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Computational Modeling of Dual-Phase Ceramics with
Finsler-Geometric Phase Field Mechanics

John D. Clayton1, ∗

Abstract: A theory invoking concepts from differential geometry of generalized Finsler 
space in conjunction with diffuse interface modeling is described and implemented in finite 
element (FE) simulations of dual-phase polycrystalline ceramic microstructures. Order 
parameters accounting for fracture and other structural transformations, notably partial 
dislocation slip, twinning, or phase changes, are dimensionless entries of an internal 
state vector of generalized pseudo-Finsler space. Ceramics investigated in computations 
are a boron carbide-titanium diboride (B4C-TiB2) composite and a diamond-silicon 
carbide (C-SiC) composite. Deformation mechanisms-in addition to elasticity and 
cleavage fracture in grains of any phase-include restricted dislocation glide (TiB2 phase), 
deformation twinning (B4C and β-SiC phases), and stress-induced amorphization (B4C 
phase). The metric tensor of generalized Finsler space is scaled conformally according 
to dilatation induced by cavitation or other fracture modes and densification induced 
by phase changes. Simulations of pure shear consider various morphologies and lattice 
orientations. Effects of microstructure on overall strength of each composite are reported. 
In B4C-TiB2, minor improvements in shear strength and ductility are observed with 
an increase in the second phase from 10 to 18% by volume, suggesting that residual 
stresses or larger-scale crack inhibition may be responsible for toughness gains reported 
experimentally. In diamond-SiC, a composite consisting of diamond crystals encapsulated 
in a nano-crystalline SiC matrix shows improved strength and ductility relative to a 
two-phase composite with isolated bulk SiC grains.

Keywords: Micromechanics, ceramic composites, Finsler space, differential geometry, 
phase field, finite elements.

1 Introduction
Polycrystalline ceramics are solid materials that generally are mechanically stiff yet prone 
to brittle fracture. Heterogeneous composite ceramics consisting of grains of different 
chemical compositions or phases have been engineered to provide increased strength, 
ductility, and toughness relative to monolithic ceramics.
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The current work focuses on two such ceramic composites, each consisting of two distinct
phases. One such dual-phase material contains mostly crystalline boron carbide (B4C,
trigonal structure) interspersed with secondary grains of crystalline titanium diboride (TiB2,
hexagonal structure), wherein grain sizes of both phases are comparable. Versions of
this material system are discussed in sigl et al. [Sigl and Kleebe (1995); White and
Dickey (2011)]. Single-phase boron carbide is prone to brittle failure by cleavage, and
at high stresses, may undergo a phase change to an amorphous solid as well as deform
by deformation twinning [Chen, McCauley and Hemker (2003); Clayton (2012); An and
Goddard (2015)]. Titanium diboride may impart higher fracture resistance by cleavage
crack deflection or bridging, and some ductililty may be afforded by dislocation motion that
has been suggested from shock experiments [Vanderwalker and Croft (1988)]. Compressive
residual stresses induced in B4C from TiB2 by thermal processing may also improve
performance.

The second dual-phase material studied is comprised of diamond crystals (C, cubic
structure) either interspersed with or encapsulated by silicon carbide micro- or nano-crystals
(β-SiC, cubic structure). Though the hardest of natural materials, diamond is prone to
cleavage fracture, and incorporation of a softer SiC phase appears to improve overall
toughness [Zhao, Qian, Daemen et al. (2004)]. As with the other composite, possible
reasons include crack deflection at grain and phase boundaries as well as compressive
residual stresses in grains of the stiffer phase. Twinning is also prevalent in β-SiC as a
result of its low stacking fault energy [Van Torne (1966); Ning and Ye (1990)].

This paper invokes, in FE simulations, a theory combining aspects of phase field mechanics
and differential geometry on generalized Finsler spaces. Perhaps the most comprehensive
description of this model, including versions accounting for multiple inelastic deformation
mechanisms, finite strain kinematics, and nonlinear elasticity, is given in Clayton et al.
[Clayton and Knap (2018a)]. A pseudo-Finsler metric tensor is assigned that depends
on a vector of internal state variables, whose entries when rendered dimensionless upon
division by a regularization length, are interpreted as order parameters in the context of
phase field theory. Dependence of the metric on internal state permits changes in lengths,
areas, and volumes of material in conjunction with microstructure evolution. For example,
voids may lead to dilatation, or structure collapse in B4C may lead to densification [Clayton
(2012); An and Goddard (2015)]. Incorporation of this metric tensor in the theory leads
to a rescaled energy density and augmented balance laws that enable additional physics
(e.g., pressure-shear coupling) without prescription of ad-hoc kinetic equations. The phase
field-related components of the model are based on theory in Clayton et al. [Clayton
and Knap (2011, 2014, 2016)], while the Finsler-geometric concepts entering the theory
follow from Clayton [Clayton (2017b,c,a, 2018a)]. Potential advantages of the present
computational implementation over other methods [Tomar, Zhai and Zhou (2004); Clayton
(2005, 2009); Bammann and Solanki (2010)] for modeling inelasticity and fracture include
the following: intrinsic regularization by gradient-dependent energy, little if any calibration
of parameters, and preservation of mesh topology, e.g., no element deletion or separation
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along element boundaries.

A recent study by Clayton et al. [Clayton, Leavy and Knap (2019)] invoked a simpler
version of the present theory towards study of the same two ceramic composites. That
work invoked pure phase field mechanics [Clayton and Knap (2016)] without incorporation
of the pseudo-Finsler metric. Furthermore, uniaxial compression loading was simulated
in Clayton et al. [Clayton, Leavy and Knap (2019)], while pure shear (i.e., biaxial
tension-compression) is simulated in the present study. Shear strength is of high interest
as it is thought to be an indicator of resistance to ballistic penetration in armor ceramics
[Bourne (2008); Clayton (2015, 2016)].

Remaining sections of this work are organized as follows. The continuum theory and
aspects of its computer implementation are reviewed in §2. Polycrystalline simulations,
with results from shear loading, on B4C-TiB2 are given in §3. Parallel treatment of
diamond-SiC is contained in §4, followed by conclusions.

2 Finsler-geometric phase field theory

The continuum theory invoked in subsequent simulations is tersely summarized here. The
present approach extends that of Clayton et al. [Clayton, Leavy and Knap (2019)] to include
a generalized pseudo-Finsler metric tensor [Clayton (2017c)], rather than the Euclidean
(and more specifically, rectangular Cartesian) metric invoked in Clayton et al. [Clayton,
Leavy and Knap (2019)]. The present theory implements linearized kinematics [Clayton
and Knap (2015)] and quasi-static balance laws following from a variational approach
[Clayton (2017b)]. Geometrically nonlinear and dynamic models are discussed elsewhere
[Clayton (2017a); Clayton and Knap (2018a)].

2.1 Internal state

A vector D of internal state variables coincides with a director vector of Finsler geometry,
though here this state vector need not be of unit length. Let X with Cartesian components
XK denote the reference position vector of a material particle. In a preferred coordinate
system,

D(X) =

D1(X)
D2(X)
D3(X)

 = l

ξ(X)
η(X)

0

 . (1)

Entries of D normalized by regularization length l are order parameters ξ and η. Parameter
ξ ∈ [0, 1] depicts fracture:

ξ(X) = 0∀X ∈ undamaged material,

ξ(X) ∈ (0, 1)∀X ∈ partially degraded material,

ξ(X) = 1∀X fully failed material.

(2)
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Other structure changes are captured by η ∈ [0, 1]:
η(X) = 0∀X ∈ parent elastic crystal,

η(X) ∈ (0, 1)∀X ∈ structural boundary zone,

η(X) = 1∀X ∈ structurally transformed state.

(3)

For ceramics considered herein, η > 0 can track shearing by slip or twinning dislocations
and monitor localized slip in amorphous bands. It also can represent density variations due
to phase changes.

Metric tensor G depends potentially on coordinates X as well as internal state D.
Homogeneity is not required in the present generalized pseudo-Finsler theory [Bejancu
(1990)], in contrast to strictly Finsler theories wherein only the direction of D is important.
Though more general representations are admissible [Clayton (2017c)], the current
model invokes Weyl-type isotropic scaling of the Cartesian metric 1, i.e., a conformal
transformation [Clayton (2017b); Clayton and Knap (2018a)]:
G(ξ, η) = exp

[
1
3(mξ2 + kη2)

]
1. (4)

Explicit dependence on X is not necessary for rectangular coordinates. Constants m and k
quantify volume changes associated with respective fracture/cavitation and phase changes.
The determinant is G = det G = exp(mξ2 + kη2).

2.2 Kinematics

Displacement is u = u(X). Let∇(·) denote the covariant derivative with respect to X, here
a partial coordinate derivative. Displacement gradient is decomposed as
∇u(X) = βββE(X) + βββD[ξ(X), η(X)]. (5)
Elastic distortion is βββE(X). The state-dependent contribution from changes in
microstructure is [Clayton and Knap (2018a)]
βββD(ξ, η) = xξφξ(ξ)1 + xηφη(η)M ⊗M + γ0φ0(η)S⊗M. (6)
The first term on the right accounts for dilatation from cavitation or cracks, the second
for compression or extension normal to a material plane from phase changes, the third for
inelastic shearing. Vector M denotes the plane of structural transformations, slip, twinning,
and/or localized shear, where the orthogonal shear direction is S. Total strain is εεε, and elastic
strain is εεεE :
εεε = 1

2 [∇u + (∇u)T], εεεE = 1
2 [βββE + (βββE)T]. (7)

Polynomial interpolation functions in (6) are [Clayton, Leavy and Knap (2019)]
φξ(ξ) = 4ξ3 − 3ξ4, φη(η) = 4η3 − 3η4, φ0(η) = 6η2 − 8η3 + 3η4. (8)
Damage deformation is idealized as isotropic with xξ = 1

3 [exp(m2 ) − 1]. Uniaxial strain
normal to the basal plane commensurate with the phase change in B4C [Clayton (2012,
2017c)] is quantified by xη = exp(k2 ) − 1. Twinning on habit plane M is a simple shear
whose maximum magnitude is γ0. The same functions account for preferred single slip of
full or partial dislocations along S with slip plane normal M, where γ0 is a saturation limit
[Clayton (2018b)].
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2.3 Energy functional and equilibrium equations

A total energy functional for a heterogeneous body Ω with boundary ∂Ω is

Ψ(u, η, ξ,X) =

∫
Ω

[W (∇u, η, ξ,X) + f(η, ξ,∇η,∇ξ,X)]dV

=

∫
Ω

[W (∇u, η, ξ,X) + f(η, ξ,∇η,∇ξ,X)]
√
G(η, ξ)dV0.

(9)

Strain energy per unit volume is W , phase energy is f , and their sum is ψ = W + f .
In a reference state of pseudo-Finsler space, a volume element of the body is scaled as
dV =

√
GdV0, where dV0 is the element in Cartesian space. Properties may vary with X,

e.g., among grains in a polycrystal. Position X is dropped from the explicit list of arguments
in subsequent derivations, where it is understood that properties are homogeneous within
each sub-volume of a grain [Clayton and Knap (2016)].

Internal state contributions, including gradient effects, are embedded in function f :

f(η, ξ,∇η,∇ξ) = f0(η, ξ) + g0(ξ) + f1(ξ,∇η) + g1(∇ξ); (10)

f1(ξ,∇η) = κκκ(ξ) : (∇η ⊗∇η), κκκ(ξ) = κ0ι̂(ξ)1,

g1(∇ξ) = ωωω : (∇ξ ⊗∇ξ), ωωω = ω0[1 + β̂(1− N ⊗ N)].
(11)

Function ι̂(ξ) = ζ + (1− ζ)(1− ξ)2, with ζ a constant subject to 0 < ζ � 1. Anisotropic
fracture results from setting β̂ > 0.

Denote the mechanical traction vector by t, the conjugate surface force to η by r, and the
conjugate surface force to ξ by s. Stationary points of Ψ =

∫
ψdΩ are solutions to the

following variational equation at fixed X:

δΨ =

∮
∂Ω

(t · δu + rδη + sδξ)dS. (12)

Euler-Lagrange equations resulting from this principle and application of Rund’s
divergence theorem [Rund (1975)] are the static balance of linear momentum

∇ · ∂W
∂∇u

= −(mξ∇ξ + kη∇η) · ∂W
∂∇u

, (13)

and the static equilibrium equations for internal state:

∂f

∂η
+
∂W

∂η
− 2∇ · (κκκ∇η) = 2[κκκ∇η · (mξ∇ξ + kη∇η)− kηψ],

∂f

∂ξ
+
∂W

∂ξ
− 2∇ · (ωωω∇ξ) = 2[ωωω∇ξ · (mξ∇ξ + kη∇η)−mξψ].

(14)

Right sides of (13) and (14) vanish identically for a Riemannian metric (m = k = 0) and in
such cases coincide with phase field mechanics [Clayton and Knap (2016); Clayton, Leavy
and Knap (2019)]. Stress P is symmetric:

P =
∂W

∂εεε
=

∂W

∂∇u
. (15)



338 CMES, vol.120, no.2, pp.333-350, 2019

Natural boundary conditions on ∂Ω with outward unit normal n are

t = P · n, r = 2κκκ : (∇η ⊗ n), s = 2ωωω : (∇ξ ⊗ n). (16)

Strain energy density is linear elastic with damage-dependent moduli λ, µ,K:

W = 1
2λ(trεεεE)2 + µεεεE : εεεE ; (17)

µ(ξ) = µ0[ζ + (1− ζ)(1− ξ)2], λ(ξ, trεεεE) = K(ξ, trεεεE)− 2
3µ(ξ); (18)

K(ξ, trεεεE) = (λ0 + 2
3µ0){[ζ + (1− ζ)(1− ξ)2]〈trεεεE〉+ 〈−trεεεE〉∗}; (19)

where 〈x〉 = 1∀x > 0, 〈x〉 = 0∀x ≤ 0, 〈x〉∗ = 1∀x ≥ 0, and 〈x〉∗ = 0∀x < 0.
Accordingly, tangent elastic moduli µ and λ reduce in magnitude as ξ increases. Minimum
values are ζµ0 and ζλ0 when ξ(X) = 1, corresponding to complete local fracture at X. In
the numerical implementation, elements whose nodes contain values of ξ at or approaching
unity are considered fractured, but these elements are never removed from the simulation
since they contain a very small yet finite stiffness to prevent interpenetration. According
to (19), the bulk modulus retains its full initial value K0 = λ0 + 2

3µ0 for compressive
elastic volume changes such that unrealistic local collapse of the material is prohibited.
Thus, under compressive pressure, behavior of the material becomes akin to that of a
compressible elastic fluid. This approach of addressing failed elements is standard in phase
field simulations of fracture [Borden, Verhoosel, Scott et al. (2012); Clayton and Knap
(2014)].

Gradient-independent energy functions in (10) are, with H(·) a Heaviside function,

f0(η, ξ) = [Aη2(η0 − η)2H(η0 − η) + Âη2]ι̂(ξ), g0(ξ) = Bξ2. (20)

The first term in f0 is a double-well with minima at η = (0, η0), a local maximum at
η = η0/2, and a cut-off η0 > 0. Quadratic forms are the remainder of f0 and g0. Constants
entering (20) are A, η0, Â, and B. Let Γ denote twin boundary or stacking fault energy, Υ
fracture surface energy. Material constants are related by

A = 12
Γ

η4
0l
, κ0 =

3

4

Γl

η2
0

; B =
Υ

l
, ω0 = Υl. (21)

Constant Â is an energy barrier for phase changes and can also account for energy of
dislocation lines. Valuess for each crystal type follow later in §3 and §4.

2.4 Numerical methods

The FE method is used to solve 3D problems in an incremental fashion. Boundary
conditions are updated at each load increment. Numerical algorithms apply conjugate
gradient energy minimization [Clayton and Knap (2016)]. Solution fields u(X), η(X), ξ(X)
minimize Ψ subject to boundary constraints, where the second of (9) is used. In this context,
V0 is the volume of the FE domain in its initial undeformed state in Euclidean space, prior to
structural transformations. Force residuals computed numerically from Ψ must be smaller
than a prescribed tolerance; (13) and (14) are not evaluated explicitly. Irreversibility is
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ensured by constraints δξ(X) ≥ 0 for ξ(X) ≥ ξT and δη(X) ≥ 0 for η(X) ≥ ηT , where
ξT = ηT = 0.9. According to the present variational model based on energy minimization
similar to Bourdin et al. [Bourdin, Francfort and Marigo (2000)], strain rate does not
influence the results, which are effectively time-independent. Inertia and stress waves are
excluded, as are kinetics of internal state that can be addressed using methods described
elsewhere [Clayton and Knap (2018a)].

3 Boron carbide-titanium diboride polycrystals
Properties and FE renderings of B4C-TiB2 are presented, followed by numerical results for
pure shear loading.

3.1 Material representation

Material properties and FE models are discussed in brief, noting that detailed justification
and sources of property data are available in Clayton et al. [Clayton, Leavy and Knap
(2019)]. Parameters entering models of B4C and TiB2 are summarized in Tab. 1.

First consider B4C. Twinning occurs on 〈101̄0〉{0001} and fracture on {0001}. Amorphous
shear bands can form inside twins. Twinning shear is γ0, and twinning surface energy is Γ.
Lattice collapse normal to (0001) produces xη, and xξ measures expansion from cavitation
[An and Goddard (2015)]. The crystal-to-glass energy barrier is Â. Fracture energy is Υ
and cleavage anisotropy is β̂.

Now consider TiB2. Fracture occurs on {0001}, with Υ the surface energy [Du and Chen
(2018)]. Order parameter η addresses stacking fault energy and line energy of (partial)
dislocations via A and Â, respectively. Dilatation from fractures is represented by xξ > 0.
Denote the Burgers vector of a partial dislocation by b, cumulative dislocation density by
ρD. The lowest energy barrier corresponds to 〈112̄0〉{0001} slip [Du and Chen (2018)].
Stacking fault energy Γ is inferred from Vanderwalker et al. [Vanderwalker and Croft
(1988)]. Let x̄ denote the maximum distance a (partial) dislocation travels prior to arrest.
Let ρS denote the saturation dislocation density. Stored line energy is 1

2µ0b
2ρD [Clayton

(2011)], with full Burgers vector b0. The phase field representation of single partial slip in
TiB2 thus obeys

η = (b/b0)
√
ρD/ρS , γ0 = ρSb0x̄, Â = 1

2µ0b
2
0ρS . (22)

Residual stresses may affect toughness [White and Dickey (2011); Scharf and Rubink
(2018)]. These may be addressed in future work along with other defects.

Domains consist of 50 crystal polyhedra comprising a cube Ω of edge length L = 10µm.
Average grain size is L/501/3 ≈ 2.5µm. Numerals 1 and 2 pertain to B4C and TiB2,
respectively. Morphologies with volume fractions V2 of 10% and 18% are simulated.
These are shown in Fig. 1. Volume fractions are physically comparable to those of
real microstructures [Scharf and Rubink (2018)]. Two random orientation distributions
(S,M,N) are assigned to grain lattices of each morphology, such that four simulations are
reported in total.
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Table 1: Material constants for B4C and TiB2 [Clayton, Leavy and Knap (2019)]

Parameter [units] Definition Value - B4C Value - TiB2

µ0 [GPa] initial shear modulus 193 249
λ0 [GPa] initial Lamé modulus 108 27
Υ [J/m2] fracture energy 3.27 4.14
Γ [J/m2] twin boundary or SF energy 0.54 0.12

β̂ fracture anisotropy 100 100
l [µm] regularization length 0.1 0.1
γ0 max twin shear or plastic slip 0.31 0.015
η0 cut-off for double-well energy 0.68 0.68

Â [MPa] phase or dislocation energy 188 11.4
xη, xξ phase densification, cavitation -0.04, 0.013 0, 0.013

(a) microstructure 1 (b) microstructure 2

Figure 1: FE meshes; (B4C, TiB2) crystals are (teal, yellow) and V2 is the volume fraction
of TiB2: (a) microstructure 1, V2 = 0.10 (b) microstructure 2, V2 = 0.18
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Displacement-controlled boundary conditions on part of ∂Ω correspond to pure shear
[Clayton and Knap (2018b)], consisting of tension and compression applied in equal
magnitudes along perpendicular Y - and Z-directions. Let ε̄ denote the load parameter.
Essential boundary conditions are applied to four of the six faces of the initially cube-shaped
polycrystalline aggregate:

uY (X, 0, Z) = 0, uY (X,L,Z) = ε̄L; uZ(X,Y, 0) = 0, uZ(X,Y, L) = −ε̄L. (23)

Along the remaining two faces of the domain (X = 0, X = L), traction-free conditions
allow the body to expand or contract freely in the X-direction. Regarding conjugate
forces to internal state, free boundary conditions r = s = 0 on all of ∂Ω. In the
current implementation of these boundary conditions, average shear strain ε̄ is increased
incrementally in steps of 5 × 10−4. Conjugate gradient energy minimization [Clayton and
Knap (2016)] is used to seek an equilibrium configuration of the body at each increment.

3.2 Computational results

Microstructures for grains of lattice orientation set 1 are shown in Fig. 2 at an applied shear
strain of ε̄ = 0.01 = 1%. Order parameter η denotes twinning, shear localization, and
amorphization in the B4C phase and basal slip in the TiB2 phase. A quadratic scale is used
to visualize low transformation magnitudes (0 . η . 0.25). Elements with ξ > 0.8 are
visually removed to show fractures. As explained following (18) and (19), such elements
possess very low tangent stiffness, with µ → ζµ0 as ξ → 1 in shear for example, where
herein ζ = 0.01. These elements are never fully removed from the calculation; original
mesh topology is retained.

Fracture paths are quite similar for microstructures 1 and 2 in respective Fig. 2(a) and
Fig. 2(b). Cleavage cracks tend to traverse the more brittle B4C grains. Transformation
behaviors (η > 0) are enhanced in microstructure 2 relative to microstructure 1, notably in
grains of the TiB2 phase which have a lower stacking fault energy (0.12 versus 0.54 J/m2)
and thus a lower resistance to slip than the twinning threshold of B4C. In both of these
cases, and in others not shown in Fig. 2 for orientation set 2, inelasticity mechanisms of slip,
twinning, and amorphization are relatively scarce (η � 1 in most grains), in agreement with
experimental observations from samples of comparable sizes [Clayton and Knap (2018a);
Scharf and Rubink (2018)].

Volume-averaged maximum shear stress and order parameters are labeled P̄ , η̄, and ξ̄,
respectively. Definitions of the latter two are obvious, while the stress averaged over the
reference domain is

P̄ = 1
2

∫
Ω
|PY Y − PZZ |

√
GdV0. (24)

Values are shown versus applied shear strain ε̄ in Fig. 3. Average stresses in
Fig. 3(a) demonstrate modest effects of lattice orientation and volume fractions, recalling
microstructure 1 vs. 2 in Fig. 1 with 10% and 18% TiB2, respectively. Stiffer responses
are obtained for the same lattice orientation set when the fraction of TiB2 is increased.
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(a) microstructure 1 (b) microstructure 2

Figure 2: B4C-TiB2, lattice 1, shear strain ε̄ = 1%: (a) V2 = 0.10 (b) V2 = 0.18
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Figure 3: Averaged results for B4C-TiB2 versus applied shear strain ε̄: (a) shear stress P̄
(b) fracture ξ̄ (c) twinning, phase change, or slip η̄

This results from the higher elastic shear modulus of TiB2 as well this phase’s higher
fracture energy, greater ductility due to slip, and lower tendency to cleave (Tab. 1). Average
damage ξ̄ in Fig. 3(b) evolves similarly for all cases except microstructure 1 with lattice
1. Interestingly, this is the structurally weakest case in terms of average shear stress,
yet it demonstrates the lowest accumulation rate of average micro-crack density. The
same trend has been observed in simulations of pure B4C [Clayton and Knap (2018a,b)]:
overall stiffness reduction and failure are most closely correlated with the presence of a
few dominant cracks and are inversely correlated with diffuse crack density. Average
structural changes are reported in Fig. 3(c). Microstructure 2 demonstrates more inelasticity
than microstructure 1 since the former contains more TiB2 that slips more easily than
shear-induced inelastic modes (twinning and localization) in B4C.

Tab. 2 lists average maximum shear stress and values of applied shear strain and averaged
order parameters at the same peak loading increment. Peak stress PC increases from 1%
to 10% when the volume fraction of TiB2 is increased from 10% to 18%. Transformations
ηC increase with V2 for reasons outlined in the context of Fig. 3(c). Trends are less obvious
for ductility εC and peak damage ξC . Different trends are evident in these variables for
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Table 2: Peak shear stress (PC), associated strain (εC), and averaged order parameters
(ξC , ηC) for B4C-TiB2

Microstructure Lattice PC εC ξC ηC
(fraction TiB2) orientation [GPa] [%]

1 (V2 = 0.10) 1 1.37 0.90 0.247 0.062
2 1.46 0.95 0.271 0.058

2 (V2 = 0.18) 1 1.51 0.95 0.263 0.074
2 1.47 0.90 0.262 0.077

lattice 1 and lattice 2. Lattice orientation affects overall ductility and damage via the
action of resolved driving forces for inelasticity and fracture that depend on orientations
of basal planes for slip, twinning, and cleavage. Differences due to lattice orientation can
be comparable in magnitude to differences due to volume fraction of the second phase.

Experiments suggest fracture toughness of polycrystalline B4C may be improved by
10-100% and flexure strength by 10-30% via addition of 13-23% TiB2 [Scharf and Rubink
(2018)]. The current simulations show more modest improvements with increasing TiB2.
Residual stresses omitted in the simulations may partially explain the discrepancy. Since
the FE domain may not be large enough to capture long-crack blunting by TiB2, it may be
enlarged to include more crystals in the future.

4 Diamond-silicon carbide polycrystals
Properties and FE representations for diamond (C)-β-SiC are reported, followed by
simulation results for pure shear loading.

4.1 Material representation

Model features for each crystal type are summarized briefly here; details and supporting
references can be found in Clayton et al. [Clayton, Leavy and Knap (2019)]. Properties
are given in Tab. 3. First consider diamond. Cleavage occurs on {111}, with surface
energy Υ. Dilatation from crack opening is quantified by xξ > 0, with the same value
used for all ceramics of present interest. Silicon carbide can fracture and twin. Cleavage
planes are {110}. Twinning in the zinc blende structure occurs on 〈112̄〉{111} with
γ0 =

√
2/2 [Van Torne (1966)]. Stacking fault energy Γ is notably low [Ning and Ye

(1990)]. Regularization length l is universal among all ceramics addressed. As in §3,
residual stresses and other microstructure heterogeneities (initial pores, tertiary phases, etc.)
are deferred to future work.

Two very different morphologies are modeled, as shown in Fig. 4. Both domains are cubes
of the same dimensions of §3, containing 50 polyhedral grains of average size L/501/3 ≈
2.5µm. Denote by V1 and V2 volume fractions of diamond and SiC phases, respectively.
Microstructure 1 features a layer of uniform thickness (200 nm) of nano-crystalline SiC
fully surrounding each diamond crystal, contributing V2 = 20%. Microstructure 2 contains
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Table 3: Material constants for C and SiC [Clayton, Leavy and Knap (2019)]

Parameter [units] Definition Value - C Value - SiC

µ0 [GPa] initial shear modulus 553 203
λ0 [GPa] initial Lamé modulus 73 90
Υ [J/m2] fracture energy 5.30 1.70
Γ [J/m2] twin boundary or SF energy - 0.034

β̂ fracture anisotropy 100 100
l [µm] regularization length 0.1 0.1
γ0 max twin shear or plastic slip - 0.707

(a) microstructure 1 (b) microstructure 2

Figure 4: FE meshes; (C, SiC) crystals are (blue, green) and V2 is the volume fraction of
SiC: (a) microstructure 1, V2 = 0.20 (b) microstructure 2, V2 = 0.10

five bulk SiC grains contributing V2 = 10%. Two possible random lattice orientation sets
give (S,M,N) for the 50 grains.

A uniform orientation for nanocrystalline SiC layer is used in microstructure 1: boundary
layer grains are too small to be resolved by the FE mesh. A {110} potential fracture plane
is oriented at 45◦ to the direction of compression-tension, providing a maximum resolved
stress for shear fracture. If loading is normal to [010] (tension) and [001] (compression), the
active twinning system for (S,M) is [112̄](111), and N is prescribed as (101) for orientation
set 1 and (01̄1) for set 2.

Boundary conditions for pure shear are prescribed nearly identically to those discussed in
§3. For each of the two orientation sets with microstructure 1, one simulation is performed
with boundary conditions of (23) and ε̄ ≥ 0, and a second with the sign of ε̄ reversed.
In the forthcoming discussion of results of each of these second simulations, ε̄ refers to
the magnitude of (negative) applied shear strain for ease of comparison. Twinning in the
nanocrystalline layer is promoted in the former case but precluded in the latter since the
driving force, i.e., resolved shear stress for twinning, becomes negative. For microstructure
2, ε̄ ≥ 0 only. The total number of simulations reported in §4 is six.
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4.2 Finite element simulations and analysis of results

Shown in Fig. 5 are contours of η that show twinning in the SiC phase. Results correspond
to lattice orientation set 1, where the habit plane and twinning direction are oriented to
promote twinning in the nano-crystalline grain boundary (GB) layer in Fig. 5(a). Quadratic
scales enable visualization of low to moderate, i.e., incomplete, twinning (0 . η . 0.25)
that occurs in this GB layer and in a few preferentially oriented bulk grains of SiC in
Fig. 5(b). Physically, incomplete twinning corresponds to planar stacking faults typical in
β-SiC. Diamond, which comprises the majority of each microstructure, does not undergo
twinning or slip, so η = 0 in all diamond crystals. Fracture behaviors are notably different
for the two cases shown, where cleavage cracks in the diamond grains are evident at
different locations in each microstructure. A dominant cleavage crack cutting diagonally
across multiple diamond crystals through entire domain is noteworthy in microstructure 2,
while smaller cracks arrested or deflected at phase boundaries are evident in microstructure
1. Intergranular fractures are more common in the latter microstructure.

Volume-averaged shear stress P̄ is defined as in (24), and volume-averaged order
parameters η̄ and ξ̄ are calculated similarly. Values are shown versus applied shear strain ε̄ in
Fig. 6. Stresses for all six simulations of diamond-SiC are reported in Fig. 6(a). Recall that
for two of the simulations with microstructure 1, the twin system in the GB phase is oriented
with respect to the loading mode such that twinning is precluded. Lattice orientations of
diamond grains are maintained identically with their counterparts in the legend immediately
above. Initial elastic stiffness is larger in microstructure 2, which has a lower volume
fraction than microstructure 1 (V2 = 0.10 vs. 0.20) of the elastically stiffer diamond phase.
However, maximum stresses are often lower for microstructure 2 and always occur at a
lower applied strain for microstructure 1. When twinning is suppressed in microstructure
1, effective stiffness increases since local deformation in the GB phase remains elastic until
fracture. No trends are discernible for behaviors in the strain softening regime, which
differ substantially among microstructures and orientations. The same can be inferred
with regard to average damage ξ̄ in Fig. 6(b), and correlations with average stress are not
all obvious. The rate of damage accumulation does decrease, however, at strains beyond
those corresponding to maximum average stress. Transformation behavior quantified in
Fig. 6(c) is logically explained. Microstructure 1 demonstrates significant activity due to
the preferential orientation of its twinning system in the nano-crystalline GB layers. Minor
transformation behavior is reflected by η̄ for microstructure 2 as a result of twinning in a
few bulk grains, e.g., see Fig. 5(b). When twinning is suppressed in microstructure 1, η̄ → 0
since the diamond phase is elastic-brittle.

Tabulated results for peak shear stress, corresponding ductility or peak strain, and order
parameters are found in Tab. 4. Peak shear stress PC decreases by up to 10% when the
GB phase is able to twin in microstructure 1, while ductility is about the same or slightly
improved with twinning. Compared to microstructure 1 which contains half as much of
the weaker SiC phase by volume (10% versus 20%), microstructure 2 demonstrates lower
peak shear stress than three of the four simulations with microstructure 1. Ductility ε̄C is
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(a) microstructure 1 (b) microstructure 2

Figure 5: C-SiC, lattice 1, shear strain ε̄ = 0.9%: (a) V2 = 0.20, (b) V2 = 0.10
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Figure 6: Averaged results for diamond-SiC versus applied shear strain ε̄: (a) shear stress
P̄ (b) fracture ξ̄ (c) twinning η̄

Table 4: Peak shear stress (PC), associated strain (εC), and averaged order parameters
(ξC , ηC) for C-SiC composites

Microstructure Lattice Slip/twins PC εC ξC ηC
(fraction SiC) orientation active [GPa] [%]

1 (V2 = 0.20) 1 Y 2.94 0.70 0.276 0.0101
2 Y 2.65 0.60 0.245 0.0095
1 N 3.03 0.65 0.273 -
2 N 2.93 0.60 0.262 -

2 (V2 = 0.10) 1 Y 2.89 0.50 0.231 0.0019
2 Y 2.92 0.50 0.234 0.0013
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lowered by 15 to 30% in microstructure 2 compared to microstructure 1. Transformation
measured by ηC is much larger in microstructure 1 (when twinning is enabled) than 2 since
it contains a larger percentage of SiC preferentially oriented for twinning. Peak damage ξC
is lower in microstructure 2 than 1, suggesting dominant cracks in the former and diffuse
damage in the latter, more durable aggregates. The present findings agree qualitatively
with experiments [Zhao, Qian, Daemen et al. (2004)]: fracture toughness of polycrystalline
diamond is improved by intergranular nano-crystalline SiC layers.

As was also the case for B4C-TiB2 reported in §3, trends in results for diamond-SiC depend
on lattice orientation. In the present material, fracture is strongly affected by orientation of
octahedral cleavage planes in the diamond phase, and ductility by orientations of twinning
habit planes in the SiC phase. As an exception to other trends implied already, for lattice 2
with slip/twins active, PC is lower in microstructure 1 than microstructure 2. Differences in
strength between microstructures due to phase volume fractions and interface morphology
depend strongly on enabling of twinning activity or lack thereof. This suggests important
coupling exists among mechanisms of twinning, interfacial failure, and cleavage fracture.

5 Conclusions

A constitutive theory incorporating ideas from Finsler differential geometry and phase field
mechanics has been implemented to model deformation and failure of dual-phase ceramics
under pure shear loading. Simulations of polycrystalline B4C-TiB2 and diamond-SiC
composites demonstrate different twinning, amorphization, slip, and fracture behaviors
of these ceramics depending on crystal type, lattice orientation, and phase morphology.
Addition of TiB2 to B4C provides an increase in overall shear strength and ductility, where
the former phase is more likely to shear inelastically and possesses a higher fracture
energy, thereby enabling blunting of cleavage cracks initiated in the more brittle B4C
phase. The SiC phase, when incorporated as nano-crystalline layers along grain boundaries,
apparently obstructs paths of cleavage cracks in brittle diamond crystals. For improved
failure resistance, encapsulation of diamond in very fine grains of the softer second phase
is recommended over addition of SiC grains of commensurate size of the diamond. For
quasi-static deformations of aggregates of 50 bulk crystals with grain sizes on the order of
several µm, maximum shear strengths are on the order of 1.5 GPa for B4C-TiB2 and 2.9
GPa for diamond-SiC. Respective applied shear strains at maximum load are on the order
of 0.9% and 0.6% for the two material systems.
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