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Abstract: Detection of cracks is a great concern in production and operation processes of 
graphene based devices to ensure uniform quality. Here, we show a detection method for 
graphene cracks by electromagnetic induction. The time varying magnetic field leads to 
induced voltage signals on graphene, and the signals are detected by a voltmeter. The 
measured level of induced voltage is correlated with the number of cracks in graphene 
positively. The correlation is attributed to the increasing inductive characteristic of defective 
graphene, and it is verified by electromagnetic simulation and radio frequency analysis. 
Furthermore, we demonstrate that the induced voltage signal is insensitive to the doping 
level of graphene. Our work can potentially lead to the development of a high-throughput 
and reliable crack inspection technique for mass production of graphene applications. 
 
Keywords: Graphene, crack detection, inductance, electromagnetic induction, insensitive 
to doping. 

1 Introduction 
Defect is a significant obstacle to the use of chemical vapor deposited (CVD) graphene 
[Bae, Kim, Lee et al. (2010); Li, Cai, An et al. (2009); Reina, Jia, Ho et al. (2009)] in 
electronic devices. The superior characteristics of graphene such as high carrier mobility 
[Novoselov, Geim, Morozov et al. (2005)], mechanical strength [Lee, Wei, Kysar et al. 
(2008)] and thermal conductivity [Balandin, Ghosh, Bao et al. (2008)] are severely 
degraded by the presence of defects [Yazyev and Louie (2010); Zhu, Low, Perebeinos et al. 
(2012); Hwangbo, Lee, Kim et al. (2014); Zhang, Ma, Fan et al. (2014); Boutilier, Sun, 
O’Hern et al. (2014)]. The grain growth during the CVD process causes defects such as 
grain boundary, pinhole and vacancy at the atomic scale [Huang, Ruiz-Vargas, van der 
Zande et al. (2011); Kim, Lee, Regan et al. (2011); Duong, Han, Lee et al. (2012)]. The 
cracks, organic residues and wrinkles are frequently formed after the transfer of graphene 
[Kang, Shin, Bae et al. (2012)]. Among the various types of defects, crack is the one 
dimensional line defect ranges from few microns to few millimeters, but it becomes critical 
issues in two dimensional materials. The cracks in graphene block the electron transport 
increasing the electrical resistance. Moreover, the cracked graphene is unable to absorb 
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enough strain energy, therefore, the mechanical strength is reduced. These issues 
substantially lower the performance and stability of soft electronics [Kim, Zhao, Jang et al. 
(2009); Lee, Kim, Jang et al. (2011)] which undergo severe mechanical deformation. 
Accordingly, after the transfer of graphene we should evaluate graphene defects, especially 
cracks, to ensure the uniform quality during the mass production of graphene applications. 
Though there are many ways to inspect graphene defects, a high-throughput and doping 
insensitive crack inspection method is not demonstrated yet. The visualization of 
graphene defects was developed in various ways, because the optical detection of the 
defects is nearly impossible. By oxidation of metal substrate [Duong, Han, Lee et al. 
(2012); Yoon, Mun, Cho et al. (2014)] or reduction of metal ions [Ho, Liou, Chuang et al. 
(2015); Yoon, Kim, Choi et al. (2016); Park, Kim, Yoon et al. (2018)], defect sites are 
visible with metal oxides or metals. However, these are destructive methods by 
introduction of foreign materials, moreover the additional image conversion is required 
for the quantitative evaluation of defects. The Raman spectroscopy is also being used to 
evaluate graphene defects [Ferrari, Meyer, Scardaci et al. (2006); Cancado, Jorio, Ferreira 
et al. (2011)]. The atomic defects can be analyzed by the comparison of D and 2D peaks 
in the spectrum. However, the results give only limited information on the atomic-scale 
defects, and the micro-scale cracks should be inspected by the time-consuming area 
mapping. The easiest way for the evaluation of graphene defects is to measure the 
conductance of graphene [De and Coleman (2010)], because it reflects the degree of film 
integrity. In addition, the method for mapping the conductance of large-area graphene has 
been developed by using terahertz spectroscopy [Tomaino, Jameson, Kevek et al. (2011); 
Buron, Petersen, Boggild et al. (2012)]. Nevertheless, the testing is less reliable because 
of the conductivity change in graphene by chemical doping [Schedin, Geim, Morozov et 
al. (2007); Liu, Liu and Zhe (2011)]. 
In this work, we develop a high-throughput and reliable inspection method for graphene 
cracks based on electromagnetic induction. The number of cracks in graphene was 
evaluated by detecting induced voltage signals caused by time varying magnetic field. A 
defective graphene had a higher induced voltage peak than a non-defective one owing to 
increasing of self-inductance by introduced cracks. The self-inductance increasing was 
verified by electromagnetic simulation and radio frequency (RF) analysis. Moreover, we 
further demonstrated that the induced voltage signal was decoupled from chemical 
doping level of graphene. 

2 Experimental details 
Graphene specimen preparation: Synthesized graphene on Cu foil was attached to a 
thermal release tape, and the Cu foil was etched. The graphene on the thermal release tape 
was detached from the tape by heat treatment, and it was transferred onto a target substrate. 
The transferred graphene on a SiO2/Si substrate was characterized by Raman spectroscopy 
to ensure the graphene layer is monolayer [Yoon, Shin, Kim et al. (2012)] (see Appendix A. 
Raman analysis of synthesized graphene). A 100-μm-thick PET substrate was cleaned in 
acetone, isopropyl alcohol, deionized water each for 5 min in an ultrasonic bath to remove 
contaminants on the surface, before transferring the graphene film.  
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Crack formation methods: Two crack formation methods, scratching and stretching, 
were exploited to investigate induced voltage signal with respect to the degree of damage. 
First, scratching cracks were formed with a cutting plotter (Jaguar IV, GCC Co., USA) on 
the center of the square and the strip types graphene-PET specimens, and the number of 
cracks was controlled from one to nine. The geometry and the dimension of the 
scratching cracks are represented in Appendix B. Second, stretching cracks were 
introduced by applying tensile strain on the strip type graphene-PET specimen with a 
high precision micromechanical test system (delaminator; DTS Company, Menlo Park, 
CA), and the amount of strain was controlled from 2.5% to 7.5%. 
Graphene healing: Silver nitrate (AgNO3) aqueous solution was prepared with a 10-3 M 
concentration for electrochemical deposition of silver ions on defect sites of graphene. 
The 7.5% strained graphene was immersed in the prepared solution and -2.5 V voltage 
was applied for 5 minutes. 

3 Results and discussion 
The inspection of graphene cracks was performed as follows (Fig. 1). First, a graphene 
specimen was placed on an electromagnet, and both ends of the specimen were contacted 
with electrical cables. The electromagnet and the electrical cables, which were contacted 
with graphene, were conneted with a signal generator and a voltmeter (Keithley 2000 
Multimeter, Keithley Instruments), respectively. Second, the time-varying magnetic field 
was introduced by the electromagnet. The applied time-varying magnetic field generated 
electric current flow in the graphene specimen, and corresponding induced voltage was 
also generated. Third, the induced voltage signal in graphene was detected by the 
voltmeter. The number of cracks in graphene was evaluated by comparing induced 
voltage signals. 

 

Figure 1: Schematic of the inspection method for graphene cracks by electromagnetic 
induction 

Graphene specimens were prepared by integrating monolayer graphene on a polyethylene 
terephthalate (PET) substrate by using the conventional lamination-based transfer [Bae, 
Kim, Lee et al. (2010)] (see Experimental details section for graphene specimen 
preparation). We categorized the graphene specimens as two types namely, strip type and 
square type, because the inductance is dependent on geometry of specimens. The strip 
type specimen has 3×20 mm size (width and length respectively), and the square type 
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specimen has 10×10 mm size. Fig. 2(a) shows two types of specimen with respect to the 
number of cracks which were introduced by scratching with the cutting plotter (see 
Experimental details section for crack formation methods). 
The prepared graphene specimens were placed on the electromagnet, and the time 
varying magnetic field was introduced by input of the signal generator. In this experiment, 
the electromagnet had 100-mm diameter and 60-mm length scale, but the size of 
electromagnet can be scaled up or down. Fig. 2(b) represents the input voltage profile of 
the signal generator which was controlled by switching the power. The applied magnetic 
field was rapidly changed when the switch was turned on or off. The rapidly changing 
magnetic field finally leads to induced voltage on the graphene specimen. Fig. 2(c) shows 
the measured induced voltage profiles of a pristine and a defective graphene. This result 
represents that the defective graphene has higher induced voltage peaks than the pristine 
graphene. Among the obtained peak values in each time varying magnetic field, we 
selected the highest peak value to evaluate the most accurate information for graphene 
cracks.

 
Figure 2: Prepared graphene specimens and voltage profiles. (a) The prepared strip and 
square typed graphene specimens with respect to the number of cracks. (b) The input 
voltage profile of the signal generator. The applied magnetic field is varied when the 
switch is turned on or off. (c) The detected output voltage profile by the voltmeter. A 
defective graphene has higher peak values of induced voltage than a pristine graphene 

The peak induced voltage signals were characterized with respect to the number of cracks 
in graphene (Fig. 3(a)). The results indicate that the peak induced voltage is correlated 
with the number of cracks positively, because the crack increases self-inductance of 
graphene which depends on geometrical shape [Steinberg, Scheffler and Dressel (2010); 
Greenhouse (1974)]. Moreover, specimen length significantly influences on inductance 
of a thin conductive strip [Steinberg, Scheffler and Dressel (2010)]. For this reason, the 
strip type graphene specimens had a higher peak induced voltage than the square type 
specimens, over the whole range of the number of cracks. 
For a more thorough inspection, we introduced micro-scale and large number of cracks 
by stretching strip type graphene-PET specimens (see Experimental details section for 
crack formation methods). The peak induced voltage which was measured on each 
strained specimen was plotted in Fig. 3(b). The peak induced voltage of the pristine 
specimen was 0.122±0.019 mV, while that of the 7.5% strained specimen was 
1.420±0.021 mV. It means that the applied strain on graphene produced numerous cracks, 
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and it was reflected to the induced voltage. Furthermore, we performed selective defect 
healing of strained graphene by the electrochemical reduction of silver [Yoon, Kim, Choi 
et al. (2016)] (see Experimental Details section for graphene healing). The 7.5% strained 
graphene has the high induced voltage peak before healing. Whereas, the induced voltage 
peak decreased dramatically after healing, because defects in graphene were successfully 
closed and re-connected by silver ions (Fig. 3(c)). From these results, it was clarified that 
the induced voltage represents the degree of structural defects. 

 
Figure 3: Correlation between graphene cracks and detected induced voltage signals. (a) 
Peak induced voltage of the strip type (red line) and the square type (blue line) graphene 
specimens with respect to the number of cracks. (b) Peak induced voltage of the strained 
graphene specimens. (c) Schematics and peak induced voltage of a strained and a healed 
graphene. The induced voltage signal decreases dramatically after selective healing of cracks 

The induced voltage signal differences between a pristine and a defective graphene 
results from the self-inductance of graphene which depends on geometrical shape. To 
verify inductance variation of graphene, we performed finite element method (FEM) 
simulation and RF analysis. The scratched cracks, which were shown in Fig. 2(a), were 
modeled by commercial FEM software, COMSOL Multiphysics®. The air boundary was 
defined to confine magnetically permeable space, and static current was applied to 
calculate the inductance in cracked geometry. The calculated self-inductance is plotted in 
Fig. 4(a). In both specimen types, the graphene has higher inductance as the number of 
cracks increases. The obtained results indicate that graphene is electrically disconnected 
around cracks, and the cracks increase the inductance of films. 
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It has been observed that the scratched graphene has higher inductance than the non-
defective graphene. Furthermore, the increased inductance on strained graphene was also 
verified by analyzing the RF response. In RF electronics, electrical properties such as 
inductance, capacitance and resistance are expressed by the scattering parameters. 
Especially, inductors in electrical circuits are characterized by the decrease in S21 
parameters as frequency increases. We obtained the scattering parameters of the pristine 
and the strained graphene specimens using a network analyzer (Fig. 4(b)). In results, the 
graphs in S21 parameters of the 5% strained graphene specimen begin approximately 15 
dB below one with the pristine specimen. Then, the S21 parameter of the strained 
specimen decreased more with increasing frequencies than that of the pristine specimen. 
The results show that the influence of cracks on inductance increasing of graphene, and 
correspond to the aforementioned experimental and FEM results. 

 
Figure 4: Role of crack on inductance of graphene. (a) Self-inductance of strip type (red 
line) and square type (blue line) graphene specimens with respect to the number of cracks, 
which is obtained by electromagnetic simulation. (b) Frequency response of the pristine 
and the strained graphene specimens. S12 parameters show that the 5% strained graphene 
has higher inductance than the pristine graphene 

The measurement of electrical resistance is the easiest way to evaluate quality of 
graphene, however it has a critical drawback. The resistance is influenced by both 
geometric shape and electrical conductivity. The geometric shape is affected by the 
dimension of film and cracks, while the electrical conductivity of graphene is affected by 
surrounding environment such as chemical dopants, temperature, and humidity [Liu, Liu 
and Zhe (2011); Dan, Lu, Kybert et al. (2009)]. Therefore, the resistance measurement 
cannot ensure the reliable evaluation of graphene cracks. In this respect, the 
electromagnetic induction method ensures much reliable crack evaluation, because the 
inductance strongly depends on geometrical shape, and is independent to the electrical 
conductivity change [Steinberg, Scheffler and Dressel (2010)]. 
To investigate the influence of chemical doping on the electromagnetic induction method, 
we characterized both induced voltage and electrical resistance with respect to chemical 
doping level of graphene. The initially p-doped square type graphene specimens were used 
for experiments, and p-type and n-type dopants were introduced to graphene, respectively 
(Fig. 5(a)). For the p-type doping, graphene was immersed in a 0.05 M gold chloride 
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(AuCl3) aqueous solution for one minute. The change of induced voltage and resistance are 
plotted in Fig. 5(b). It was shown that the electrical resistance was significantly reduced by 
the p-type dopants on graphene, while the induced voltage was hardly changed. Moreover, 
n-type doping was induced on graphene by the electrolysis in DI water. Graphene was 
connected to cathode and -1 V was applied for 10 minutes, and the adsorption of hydrogen 
ions induced n-type doping on graphene [Ang, Chen, Wee et al. (2008)]. As shown in Fig. 
5(c), the change of induced voltage was in the range of standard deviation while the 
resistance increased approximately 30%. These results indicate that the induced voltage 
signals are insensitive to the change of electrical conductivity. 

 
Figure 5: Characteristic of the electromagnetic induction method, insensitive to chemical 
doping level of graphene. (a) Schematic of doping induced Fermi level shifts of initially 
p-doped graphene. (b), (c) Peak induced voltage (blue points) and electrical resistance 
(red points) variations, when the p-type dopant (b) and the n-type dopant (c) are 
introduced to the initially p-doped graphene 

4 Conclusion 
In conclusion, the inspection method for graphene cracks was developed by the 
electromagnetic induction. The induced voltage, which represents the degree of structural 
defects, was generated on graphene by applying time-varying magnetic field, and 
detected by a voltmeter. The experimental results indicated that a defective graphene had 
a higher induced voltage peak than a pristine graphene due to inductance increasing 
which was verified by electromagnetic simulation and RF analysis. The obtained induced 
voltage was decoupled from the electrical conductivity change, therefore, reliable 
inspection of cracks was allowable. We expect that the proposed electromagnetic 
induction method would be utilized for a high-throughput inspection technology for mass 
production and operation of graphene based devices. 
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Appendix 
A. Raman analysis of synthesized graphene 
The Raman spectra of a transferred graphene on a SiO2/Si substrate were analyzed to 
investigate the quality of the graphene film (Fig. (A1)). The arbitrary three points were 
characterized by irradiating the sample with a 514 nm laser beam. The inset photograph 
in the graph shows the transferred graphene on the substrate and the position of analyzed 
points. The G (~1580 cm-1) and 2D (~2700 cm-1) peak ratio represents that the 
synthesized graphene was a monolayer. Moreover, the small D peaks (~1350 cm-1) 
indicate that the high-quality graphene was transferred on the target substrate. 

 

Figure A1: Raman spectra of a transferred graphene on a SiO2/Si substrate 

B. Dimension of scratching crack 
The dimension of cracks which were introduced by scratching graphene-PET surface 
with cutting plotter was characterized by optical microscopy (Fig. (A2)). The length of 
cracks was determined with 1.5 mm and 5 mm for strip type and square type specimens 
respectively. The distance between cracks was controlled with 1 mm for both specimens, 
and each crack had 130 μm width. 

 

Figure A2: Dimension of scratching cracks; (a) length of cracks, (b) distance between 
cracks, and (c) width of a crack  
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