sub-
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computer fractions respectively. Hence the stochastic NSFD scheme supports all 
dynamical properties like dynamical consistency, boundedness and positivity characterised 
by Mickens in a stochastic milieu. The projected framework stochastic NSFD scheme has 
successfully worked for any time step size. 

7 Conclusion and future framework 
For comprehending computer virus dynamics incorporating protection against virus, the 
stochastic epidemic model is a more beneficial approach in contrast to the deterministic 
epidemic model in terms of numerical analysis. The Euler Maruyama scheme, stochastic 
Euler scheme and stochastic Runge-Kutta scheme converge right equilibrium points, but 
for very little time step size. Those above stochastic numerical schemes diverge and lose 
dynamical properties. However, as we increase the time, these schemes diverge and fail to 
obey the above-mentioned dynamical properties. The suggested structure of (SNSFD) of 
computer virus model performs for any time step size defined by Mickens [Mickens (1994, 
2005)] in the stochastic framework. This framework (SNSFD) is appropriate for all non-
linear and complex stochastic epidemic models. The deterministic ODEs outcomes and the 
stochastic outcomes are quite close to each other. The stochastic model's study shows a 
crucial part of virus dynamics. We have detected that stochastic models are more practical 
rather than deterministic epidemic models. For forthcoming work, we shall extend this 
stochastic analysis on all types of complicated computer virus models. The proposed 
(SNSFD) can be executed to the complicated stochastic diffusion and stochastic delay 
epidemic models. Moreover, in the extension of fractional order dynamical system [Jajarmi 
and Baleanu (2018); Jajarmi, Baleanu, Bonyah et al. (2018)], the proposed numerical 
analysis of this work might also be used. We plan to construct an authentic numerical 
scheme for the fractional order stochastic epidemic model for different viruses. 
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