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Abstract: During the excavation of deep rock, a sudden change in boundary conditions 
will cause the in-situ stress on the excavation surface to release instantaneously. This 
disturbance propagates in the form of an unloading stress wave, which will enlarge the 
damage field of surrounding rock. In this paper, the dynamic unloading problem of the in-
situ stress in deep rock excavation is studied using theoretical, numerical, and experimental 
methods. First, the dynamic unloading process of rock is analyzed through adopting the 
wave equation, and the equivalent viscous damping coefficient of the material is taken into 
consideration. Calculations show that there is significant tensile strain in the rock bar when 
the strain rate is above 10-1 s-1. With an increase in the length or damping coefficient, the 
wave state will change from an underdamped to an overdamped state. Second, implicit and 
explicit solvers of the finite element method are employed to simulate rock unloading 
processes, which can be used to verify the theoretical results from one-dimensional to 
three-dimensional stress states. Finally, the dynamic unloading experiment of a one-
dimensional bar is used to further verify the validity and accuracy of the theoretical analysis. 
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1 Introduction 
At present, drilling and blasting methods are widely used in deep rock excavation projects. 
Under the conditions of drilling and blasting, the stress on the excavation surface is released 
within a few milliseconds, accompanied by explosive detonation, cracking and 
fragmentation of rock mass and the formation of excavation free surface. Under high in-
situ stress conditions, excavation will induce strong stress adjustment in the rock mass. The 
disturbance propagates rapidly from the excavation boundary to the interior of rock mass 
in the form of unloading wave, and causes the rock mass to loosen or deteriorate in the 
excavation disturbance area. [Chen, Lu, Zhou et al. (2008); Lu, Peng, Xu et al. (2007); Lu, 
Yang, Yan et al. (2012)]. In addition, this process may cause a variety of geological 
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engineering disasters (such as rock bursts and sudden deformations), which will affect the 
progress of a project and even threaten the safety of workers and equipment [Galybin and 
Odintsev (1992); Jiang, Liu, Zhao et al. (2005)]. The study on the mechanical mechanism 
and effect of dynamic unloading caused by excavation is of great significance to the 
stability and safety evaluation of underground excavation engineering. 
The systematic study on the mechanism and effect of dynamic unloading of rock began in 
the 1970s. In 1966, Cook et al. [Clay, Cook, Cook et al. (1966)] discovered that the sudden 
release of in-situ stress during the excavation of rock resulted in overrelaxation of the rock 
and generated tensile stress in the rock mass. Recently, many researchers have engaged in 
research in this field. Bauch et al. [Bauch and Lempp (2004)] carried out an indoor test on 
German red sandstone and found out that when the confining pressure is constant and the 
axial pressure is suddenly unloaded, the rock member has a rapid cracking failure, and the 
stored strain energy is released quickly. Lu et al. [Lu, Yang, Yan et al. (2012)] studied the 
process of release of in-situ stress induced by rock mass excavation with the method of 
drill and blast and determining the duration of the release of in-situ stress, it is found that 
the release of in-situ stress induced strain rate can reach a magnitude of 10-1-101/s or higher 
if the initial in-situ stress has a level of 20-50 MPa. In the review of dynamic testing 
techniques and dynamic mechanical properties of rock materials, Zhang et al. [Zhang and 
Zhao (2014)] explored various dynamic mechanical properties and corresponding fracture 
behaviors of rock. Li et al. [Cao, Li, Tao et al. (2016)] adopted a numerical model to 
simulate the dynamic responses around an existing tunnel under unloading disturbance 
forces. Fan et al. [Fan, Lu, Yan et al. (2015)] analyzed the changes induced by quasi-static 
unloading of in-situ stress and the transient release of in-situ stress for the case of a circular 
excavation under the conditions of in-situ hydrostatic stress. Tao et al. [Li, Li, Tao et al. 
(2013)] adopted a finite element program (LS-DYNA) to investigate the unloading failure 
mechanisms of hard rock in a confined state from strain energy density rates. Li et al. [Cao, 
Li, Zhou et al. (2014)] used the particle flow code PFC2D to analyze the unloading 
mechanisms of brittle rock under different stress paths. However, many uncertainties 
related to the stress unloading process still need to be investigated. 
In this paper, the combination of theory, numerical and experimental methods is used to 
study the dynamic unloading problem of in-situ stress in the excavation of deep rock mass 
with the direction perpendicular to the excavation face. Firstly, taking the blasting 
excavation of floor of hydropower station as the engineering background of one-
dimensional rock dynamic unloading mechanics model, the dynamic unloading process of 
rock is analyzed by wave equation, and the equivalent viscous damping coefficient of 
material is considered. Secondly, the separation of variables method and the Duhamel 
principle are adopted to solve the stress wave equation, and the dynamic strain equation 
for a rock bar in the unloading process is obtained. Additionally, the influence of the rock 
bar length, damping coefficient, and stress unloading path on the dynamic unloading 
process is discussed. The effects of unloading strain rate on failure of the rock mass under 
different unloading time and initial stress values is also analyzed. Then, considering the 
confining pressure environment, the one-dimensional wave equation is extended to three-
dimensional wave equation and the numerical solution is calculated by the difference 
method. The dynamic strain data under different confining pressure are analyzed, and the 
relationship between confining pressure and one-dimensional unloading model is 



 
 
 
Modeling and Simulation of Dynamic Unloading of Prestressed Rockmass                                 423 

established. Finally, the finite element method is used to simulate the penetrating 
excavation process of the floor of the underground powerhouse of the hydropower station, 
which verifies the applicability of the theoretical model in relevant projects. The 
correctness and accuracy of the theoretical solution are further verified by the dynamic 
unloading test of rock bar. 

2 Theoretical model of dynamic unloading of prestressed rock mass 
2.1 Establishment of mechanical model  
In the excavation of high side wall and floor of underground powerhouse of hydropower 
station, the direction of initial in-situ stress release is mainly perpendicular to the free 
surface of excavation. Therefore, the initial in-situ stress unloading problem for three-
dimensional rock excavation can be simplified in theory to a one-dimensional rock bar. As 
shown in Fig. 1, the side length of the floor blasting area of underground powerhouse of 
Baihetan Hydropower Station is more than 25 m. The floor of underground powerhouse 
adopts cylindrical borehole charging structure and one-time through blasting in excavation 
area. The one-dimensional theoretical model shown in Fig. 2 is a rock bar of length L with 
one fixed end and one free end. Initially, under the effect of the load σ (0), the free end of 
the bar generates a displacement b and remains static. Starting from t=0, a new free surface 
is formed due to excavation, and the initial stress is gradually removed in accordance with 
the function σ (t). Influenced by many factors, the dynamic damping behavior is quite 
complex. To investigate the influences of damping forces on the dynamic stress and strain 
of the rock bar, the rock damping is simplified to a linear viscous damped system, which 
is mathematically easier to address. 

Blasting area

Retained 
rock mass

 

Figure 1: The floor blasting area of underground powerhouse of Baihetan Hydropower Station 
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Figure 2: One-dimensional mechanical model of initial stress unloading 
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The governing equation for the motion of particles in a rock bar is the one-dimensional 
wave equation [Arfken, Ruby and Weber (1999)]. 
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

− 𝑎𝑎2 𝜕𝜕
2𝑢𝑢

𝜕𝜕𝑥𝑥2
+ 𝜁𝜁 𝜕𝜕𝑢𝑢

𝜕𝜕𝑡𝑡
= 0,0 ≤ 𝑥𝑥 ≤ 𝐿𝐿, 0 ≤ T  (1) 

where 𝑎𝑎 = �𝐸𝐸 𝜌𝜌⁄  is the P-wave velocity, E is the elastic modulus of the rock, ρ is the rock 
density, where 𝜁𝜁 = 𝑐𝑐 𝜌𝜌⁄ , and c is the equivalent viscous damping coefficient. Initially, the 
bar is in a static equilibrium state under the initial pressure, and its initial condition can be 
described as: 

𝑢𝑢(𝑥𝑥, 0) = 𝑏𝑏
𝐿𝐿
𝑥𝑥  (2) 

where 𝑏𝑏 = 𝜎𝜎(0) 𝐿𝐿 𝐸𝐸⁄ . 
𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡
�
𝑡𝑡=0

= 0  (3) 

The displacement of the fixed end of the bar is always 0, and this boundary condition can 
be described by the Dirichlet condition: 
𝑢𝑢(0, 𝑡𝑡) = 0 (4) 
The free end of the bar is subjected to the stress 𝜎𝜎(𝑡𝑡) and can be described by the Neumann 
condition: 

𝐸𝐸 𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥
�
𝑥𝑥=𝐿𝐿

= 𝜎𝜎(𝑡𝑡)   (5) 

2.2 Equation solution 
This is a problem with nonhomogeneous boundary conditions that can be solved. First, 
the equations to resolve this problem are: 

⎩
⎪
⎨

⎪
⎧ 𝑊𝑊(𝑥𝑥, 𝑡𝑡) = 𝑢𝑢(𝑥𝑥, 𝑡𝑡) − 𝜎𝜎(𝑡𝑡)

𝐸𝐸
𝑥𝑥

𝑊𝑊𝑥𝑥 = 𝑢𝑢𝑥𝑥 −
𝜎𝜎(𝑡𝑡)
𝐸𝐸

 , 𝑊𝑊𝑥𝑥𝑥𝑥 = 𝑢𝑢𝑥𝑥𝑥𝑥 − 0 = 𝑢𝑢𝑥𝑥𝑥𝑥

𝑊𝑊𝑡𝑡 = 𝑢𝑢𝑡𝑡 −
𝜎𝜎(𝑡𝑡)̇

𝐸𝐸
𝑥𝑥 , 𝑊𝑊𝑡𝑡𝑡𝑡 = 𝑢𝑢𝑡𝑡𝑡𝑡 −

𝜎𝜎(𝑡𝑡)̈

𝐸𝐸
𝑥𝑥

0 ≤ 𝑥𝑥 ≤ 𝐿𝐿 , 0 ≤ 𝑇𝑇

 (6) 

Therefore, differential equations are obtained by substituting (6) into (1)~(5): 

⎩
⎪⎪
⎨

⎪⎪
⎧𝑊𝑊𝑡𝑡𝑡𝑡 − 𝑎𝑎2𝑊𝑊𝑥𝑥𝑥𝑥 + 𝜁𝜁𝑊𝑊𝑡𝑡 = −�𝜎𝜎(𝑡𝑡)̈

𝐸𝐸
+ 𝜁𝜁 𝜎𝜎(𝑡𝑡)̇

𝐸𝐸
� 𝑥𝑥

𝑊𝑊|𝑡𝑡=0 = �𝑏𝑏
𝐿𝐿
− 𝜎𝜎(0)

𝐸𝐸
�𝑥𝑥 = 0

𝑊𝑊𝑡𝑡|𝑡𝑡=0 = −𝜎𝜎(0)̇

𝐸𝐸
𝑥𝑥

𝑊𝑊|𝑥𝑥=0 = 0 , 𝑊𝑊𝑥𝑥|𝑥𝑥=𝐿𝐿 = 0  
0 ≤ 𝑥𝑥 ≤ 𝐿𝐿 , 0 ≤ 𝑇𝑇

 (7) 

Using the superposition principle, Eq. (7) can be simplified to solve the following two 
problems: 
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(I)

⎩
⎪
⎨

⎪
⎧𝑊𝑊𝑡𝑡𝑡𝑡 − 𝑎𝑎2𝑊𝑊𝑥𝑥𝑥𝑥 + 𝜁𝜁𝑊𝑊𝑡𝑡 = 0

𝑊𝑊|𝑡𝑡=0 = 0

𝑊𝑊𝑡𝑡|𝑡𝑡=0 = −𝜎𝜎(0)̇

𝐸𝐸
𝑥𝑥

𝑊𝑊|𝑥𝑥=0 = 𝑊𝑊𝑥𝑥|𝑥𝑥=𝐿𝐿 = 0
0 ≤ 𝑥𝑥 ≤ 𝐿𝐿 , 0 ≤ 𝑇𝑇 

⇒𝑊𝑊1  (8) 

(II)

⎩
⎪
⎨

⎪
⎧𝑊𝑊𝑡𝑡𝑡𝑡 − 𝑎𝑎2𝑊𝑊𝑥𝑥𝑥𝑥 + 𝜁𝜁𝑊𝑊𝑡𝑡 =

−�𝜎𝜎(𝑡𝑡)̈

𝐸𝐸
+ 𝜁𝜁 𝜎𝜎(𝑡𝑡)̇

𝐸𝐸
� 𝑥𝑥

𝑊𝑊|𝑡𝑡=0 = 𝑊𝑊𝑡𝑡|𝑡𝑡=0 = 0
𝑊𝑊|𝑥𝑥=0 = 𝑊𝑊𝑥𝑥|𝑥𝑥=𝐿𝐿 = 0

0 ≤ 𝑥𝑥 ≤ 𝐿𝐿 , 0 ≤ 𝑇𝑇 

⇒𝑊𝑊2 (9) 

This leads to the solution for the original problem: 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑊𝑊 + 𝜎𝜎(𝑡𝑡)
𝐸𝐸
𝑥𝑥 = 𝑊𝑊1 + 𝑊𝑊2 + 𝜎𝜎(𝑡𝑡)

𝐸𝐸
𝑥𝑥 (10) 

The separation of variables method can be used to solve (I). This is shown by the equation 
below: 
𝑊𝑊1(𝑥𝑥, 𝑡𝑡) = 𝑋𝑋(𝑥𝑥)𝑇𝑇(𝑡𝑡) (11) 
Substituting (11) into (8): 
�̈�𝑇+𝜁𝜁�̇�𝑇
𝑎𝑎2𝑇𝑇

= �̈�𝑋
𝑋𝑋

= −𝜆𝜆 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 (12) 

Therefore: 

� Ẍ + λX = 0
X(0) = 0 , X(L)̇ = 0 

 (13) 

And: 
�̈�𝑇 + 𝜁𝜁�̇�𝑇 + 𝑎𝑎2𝜆𝜆𝑇𝑇 = 0 (14) 
Eq. (13) is often referred to as the intrinsic value problem or the Sturm-Liouville problem 
[Arfken, Ruby and Weber (1999)]. In combination with the boundary conditions in (8), 
only when λ>0, X (x) has a nonzero solution, whose intrinsic value is: 

𝜆𝜆𝑘𝑘 = �2𝑘𝑘−1
2𝐿𝐿

𝜋𝜋�
2

 , 𝑘𝑘 = 1,2,3⋯ (15) 

The corresponding intrinsic function is: 

𝑋𝑋𝑘𝑘(𝑥𝑥) = 𝐶𝐶𝑘𝑘 𝑐𝑐𝑠𝑠𝑐𝑐
2𝑘𝑘−1
2𝐿𝐿

𝜋𝜋𝑥𝑥 ,  𝑘𝑘 = 1,2,3⋯ (16) 

Substituting (15) for (14): 
�̈�𝑇 + 𝜁𝜁�̇�𝑇 + 𝑎𝑎2𝜆𝜆𝑘𝑘𝑇𝑇 = 0 ,𝑘𝑘 = 1,2,3⋯ (17) 
Eq. (17) is a second-order constant coefficient homogeneous linear differential equation. 
The form of the solution is related to the roots of the characteristic equation (𝑡𝑡2 + 𝜁𝜁𝑡𝑡 +
𝑎𝑎2𝜆𝜆𝑘𝑘 = 0). We define ∆𝑘𝑘= ζ2 − 4𝑎𝑎2𝜆𝜆𝑘𝑘 as the form of the corresponding solution, which 
has the following three cases according to the positive and negative values of ∆𝑘𝑘 
[Department of Applied Mathematics (2014)], as in Tab. 1. 
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Table 1: General solutions corresponding to different characteristic roots 

∆𝑘𝑘 Characteristic root General solution 
∆𝑘𝑘< 0 𝑡𝑡1,2 = 𝛼𝛼 ± 𝛽𝛽𝑠𝑠 𝑇𝑇𝑘𝑘(𝑡𝑡) = 𝑒𝑒𝛼𝛼𝑡𝑡[𝑎𝑎𝑘𝑘 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽𝑡𝑡 + 𝑏𝑏𝑘𝑘 𝑐𝑐𝑠𝑠𝑐𝑐 𝛽𝛽𝑡𝑡] 
∆𝑘𝑘= 0 𝑡𝑡1 = 𝑡𝑡2 = 𝑡𝑡 𝑇𝑇𝑘𝑘(𝑡𝑡) = (𝑎𝑎𝑘𝑘 + 𝑏𝑏𝑘𝑘𝑥𝑥)𝑒𝑒𝑡𝑡𝑥𝑥 
∆𝑘𝑘> 0 𝑡𝑡1 , 𝑡𝑡2 𝑇𝑇𝑘𝑘(𝑡𝑡) = 𝑎𝑎𝑘𝑘𝑒𝑒𝑡𝑡1∙𝑡𝑡 + 𝑏𝑏𝑘𝑘𝑒𝑒𝑡𝑡2∙𝑡𝑡 

The three general solutions are similar to the damped free vibration solutions of linear 
systems [Pahud and Pedro (1991)]; ∆𝑘𝑘< 0 ,∆𝑘𝑘> 0, and ∆𝑘𝑘= 0 correspond to the under-
damped, over-damped, and critical-damped states of a linear system, respectively. 
The case ∆𝑘𝑘< 0 is solved here (other cases are similar, and it is only necessary to substitute 
the characteristic root into the general solution corresponding to Tab. 1; the steps of the 
solution are consistent). The corresponding characteristic root is: 

𝑡𝑡1,2 = −𝜁𝜁
2

± 1
2
�4𝑎𝑎2𝜆𝜆𝑘𝑘 − 𝜁𝜁2𝑠𝑠 , 𝑘𝑘 = 1,2,3⋯ (18) 

Then: 

𝑇𝑇𝑘𝑘(𝑡𝑡) = 𝑒𝑒−
𝜁𝜁∙𝑡𝑡
2 �𝑎𝑎𝑘𝑘 cos 1

2
�4𝑎𝑎2𝜆𝜆𝑘𝑘 − 𝜁𝜁2𝑡𝑡 + 𝑏𝑏𝑘𝑘 sin 1

2
�4𝑎𝑎2𝜆𝜆𝑘𝑘 − 𝜁𝜁2𝑡𝑡� , 𝑘𝑘 = 1,2,3⋯ (19) 

Combining equations (11), (16) and (19) results in: 

𝑊𝑊1(𝑥𝑥, 𝑡𝑡) = 𝑒𝑒−
𝜁𝜁∙𝑡𝑡
2 ∑ �𝐴𝐴𝑘𝑘cos 1

2
�4𝑎𝑎2𝜆𝜆𝑘𝑘 − 𝜁𝜁2𝑡𝑡 + 𝐵𝐵𝑘𝑘 sin 1

2
�4𝑎𝑎2𝜆𝜆𝑘𝑘 − 𝜁𝜁2𝑡𝑡�∞

𝑘𝑘=1 sin 2𝑘𝑘−1
2𝐿𝐿

𝜋𝜋𝑥𝑥(20) 
Using the two initial conditions in (8), the following solutions are obtained: 

�
𝐴𝐴𝑘𝑘 = 0

𝐵𝐵𝑘𝑘 = 4
𝐿𝐿�4𝑎𝑎2𝜆𝜆𝑘𝑘−𝜁𝜁2

∫ − 𝜎𝜎(0)̇

𝐸𝐸
𝑥𝑥 𝑐𝑐𝑠𝑠𝑐𝑐 2𝑘𝑘−1

2𝐿𝐿
𝜋𝜋𝑥𝑥𝜋𝜋𝑥𝑥𝐿𝐿

0
 (21) 

Thus: 

𝑊𝑊1(𝑥𝑥, 𝑡𝑡) = 𝑒𝑒−
𝜁𝜁∙𝑡𝑡
2 ∑ 𝐵𝐵𝑘𝑘 sin 𝑡𝑡

2
�4𝑎𝑎2𝜆𝜆𝑘𝑘 − 𝜁𝜁2∞

𝑘𝑘=1 sin 2𝑘𝑘−1
2𝐿𝐿

𝜋𝜋𝑥𝑥 (22) 
We then solve (II). Duhamel’s principle (the homogeneous impulse principle) is used [Tan 
and Zhong (2007)]. If the function 𝜑𝜑(𝑥𝑥, 𝑡𝑡, 𝜏𝜏) is the solution of the following equations, a 
new system, (II), can be written: 

(III) 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝜑𝜑𝑡𝑡𝑡𝑡 − 𝑎𝑎2𝜑𝜑𝑥𝑥𝑥𝑥 + 𝜁𝜁𝜑𝜑𝑡𝑡 = 0

𝜑𝜑|𝑡𝑡=𝜏𝜏 = 0

𝜑𝜑𝑡𝑡|𝑡𝑡=𝜏𝜏 = −�𝜎𝜎(𝑡𝑡)̈

𝐸𝐸
+ 𝜁𝜁 𝜎𝜎(𝑡𝑡)̇

𝐸𝐸
� 𝑥𝑥

𝜑𝜑|𝑥𝑥=0 = 0 , 𝜑𝜑𝑥𝑥|𝑥𝑥=𝐿𝐿 = 0
0 < 𝑥𝑥 < 𝐿𝐿  , 𝜏𝜏 < 𝑇𝑇

 

 (23) 

This results in: 

𝑊𝑊2(𝑥𝑥, 𝑡𝑡) = ∫ 𝜑𝜑(𝑥𝑥, 𝑡𝑡, 𝜏𝜏)𝜋𝜋𝜏𝜏𝑡𝑡
0  (24) 

This is the solution of equations (II), and thus, only problem (III) needs to be solved. Set 
𝑡𝑡′ = 𝑡𝑡 − 𝜏𝜏; the following can be obtained from Eq. (23): 
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⎩
⎪⎪
⎨

⎪⎪
⎧ 𝜑𝜑𝑡𝑡′𝑡𝑡′ − 𝑎𝑎2𝜑𝜑𝑥𝑥𝑥𝑥 + 𝜁𝜁𝜑𝜑𝑡𝑡′ = 0

𝜑𝜑|𝑡𝑡′=0 = 0

𝜑𝜑𝑡𝑡′|𝑡𝑡′=0 = −�𝜎𝜎(𝑡𝑡)̈

𝐸𝐸
+ 𝜁𝜁 𝜎𝜎(𝑡𝑡)̇

𝐸𝐸
� 𝑥𝑥

𝜑𝜑|𝑥𝑥=0 = 0 , 𝜑𝜑𝑥𝑥|𝑥𝑥=𝐿𝐿 = 0
0 < 𝑥𝑥 < 𝐿𝐿  , 0 < 𝑡𝑡′

 

                            (25) 

The method of solving Eq. (25) is the same as that for solving (I): 

𝜑𝜑(𝑥𝑥, 𝑡𝑡′) = 𝑒𝑒−
𝜁𝜁∙𝑡𝑡′

2 ∑ ��̃�𝐴𝑘𝑘cos 1
2
�4𝑎𝑎2𝜆𝜆𝑘𝑘 − 𝜁𝜁2𝑡𝑡′ + 𝐵𝐵�𝑘𝑘 sin 1

2
�4𝑎𝑎2𝜆𝜆𝑘𝑘 − 𝜁𝜁2𝑡𝑡′�∞

𝑘𝑘=1  sin 2𝑘𝑘−1
2𝐿𝐿

𝜋𝜋𝑥𝑥 
 (26) 

By combining the two initial conditions in (25), the following solutions are obtained: 

�
�̃�𝐴𝑘𝑘 = 0

𝐵𝐵�𝑘𝑘 = 4
𝐿𝐿�4𝑎𝑎2𝜆𝜆𝑘𝑘−𝜁𝜁2

∫ − �𝜎𝜎(𝑡𝑡)̈

𝐸𝐸
+ 𝜁𝜁 𝜎𝜎(𝑡𝑡)̇

𝐸𝐸
� 𝑥𝑥 𝑐𝑐𝑠𝑠𝑐𝑐 2𝑘𝑘−1

2𝐿𝐿
𝜋𝜋𝑥𝑥𝜋𝜋𝑥𝑥𝐿𝐿

0
                (27) 

Substituting 𝑡𝑡′ = 𝑡𝑡 − 𝜏𝜏 into (26) and (27), and combining (24), we obtain: 

𝑊𝑊2(𝑥𝑥, 𝑡𝑡) = ∫ ∑ �𝑒𝑒−
𝜁𝜁∙(𝑡𝑡−𝜏𝜏)

2 𝐵𝐵�𝑘𝑘 sin�1
2
�4𝑎𝑎2𝜆𝜆𝑘𝑘 − 𝜁𝜁2(𝑡𝑡 − 𝜏𝜏)� sin �2𝑘𝑘−1

2𝐿𝐿
𝜋𝜋𝑥𝑥��∞

𝑘𝑘=1
𝑡𝑡
0 𝜋𝜋𝜏𝜏   (28) 

In summary, the solution of the original Eq. (10), can be obtained by combining (22) and 
(28). Additionally, the dynamic strain at different locations of the rock bar can be defined 
by 𝜀𝜀 = 𝜕𝜕

𝜕𝜕𝑥𝑥
𝑢𝑢(𝑥𝑥, 𝑡𝑡). 

3 Dynamic unloading mechanism of rock mass 
3.1 Propagation process of the unloading wave 
During the excavation of a deep rock mass, a sudden change in boundary conditions causes 
the initial stress on the excavation surface to be removed instantaneously. This disturbance 
propagates in the form of a stress wave (unloading wave) in the rock mass. Its wavelength is 
l=a∙ts, where ts is the length of the unloading time. According to the one-dimensional wave 
model, the time required for unloading waves to propagate from one end of the bar to the other 
is ta=L/a=0.27 ms if the length of rock bar is 1.2 m. The unloading wave is reflected at the 
boundary, and the reflected wave propagates in the direction opposite to that of the incident 
wave; a superposition zone of stress waves is formed, and the length of the superimposed zone 
is l/2. According to the reflection theory of elastic waves at the fixed end [Wang (2005)], since 
the displacement of the fixed end is always 0, the properties and strength of the reflected wave 
are exactly the same as those of the incident wave, and the intensity of the wave in the 
superimposed zone doubles. However, the properties of the reflected wave at the free surface 
are opposite to those of the incident wave, and the strength in the superimposed zone weakens, 
so the free end stress after unloading is always zero. 
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Figure 3: Propagation process of the unloading wave (the tensile wave is the bar and the 
compression wave is below) 

When ts<ta, the unloading wavelength is shorter than the bar; if the unloading wave is a 
linear unloading rectangular wave, the stress state and its change at each moment of the 
dynamic unloading process are shown in Fig. 3. The dynamic strain curve at different 
distances from the fixed end of the rock bar is shown in Fig. 4. In this figure, A corresponds 
to Process 1, and the unloading wave (tensile wave) travels from the free end to the fixed 
end; when the unloading wave passes, the initial compressive strain attenuates to 0 in 
accordance with the unloading curve. B corresponds to Processes 2-4, where the unloading 
wave is reflected at the fixed end, the reflected and incident waves are superimposed, and 
the wave intensity increases. The 0 m and 0.3 m positions are both in the left superimposed 
zone, so the slope (absolute value) of the dynamic strain curve increases. Additionally, the 
wave at the end is immediately superimposed when the reflected wave is generated until 
the incident wave is fully reflected. The wave at a certain distance from the end of the bar 
is superimposed only between the time that reflection occurs and the time that the incident 
wave is completely reflected. C corresponds to Process 5, where the reflected wave 
propagates to the right, as the front unloading wave has reduced the compressive strain to 
0 everywhere, and the reflected tensile wave causes rod strain when passing. D corresponds 
to Processes 6~8; the unloading wave is reflected at the free end, and the reflected wave, 
which is a compressional wave, is opposite to the incident wave, and the resultant intensity 
is 0 after superimposition. Similar to B, the wave at the 1.2 m position (free end) is 
superimposed immediately when the reflection is generated until the completion of the 
reflection. Therefore, after unloading, the free end surface is in a state of no stress. The 
wave at a certain distance from the end of the bar is superimposed only between the time 
that reflection occurs and the time that the incident wave is completely reflected, so the 
tensile strain slightly decreases compared with the non-superimposed area. E corresponds 
to Process 9. The reflected compressional wave travels to the fixed end and reduces the 
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tensile strain around the bar to 0. F corresponds to Processes 10~12, where the 
compressional wave is reflected and superimposed at the fixed end, increasing the slope 
(absolute value) of the curve in the superimposed area. G corresponds to Process 13; the 
reflected compressional wave propagating to the free end causes compressive strain in the 
bar. H corresponds to Processes 14~16, where the compressional wave is reflected and 
changes into a tensile wave at the free end. I corresponds to Process 1. ……In this manner, 
the unloading wave circulates along the bar. Because of the existence of damping, the 
propagation process of the unloading wave is complete when the initial strain energy is 
completely dissipated. In the process of the transition between compressive strain and 
tensile strain, the fixed end plays an important role in the reflection of the unloading wave. 
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Figure 4: Dynamic strain curves at different locations on rock bar (ts=0.2 ms) 

In the above analysis, the unloading wave propagation process is based on the condition 
ts<ta; i.e., the wave length l is shorter than the bar length L. With an increase in ts, l is 
gradually longer than L. Then, there are two differences from previous analysis. ① Since 
the superimposed zone is longer than L/2, the middle section of the bar will be in both the 
left and the right superimposed zones. ② Because l is longer than L, reflection at the left 
and the right ends may occur simultaneously. When ts≥ta, the superimposed area length is 
longer than L, and each position on the bar is in the superimposed area. At this time, the 
propagation of the unloading wave and its effects on the bar become very complicated. 

3.2. The effect of unloading strain rate 
According to the above theoretical analysis, if the rock length L, the basic mechanical 
parameters of the rock material, the material damping, the initial stress, and the unloading 
function are all known, the dynamic strain of the rock bar during the unloading process can 
be obtained. An example calculation is given here: the length of granite rock bar is 1.2 m, 
and the basic mechanical parameters of the rock sample are measured as shown in Tab. 2. 
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Table 2: Basic mechanical parameters of rock sample 

ρ/kg∙m-3 
(Density) 

E/GPa 
(Elastic Modulus) 

μ 
(Poisson's ratio) 

σbc/MPa 
(Uniaxial 

Compressive 
strength) 

σb/MPa 
(Uniaxial 

tensile 
strength) 

2600 50 0.2 150 10 

Accurate damping coefficients of rock materials need to be measured by specific 
experimental methods. Considering the universality of the theory, this paper, based on the 
experimental data given in the literature [Nie, Xu and Ren (2011)], uses the damping factor 
c=5 kN∙s∙mm-1 for analysis. 
There are three typical forms of the initial stress unloading function σ(t), namely, linear 
attenuation, trigonometric function attenuation, and exponential attenuation: 

�
𝜎𝜎(𝑡𝑡) = 𝜎𝜎0 ∙ (1 − 𝑡𝑡 𝑡𝑡0⁄ )
𝜎𝜎(𝑡𝑡) = 𝜎𝜎0 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡
𝜎𝜎(𝑡𝑡) = 𝜎𝜎0 ∙ 𝑒𝑒−𝛽𝛽∙𝑡𝑡

 (29) 

The initial stress is attenuated from the zero moment and, at the ts moment, is attenuated to 
0. As is shown in Fig. 5, curves 1, 2 and 3 correspond to linear function attenuation, 
trigonometric function attenuation and exponential function attenuation, respectively: 

2

3

 Linear function 
 Trigonometric function 
 Exponential function 

σ
σ(0)

ts t

1

 
Figure 5: Unloading curve of initial stress 

In the unloading process, the average strain rate is: 
𝜀𝜀̇ = 𝜎𝜎0

𝐸𝐸∙𝑡𝑡𝑠𝑠
 (30) 

3.2.1 Calculation results for different unloading time durations 
If the initial stress is σ0=10 MPa and the unloading time is 0.5 ms, 1.0 ms, 2.0 ms, 4.0 ms and 
8 ms, the corresponding average strain rates are 0.4 s-1, 0.2 s-1, 0.1 s-1, 0.05 s-1 and 0.025 s-1, 
respectively. Figs. 6(a), 6(b) and 6(c) are the dynamic strain curves at a distance of 0.4 m 
from the fixed end and correspond to the cases of exponential attenuation, linear 
attenuation and trigonometric function attenuation, respectively. 
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(a) Dynamic strain curves at initial stress exponential attenuation 
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(b) Dynamic strain curves at initial stress linear attenuation  
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(c) Dynamic strain curves at initial stress trigonometric function attenuation 

Figure 6: Dynamic strain curve of bar under different strain rate (initial stress fixed, 
unloading time changed) 

3.2.2 Calculation results for different initial stress levels 
If the unloading time is 2 ms and the initial stresses are 40 MPa, 20 MPa, 10 MPa, 5 MPa, 
and 2.5 MPa, the corresponding average strain rates are 0.4 s-1, 0.2 s-1, 0.1 s-1, 0.05 s-1 and 
0.025 s-1, respectively. Figs. 7(a), 7(b) and 7(c) show the dynamic strain curves at a distance 
of 0.4 m from the fixed end and correspond to the cases of exponential attenuation, linear 
attenuation and trigonometric function attenuation, respectively. 
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(a) Dynamic strain curves at initial stress exponential attenuation 
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(b) Dynamic strain curves at initial stress linear attenuation  
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(c) Dynamic strain curves at initial stress trigonometric function attenuation 

Figure 7: Dynamic strain curve of bar under different strain rate (unloading time fixed, 
initial stress changed) 

From the above calculations, it can be seen that the initial strain is converted into tensile 
strain during the initial stress unloading process, and higher strain rates produce higher 
tensile strain peaks. It is generally believed that, when the strain rate is in the range of 10-5 
s-1~10-1 s-1, a quasi-static process exists, and when the strain rate is greater than 10-1 s-1, a 
dynamic process exists [Li (2014)]. When the strain rate is greater than 10-1 s-1, the peak 
value of the tensile strain is clear; when the strain rate is less than 10-1 s-1, i.e., when the 
unloading belongs to a quasi-static process, the peak value of the tensile strain is smaller 
and no tensile strain occurs. As the tensile strength of rock is much lower than its 
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compressive strength, the tensile stress generated during unloading may exceed the 
dynamic tensile strength of the rock and thus result in damage. 

3.2.3 Comparative analysis of unloading curves 
From the above analysis, it can be seen that, under the same initial stress and unloading 
time, the dynamic strain fluctuation and attenuation law of the three unloading modes are 
consistent. However, the peak values of tensile strain under different unloading modes are 
quite different. In Fig. 6, the peak value of tensile strain under exponential attenuation is 
the highest, and that under linear attenuation is the lowest. This is consistent with the 
conclusion of a previous study [Lu, Yan, Zhao et al. (2016)]. Higher unloading rates 
produce stronger dynamic unloading effects, while the unloading rates of the first half of 
the exponential unloading function and the latter half of the trigonometric unloading 
function are higher than that of the linear unloading function. 
In Fig. 7, the minimum strain peak value is also generated by linear attenuation, and the 
peak values of the trigonometric function and the exponential attenuation function are 
similar, while that of the trigonometric attenuation function is slightly higher than that of 
the exponential attenuation function. By further analyzing Fig. 7, the reasons leading to 
such results are as follows: 
For the first half of the exponential attenuation curve, the unloading rate is high, and the 
unloading rate in the second half is very low (even close to quasi-static unloading), so the 
dynamic effect caused by exponential unloading is mainly concentrated in the first half. 
For example, for the curve with a strain rate of 0.4 s-1 in Fig. 7(a), the first peak of tensile 
strain appears at 0.7 ms; this is mainly caused by the first half of the exponential unloading 
curve, as the initial stress has not attenuated to 0 at this time and is still greater than 6.26 
MPa (the free end is at 6.26 MPa, and the fixed end stress value is slightly greater). The 
superimposition of the residual initial compressive stress and the tensile stress generated 
by unloading leads to a decrease in the peak value of tensile strain. 
The unloading rate of the trigonometric function is higher in the second half, and the 
dynamic effect is mainly concentrated in the second half. Figs. 7(b) and 7(c) show that the 
first peak value of the tensile stress caused by both unloading of the trigonometric function 
and linear unloading occurs after the initial stress of the unloading is reduced to 0, and the 
peak value of the tensile strain does not decrease because of the superimposition. This can 
be deduced from an analysis of the propagation process of the unloading wave in the bar. 
This can be deduced from an analysis of the propagation process of the unloading wave in 
the bar, as discussed in the previous chapter. 

3.3 Other factors affecting the tensile strain of rock masses 
In addition to the strain rate and unloading function, rock lengths and damping parameters 
also affect the tensile strain of a rock mass. 

3.3.1 Effect of bar length 
The elastic wave theory can clearly describe the propagation process of an unloading wave 
in a rock bar and the mechanism of formation of tensile strain. The analysis shows that 
tensile strain is generated only when the unloading wave is reflected from the fixed end. If 
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the bar is infinite, i.e., there is no fixed end, there will be no tensile strain in the bar. In 
addition, because of the existence of damping, when the unloading wave propagates a 
certain distance along the infinite bar, the wave intensity decreases gradually and 
eventually degenerates into quasi-static unloading. A theoretical explanation can be 
obtained from the solution of the wave equation. When solving Eq. (17), according to the 
different values of the characteristic equation roots, three different solutions can be 
obtained, which are similar to the three kinds of damping states of the damped free 
vibration of the linear system. For these three conditions, when the value of ∆𝑘𝑘= ζ2 −
4𝑎𝑎2𝜆𝜆𝑘𝑘 is less than, greater than, and equal to 0, three states can be described: underdamped 
fluctuation, overdamped fluctuation and critically damped fluctuation, respectively. ∆𝑘𝑘 is 
related not only to the damping coefficient and the material (where a is the wave velocity, 
which depends on the modulus and density of the material) but also to 𝜆𝜆𝑘𝑘. By formula (15), 
𝜆𝜆𝑘𝑘 increases with an increase in k. Thus, regardless of changes in other parameters, as long 
as k is sufficiently large, ∆𝑘𝑘< 0 will always be the case. In addition, 𝜆𝜆𝑘𝑘 decreases with an 
increase in the length of the rock bar L. When the damping coefficient and material 
parameters are constant (i.e., under uniform rock conditions), there are a limited number 
of ∆𝑘𝑘> 0 cases when the rod length grows, and at this point, the solution of Eq. (17) 
represents an overdamped state. The final solution to the transient unloading problem of a 
rock mass takes the form of an infinite series (superimposition of various modes), and every 
item (each order mode) of the series has the composition of the solution to the Eq. (17). 
Thus, the longer the rock bar is, the larger the number of overdamped states included in the 
solution and the closer the structure fluctuation is to the overdamped fluctuation state. It is 
well known that the underdamped vibration of a linear system is a reciprocating attenuation 
vibration, the overdamped vibration is nonreciprocating attenuation vibration, and the one-
dimensional fluctuation in the transient unloading problem is similar. The strain in the 
underdamped fluctuating rock bar alternates between compressive strain and tensile strain, 
while an overdamped wave will lose this characteristic. 
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Figure 8: Dynamic strain curves at fixed end of bars with different lengths 

Fig. 8 shows the dynamic strain curves near the fixed end of bars of differing lengths (under 
linear unloading conditions, the strain rate is 0.2 s-1 and the damping coefficient is c=5 
kN∙s∙mm-1). The results show that, with an increase in the bar length, the tensile strain peak 
decreases gradually, and the number of wave cycles decreases correspondingly. When 
calculating ∆𝑘𝑘 with different bar lengths, we find that, when the length of L ranges from 



 
 
 
Modeling and Simulation of Dynamic Unloading of Prestressed Rockmass                                 435 

1.2 m to 6.0 m, the value of k is arbitrary and ∆𝑘𝑘 is less than 0; i.e., all the solutions are 
underdamped fluctuations, so tensile strain is generated in the curve. When the bar length 
is 7.2 m, ∆1> 0 and starting from k=2, ∆𝑘𝑘 is less than 0, and the first solution (i.e., the first 
order modal damping) is an over-damped fluctuation state. Therefore, when the length of 
the bar is 7.2 m, the dynamic strain curve is directly attenuated to 0, no tensile strain occurs, 
and the dynamic strain curve shows no fluctuation. 

3.3.2 Effect of material damping 
According to the literature [Nie, Xu and Ren (2011)], the viscous damping coefficient is 
given by c = 5 kN∙s∙mm-1, 7.5 kN∙s∙mm-1, 10 kN∙s∙mm-1, 12.5 kN∙s∙mm-1 and 15.0 kN∙s∙mm-

1. When the bar length is 2.4 m, the dynamic strain curves at the fixed end are shown in 
Fig. 9. With an increase in damping, the strain rate at the fixed end decreases slightly, and 
the tensile strain peak decreases gradually. In addition, the damping coefficient 
corresponds to different conditions as well. For the case of c=15 kN∙s∙mm-1, ∆1< 0, the 
dynamic strain curve of the rock bar is directly attenuated to 0, no tensional strain occurs, 
and the curve is free of fluctuations. The result is similar to those for different bar lengths. 
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Figure 9: Dynamic strain curve at fixed end of bars under different damping factors 

3.4 Dynamic unloading effect under three-dimensional stress state  
One-dimensional wave theory analysis clearly illustrates the propagation process of 
unloading wave in rock rod, and fully explains that the initial compressive strain (force) 
will be transformed into tensile strain (force) during dynamic unloading. However, the 
above theoretical analysis is based on one-dimensional wave equation, without considering 
the three-dimensional stress state of rock mass. In order to further reveal the unloading 
effect of rock mass under complex stress conditions, the governing equation (lame equation) 
of particle motion in rock mass under three-dimensional Cartesian coordinates is 
established based on wave equation and considering the confining pressure environment 
of rock mass: 

⎩
⎪
⎨

⎪
⎧𝜌𝜌

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

= (𝜆𝜆 + 𝜇𝜇) 𝜕𝜕𝜃𝜃𝑡𝑡
𝜕𝜕𝑥𝑥

+ 𝜇𝜇∇2𝑢𝑢 + 𝜌𝜌𝑋𝑋

𝜌𝜌 𝜕𝜕2𝑣𝑣
𝜕𝜕𝑡𝑡2

= (𝜆𝜆 + 𝜇𝜇) 𝜕𝜕𝜃𝜃𝑡𝑡
𝜕𝜕𝜕𝜕

+ 𝜇𝜇∇2𝑣𝑣 + 𝜌𝜌𝜌𝜌

𝜌𝜌 𝜕𝜕2𝑤𝑤
𝜕𝜕𝑡𝑡2

= (𝜆𝜆 + 𝜇𝜇) 𝜕𝜕𝜃𝜃𝑡𝑡
𝜕𝜕𝜕𝜕

+ 𝜇𝜇∇2𝑤𝑤 + 𝜌𝜌𝜌𝜌

                       (31) 
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In the formula, ρ is density, u、v and w are particle displacement components in x, y and 
Z directions, t is time, 𝜆𝜆 and μ are Lame constants, ∇2are Laplace operators, and X, Y and 
Z are force density components in x, y and z directions respectively. It is difficult to get the 
theoretical solution of the above equation by analytic method. Therefore, it is advisable to 
adopt numerical method. When the boundary and initial conditions are known, the finite 
difference method can be used to solve (31) numerical solutions by combining the 
geometric and physical equations in elasticity. 
While rock masses encountered in engineering are generally under triaxial stress conditions, 
the one-dimensional wave function theory should be improved to solve practical problems. 
As is shown in Fig. 10, the shapes of different curves remain unchanged, meansing that during 
the transient unloading process, with an increase in lateral stress, the dynamic strain at the 
fixed end increases and the lateral stress has no influence on the changing trend of the curve. 
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Figure 10: Dynamic strain curve at fixed end of rock bar under three-dimensional stress 
state (σx0=10 MPa, ts=0.5 ms) 

According to the physical equation of space problem in elasticity, the influence of lateral 
pressure (y, z direction pressure) on the axial (x direction) strain is as follows: 

𝜀𝜀𝑥𝑥 = 𝜎𝜎𝑥𝑥
𝐸𝐸
− 𝜇𝜇�𝜎𝜎𝑧𝑧+𝜎𝜎𝑦𝑦�

𝐸𝐸
 (32) 

According to Eq. (32), the strain generated by direct stress in Fig. 10 is calculated from Eq. 
(31). Compared with Fig. 10, the calculated results agree well with the results from 
theoretical analysis. It can be concluded that the theoretical analysis is suitable for the 
dynamic unloading problem of rock masses under triaxial stress conditions. First, during 
the transient unloading process, rock masses will be considered as having unidirectional 
stress states, and the strain induced by unidirectional stress is calculated from the 
theoretical analysis; then, the lateral stress will be considered, and Eq. (32) will be applied 
to calculate the total strain in practical projects. Even though the dynamic adjustment of 
lateral stress is not considered, the proposed method does make progress for the application 
of the dynamic unloading problem of the initial geostress, which is dominated by the 
direction perpendicular to the excavation face. 

4 Numerical simulation of dynamic unloading 
The well-known software for finite element analysis ANSYS/LS-DYNA is adopted as the 
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preferred numerical simulation method. A rich material model library of ANSYS/LS-
DYNA has been configured to simulate the nonlinear mechanical properties of rock masses. 
The implicit-explicit solution mode of ANSYS/LS-DYNA is applied to simulate the 
process of dynamic unloading to investigate the fracture mechanisms. Among these, the 
explicit solver is based on the dynamic equation to differentiate the time; the solution of 
the implicit solver is independent of time and is based on the static equilibrium equation 
for an iterative solution. The explicit LS-DYNA method is ideal for dealing with transient 
dynamics problems over short periods, but it is not as efficient as the implicit ANSYS 
solution method when dealing with static problems. Therefore, in simulating transient 
offload events after such static loading, these problems can be solved in an implicit-explicit 
sequence by using these two methods. Moreover, the theoretical analysis should be verified 
by numerical simulation. In the following section, the implicit calculation mode of ANSYS 
is employed to first analyze the stress state of the rock bar under initial pressure. The 
displacement data of model nodes obtained from the implicit calculation are used to 
initialize the stress state for the explicit calculation. Then, the explicit solver is initiated to 
calculate transient excavation unloading. In the calculation, the excavation area is 
excavated mainly by adding a failure unit in LS-DYNA, that is, setting the unit failure time 
in the *MAT_ADD_EROSION keyword, and directly deleting the unit of the excavation 
area when the excavation time arrives. 
The numerical simulation of the one-time through-excavation of the underground 
powerhouse floor of Baihetan Hydropower Station shown in Fig. 1 is carried out to analyze 
the dynamic strain on the retained rock mass. In order to improve the calculation efficiency, 
a scaled scale model is established, as shown in Fig. 11. The rock mass in the model is an 
ideal linear elastic material, and its basic mechanical parameters are shown in Tab. 2. The 
model boundary conditions are full constrained at the bottom and non-reflective boundaries 
at the sides. 
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Floor retained rock mass
σ0 σ0 

Unloading

 Point B

Point A  

(b) After excavation 
 

Figure 11: Unloading calculation model for excavation of floor of underground 
powerhouse of hydropower station 

Initial in-situ stress is σ0=17.5 MPa，and the rock mass in the through area is excavated 
from t=0 to simulate dynamic unloading. The dynamic strain curves of measuring points 
A and B are shown as follows: 
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Figure 12: Unloading dynamic strain curve of underground powerhouse floor excavation 
of hydropower station 

As shown in Fig. 12, the dynamic strain curve of dynamic unloading of the floor excavation 
of underground powerhouse of hydropower station has a high similarity with the dynamic 
strain curve calculated by theoretical one-dimensional theory, which shows that it is feasible 
to simplify this kind of problem according to the one-dimensional bar unloading model. 

5 Dynamic unloading test verification 
A test platform for dynamic loading and unloading is constructed based on a theoretical 
mechanical model. The test platform consists of several systems: the integrated framework, 
the static loading system, the dynamic loading system, the structural support, and the 
structure to fix the end of a rock bar and the test system. The layout of these systems is 
shown as Fig. 13. The static loading system is located at one end of the integrated 
framework. The dynamic loading system is located between the rock bar and the static 
loading system, which is used to provide dynamic unloading by explosion, lateral sliding, 
or crushing. The structural support is located in the middle of the integrated framework to 



 
 
 
Modeling and Simulation of Dynamic Unloading of Prestressed Rockmass                                 439 

control the lateral displacement of the rock bar. The structure for fixing the end is located 
at the other end of the integrated framework to seal and fix the rock bar with concrete. A 
dynamic strain indicator (uT3408FRS-DY) is used in the test system to measure the 
dynamic strain induced by the axial unloading from the preloaded rock bar.  

Loading 
device Rock bar

End fixing 
device 

Dynamic 
loading device 

 
Figure 13: Physical drawing of axial loading and unloading device of rock bar 

Rock bar Normal 
constraint

End fixing 
device 

Dynamic 
loading device Loading 

device 

1# 2#

Strain gauges Fragile item  
Figure 14: Schematic diagram of unloading experiment 

As shown in Fig. 13 and Fig. 14, the experimental specimen consists of granite with a cross 
section of 5 cm×5 cm and a length of 1.5 m. The basic mechanical parameters are shown 
in Table 1. The rock bar is fixed in the experimental platform, and one end is a 0.3 m length 
of the rock bar sealed in concrete as the fixed end. The actual length of the rock bar to be 
measured is 1.2 m, and two strain gauges are arranged along the axis of the rock bar. The 
#1 strain gauge is located at a distance of 0.65 m from the fixed end of the rock rod. The 
#2 strain gauge is located at a distance of 1.05 m from the fixed end of the rock. A brittle 
object (such as a glass bottle) is placed between the static loading system and the rock bar. 
When the axial preloading stress reaches the compressive strength limit of the brittle object 
applied to the rock bar by a static loading system, the brittle object is destroyed, and the 
rock bar boundary abruptly changes, and the rock bar then experiences a sudden unloading 
effect. When the preload of the rock bar is released, the dynamic strain signals in the rock 
during the experiment are measured by the strain gauge on the rock. Finally, the time-strain 
curves of the stress and strain at different positions of the rock are obtained by the dynamic 
strain signal and can be compared with the theoretical and simulation results. 
According to the experimental results, the initial unloading pressure and the unloading 
duration during the unloading process are obtained. Then, the data from the experiment are 
defined as the unloading condition for theoretical analysis to calculate the dynamic strain. 
An experiment is conducted to apply a load to the rock bar until the glass bottle fractures. 
The experimental data indicate that, when the bottle is crushed, the strain of rock bar 



 
 
 
440                                                                                         CMES, vol.120, no.2, pp.421-443, 2019 

reaches 350 με . The initial pressure is 17.5 MPa, the unloading time is 1 ms and the 
unloading strain rate is approximately 0.35 s-1. The change in the dynamic strain versus 
time is shown in Fig. 15(a) in detail. With increasing time the strain increases more rapidly. 
In other words, the unloading strain rate increases gradually. The dynamic strains from the 
theoretical and experimental analyses are compared in Fig. 15. Regardless of whether the 
theoretical or experimental results are considered, the unloading strain at a point 1.05 m 
from the free end of the bar is very small, as shown in Fig. 15(a); as shown in Fig. 15(b), 
the unloading strain at a point 0.65 m from the fixed end is greater. Overall, the entire trend 
and the attenuation law of strain versus time are verified by the experiment. Moreover, the 
experimental results match well with the theoretical results at some positions. However, 
there are some discrepancies between the theoretical and experimental results. The Reasons 
for these discrepancies are listed as follows: 
(1) One end of the rock bar is fixed rigidly in the theoretical analysis, while in the 
experiment, the end is fixed by sealing 0.3 m of the rock bar in concrete. Therefore, the 
boundary condition of the fixed end in the experimental case is much more complicated 
than that of theoretical analysis.  
(2) The rock bar is assumed to be made of homogeneous and isotropic elastic material in 
the theoretical analysis. 
(3) The vibration of the integrated framework in the experimental case has an influence on 
the dynamic strain.  
(4) The trigonometric unloading function is applied in the theoretical analysis, whereas the 
unloading function in the experimental case is only similar to the trigonometric function.  
(5) There are inevitable operational errors in the experiment. For example, the initial load 
is displaced slightly from the bar axis. 
There are discrepancies in the rock properties, boundary conditions, and loading functions 
between the experimental and theoretical analyses. In spite of these inevitable 
discrepancies, the experimental signal wave and the attenuation of strain agree well with 
those of the theoretical analysis. The dynamic strain induced by dynamic unloading can be 
calculated by the wave equation, and the results are satisfactory. 
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Figure 15: Dynamic strain curves of test results and theoretical results 
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6 Conclusions 
In this paper, a theoretical mechanical model for the unloading of a deep rock mass is 
established. The rationality of the theoretical model is verified by numerical calculations 
and experiments, and the following conclusions are obtained: 
1) The model clearly reveals the propagation process of an unloading wave in a rock bar 
and shows that the generation of tensile strain in the rock bar is due to the reflection of the 
unloading wave by the fixed boundary. 
2) Through analyzing the rock strain rate, we find that, when the magnitude of unloading 
strain rate is greater than 10-1 s-1, unloading is a dynamic process, which causes significant 
tensile strain, resulting in fracturing of the rock mass. 
3) Under the condition that the initial stress and the unloading time are the same, the tensile 
strain generated by the exponential unloading function is the most significant; the 
trigonometric function is second in importance; and linear strain is the least important. 
However, when the unloading time increases to a certain level, the strain peak caused by 
the exponential function may decrease slightly due to superimposition with the initial stress. 
In the experiment, the unloading curve shape for the initial stress is closer to that of the 
trigonometric function. 
4) By studying the influences of the bar length and the damping coefficient on tensile strain, 
the fluctuation of the bar in the transient unloading process gradually changes from 
underdamped to overdamped as the length of rock bar increases or the damping coefficient 
increases; the dynamic strain loses reciprocity, and no tensile strain is generated. 
5) Both the finite element simulation and the experimental results show that the one-
dimensional wave equation can be used to describe the transient unloading problem of a 
deep rock mass and that accurate results can be obtained. The theoretical model can 
effectively solve the dynamic unloading problem of initial ground stress, which occurs 
dominantly in the direction perpendicular to the excavation face. 
In addition, it should be noted that the application scope of one-dimensional unloading 
model is limited, such as vertical slope, high side wall and excavation of the floor of 
underground powerhouse of hydropower station. In these problems, excavation will form 
a plane, and unloading wave can be approximated as plane wave and propagate to the 
interior of rock mass. At this time, the three-dimensional unloading problem can be 
simplified into one-dimensional unloading model, and the stress wave equation can be 
solved directly in Cartesian coordinate system, which can achieve better results. 
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