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Abstract: The open-source finite element software, OpenSees, is widely used in the 
earthquake engineering community. However, the shell elements and explicit algorithm 
in OpenSees still require further improvements. Therefore, in this work, a triangular shell 
element, NLDKGT, and an explicit algorithm are proposed and implemented in 
OpenSees. Specifically, based on the generalized conforming theory and the updated 
Lagrangian formulation, the proposed NLDKGT element is suitable for problems with 
complicated boundary conditions and strong nonlinearity. The accuracy and reliability of 
the NLDKGT element are validated through typical cases. Furthermore, by adopting the 
leapfrog integration method, an explicit algorithm in OpenSees and a modal damping 
model are developed. Finally, the stability and efficiency of the proposed shell element 
and explicit algorithm are validated through the nonlinear time-history analysis of a high-
rise building. 
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1 Introduction 
The performance of structures against extreme hazards has become an important research 
topic. By discovering the damage evolution process and failure mechanism, the research 
outcomes will support the identification and optimization of vulnerable structures. In 
addition to physical experiments, numerical simulations based on the finite element 
method, as an important and effective approach, have been widely used [Nesnas and 
Abdul-Latif (2001); Bradford and Pi (2012); Lin, Li, Lu et al. (2016)]. Thus far, strongly 
nonlinear analyses of structures have been performed extensively, and corresponding 
simulation strategies have been proposed [Lu, Lu, Guan et al. (2013); Lu, Tian, Cen et al. 
(2018)]. OpenSees, as an open-source finite element software, is now widely used owing 
to its high transparency and freedom [McKenna, Scott and Fenves (2009)]. For strongly 
nonlinear problems, on the one hand, the elements must consider the material and 
geometric nonlinearity simultaneously; on the other hand, the time integration algorithm 
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should be sufficiently stable during the entire computational process. However, further 
improvement on these two aspects is still required in OpenSees. 
In terms of element technology, a typical modeling strategy for the nonlinear analysis of 
buildings is to adopt fiber elements for beams/columns and shell elements for shear walls 
and coupling beams [Lu and Guan (2017)]. In OpenSees, the collapse simulation of 
frame structures has been performed successfully by using fiber elements [Lignos, Chung, 
Nagae et al. (2011); Xie, Lu, Guan et al. (2015)]. However, it would be difficult for the 
fiber elements to represent the axial-flexural-shear coupled behavior of shear walls. 
Therefore, based on the generalized conforming theory, Lu et al. [Lu, Tian, Cen et al. 
(2018)] proposed and successfully implemented a quadrilateral flat shell element, 
NLDKGQ, into OpenSees. Subsequently, they performed a collapse simulation of a high-
rise reinforced concrete (RC) frame-core tube building using NLDKGQ. The NLDKGQ 
element, consisting of the plate element DKQ and the membrane element GQ12, can 
avoid shear locking. By introducing the updated Lagrangian formulation, NLDKGQ can 
simulate the geometric nonlinearity and is suitable for large deformation problems. 
However, NLDKGQ is not adaptable to triangular meshes; therefore, it is not easy to 
adopt the NLDKGQ element for the cases with complicated boundaries or curved 
surfaces. In contrary, triangular shell elements are more adaptive to complicated 
boundaries, and they can effectively solve mesh distortion and warpage problems. 
Therefore, it is necessary to propose a triangular shell element for OpenSees. 
In terms of the time integration algorithm, two types of algorithms exist: implicit 
algorithm and explicit algorithm. The implicit algorithm is typically used, but a 
convergence test is essential at each time step. It is noteworthy that the implicit algorithm 
may fail to perform a complete analysis owing to its strong nonlinearity-induced non-
convergence. Therefore, explicit algorithms are preferred for strong nonlinearity [Lu, Lin, 
Cen et al. (2015); Pham, Tan and Yu (2017)], which can avoid convergence problems. 
Among the existing explicit algorithms, the central difference method is the most popular 
one. Theoretically, the central difference method can be highly efficient when the system 
of equations can be decoupled. However, the decoupling criterion for the central 
difference method requires a diagonal damping matrix. The mass-proportional damping 
matrix is diagonal, but it obviously underestimates the damping ratio of high-order modes 
and consequently does not yield a satisfactory accuracy [Xie (2015)]. In contrast, if the 
stiffness-proportional damping model is introduced to restrain high-order modes, the 
system of equations would fail to decouple, leading to an increased computational time. 
To solve the problems above, researchers have proposed numerous solutions. For 
example, Li et al. [Li, Liao and Du (1992)] derived an explicit difference method for 
viscoelastic dynamic equations; Du et al. [Du and Wang (2000)] derived an explicit 
integration formula for damped elastic lumped-mass structures. However, although the 
algorithms proposed by Li et al. [Li, Liao and Du (1992)] and Du et al. [Du and Wang 
(2000)] can ensure the decoupling of the system of equations, the equations for 
displacement and velocity are required to be established and solved separately at each 
time step, which significantly increases the computational time. 
Consequently, based on the generalized conforming theory and the updated Lagrangian 
formulation [Long, Cen and Long (2009)], a new triangular shell element NLDKGT is 
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proposed in this work that is suitable for cases with complicated boundary conditions and 
problems with strong nonlinearities. Furthermore, by adopting the leapfrog integration 
method, an explicit algorithm in OpenSees and a modal damping model are developed in 
this work. The explicit integration algorithm can ensure the decoupling of the system of 
equations. The accuracy and reliability of the triangular shell element are validated 
through typical cases. Finally, the stability and efficiency of the proposed shell element 
and the explicit algorithm are validated through the nonlinear time-history analysis of a 
high-rise building. 

2 A new triangular shell element NLDKGT 
2.1 Basic formulation under small deformation 
To develop a suitable triangular shell element, the triangular planar membrane element 
GT9 [Xu and Long (1993)] and the triangular thin plate element DKT [Batoz, Bathe and 
Ho (1980)] were used to construct the new triangular shell element in this work. The 
planar membrane element GT9 contains three degrees of freedom (DOFs) at each node 
by introducing a rigid rotational freedom. In addition, a higher accuracy is achieved by 
defining higher order displacement fields [Xu and Long (1993)]. The plate element DKT 
is based on the Kirchhoff theory and can effectively avoid shear locking. Fig. 1 illustrates 
the decomposition of the NLDKGT element. Consisting of GT9 and DKT, the NLDKGT 
has six DOFs at each node. This will greatly reduce the connection modeling workload 
among the shell and the beam/column elements. 

 
Figure 1: Decomposition of NLDKGT element 

The nodal displacement q is defined as follows: 
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The displacement u of GQ9 can be obtained through superposition of u0 and uθ as shown 
in Eq. (4). Here, u0 denotes the linear part of the displacement field, while uθ is an 
additional rotation displacement. Through Eqs. (5) to (8), u0 and uθ can derived [Xu and 
Long (1993)]. 

θuuu += 0              (4) 
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Here, A is the area of GT9 element; , ,i j m m j i j m i m ja = x y - x y b = y - y  c = x - x , and (xi, yi) 
is the coordinate of node i in GT9 element in the local system. Then, Eqs. (9) and (10) are 
adopted to solve the strain εm. 
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The stiffness matrix of GQ9 is as follows: 

∫∫=
eA

mmmmm AdT BDBK              (11) 

Here, Dmm represents the material matrix of GQ9 element. Generally, if the element is 
made of isotropic linear elastic materials, Eq. (12) can be adopted to derive Dmm. In Eq. 
(12), E represents the elastic modulus, h represents the element thickness, and ν 
represents Poisson’s ratio. 
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Eq. (3) defines the rotational DOFs of the DKT element [Batoz, Bathe and Ho (1980)]. 
The relation between nodal displacements qb and rotational strain χb is as follows: 
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Details on Hx and Hy are available in Batoz et al. [Batoz, Bathe and Ho (1980)]. 
The stiffness matrix of DKT is as follows: 

∫∫=
eA

bbbbb AdT BDBK              (14) 

Here, Dbb denotes the material matrix of DKT. Generally, if the element is made of 
isotropic linear elastic materials, Dbb can be derived as: 
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For small deformations, based on the plate stiffness matrix Kb and the membrane 
stiffness matrix Km, the local stiffness matrix of the NLDKGT element can be derived 
according to the DOF sequencing in Eq. (1). Then, the global element stiffness matrix 
can be obtained through coordinate transformation. 

2.2 Geometric nonlinearity 
At each time step t, through the updated Lagrangian formulation, the current deformation 
can be adopted to update the stresses and strains in incremental forms. Based on 
Kirchhoff’s and von Karman’s assumptions [Podio-Guidugli (1989)], a linear part (∆e)  
and a nonlinear part (∆η) constitute the shell element strain increment (∆ε). The linear 
part (∆e) can be derived from plate rotational strain increment ∆χb and membrane strain 
increment ∆εm, as shown in Eqs. (16) and (17), respectively. 

ηeε ∆+∆=∆              (16) 
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From t to t + dt, Eq. (18) is adopted to update the shell element stress tensor: 
εDσσσσ ∆=∆∆+=+

tan
d ttt              (18) 

Here, at time t, Dtan is the tangential constitutive matrix. In the local coordinate system 
of the shell element, the system of equations using the updated Lagrangian 
formulation is as follows: 
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Here, t+dtF and tR represents the external and internal force vector, respectively; the 
subscript represents the time step. In terms of the stiffness matrix, Kl is the linear part and 
Knl is the nonlinear part, which can be obtained through Eqs. (20) and (21), respectively. 
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Here, by integrating Dtan through the element thickness as shown in Eq. (22), Dmm, Dmb, 
Dbm, and Dbb can be solved. Using the bending plate element interpolation function, the 
matrix G can be derived [Batoz, Bathe and Ho (1980)]. Variables corresponding to the 
membrane element internal force vector constitute the matrix Nt  (Eq. (23)). 
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Eq. (24) can be used to solve the elemental internal force vector tR in Eq. (19): 
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2.3 Implementation in OpenSees 
Under the class of shell in OpenSees, a new class named ShellNLDKGT is added. During 
the implementation of the NLDKGT, nearly no source code change is made beyond the 
shell element domain. Through the official website of OpenSees 
(http://opensees.berkeley.edu), users can download corresponding source code of the 
NLDKGT element. 
It is worth noting that, the proposed NLDKGT element is compatible with other elements 
in OpenSees. Thus, for a real finite element model, users can use the NLDKGT elements in 
complicated boundary areas, and use other four-node shell elements in regular-shaped areas.  

2.4 Validation through classical benchmarks and RC specimens 
In this section, three classical numerical benchmarks (Sections 2.4.1 to 2.4.3), one 
buckling analysis of an H-shaped beam (Section 2.4.4), and the simulation of two 
reinforced concrete (RC) shear wall specimens (Section 2.4.5) are used for the 
performance validation of the triangular shell element NLDKGT. For the convenience of 
discussion, all parameters in the classical benchmarks (Sections 2.4.1 to 2.4.3) are non-
dimensional, while the units of the parameters in Sections 2.4.4 and 2.4.5 keep the same 
with the real components. 

2.4.1 Scordelis-Lo roof problem 
The Scordelis-Lo roof problem is shown in Fig. 2. The cylindrical panel is loaded vertically 
by a uniform dead weight of g=90. The panel is supported by end diaphragms but the sides 
are free. Owing to the symmetry, only one quarter of the panel is established. Three types 
of meshes were adopted in this analysis, as listed in Tab. 1. The vertical deflection at point 
A was recorded. For this case, the geometric nonlinearity was not considered.  
The exact solution of 0.3024 provided by MacNeal and Harder [MacNeal and Harder 
(1985)] was used as a reference. The results obtained using the DKT-CST-15RB element 
[Nicholas, Henryk and Ted (1986)] and OLSON element [Olson and Bearden (1979)] 
were compared with the results obtained using the NLDKGT element. The DKT-CST-
15RB element is a superposition of the DKT plate bending element and the CST plane 
stress element, with 15 DOFs [Nicholas, Henryk and Ted (1986)]. The OLSON element 
is an 18-DOF flat triangular shell element reformulated by combining a bending triangle 
with a plane stress triangle incorporating in-plane rotations at each vertex [Olson and 
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Bearden (1979)]. Tab. 1 shows the comparison results. The NLDKGT element is more 
accurate compared to the other two elements. 
 

 

R
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40° 
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Diaphragm
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Mesh 2 × 2

Mesh 4 × 4

… … 

t

 
Figure 2: Scordelis-Lo roof problem 

Table 1: Comparison of results for Scordelis-Lo roof problem 

Mesh OLSON DKT-CST-15RB NLDKGT 
2×2 

(8 elements) 
0.3809 0.2976 0.3787 

4×4 
(32 elements) 

0.2942 0.2144 0.2928 

10×10 
(200 elements) 

0.2970 0.2737 0.2976 

Exact solution 0.3024 

2.4.2 Twisted beam problem 
Fig. 3 shows the twisted beam problem [MacNeal and Harder (1985)]. A concentrated 
load is applied at the tip along the in-plane (P) and out-of-plane (Q) directions, 
respectively. A mesh of 2×12 was adopted in this problem. Two load cases were 
analyzed: (1) P=1, Q=0; and (2) P=0, Q=1. The displacement along the loading direction 
at the tip was recorded. For this case, the geometric nonlinearity was not considered. 
The exact solutions provided by MacNeal et al. [MacNeal and Harder (1985)] were used 
as a reference. Tab. 2 shows the results of the comparison and illustrates the accuracy of 
the NLDKGT element.  
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Figure 3: Twisted beam problem 

Table 2: Comparison of results for twisted beam problem 

Load case NLDKGT Exact solution Error 
1 (in-plane) 0.005354 0.005424 -1.29% 

2 (out-of-plane) 0.001673 0.001754 -4.62% 

2.4.3 Large deformation problem of a cantilever beam 
To validate the geometric nonlinearity simulation capacity of the NLDKGT element, a 
cantilever beam subjected to a pure bending load (out-of-plane) is analyzed [Horrigmoe 
and Bergan (1978); Park, Cho and Lee (1995)], as shown in Fig. 4. The mesh of 1×10 is 
adopted. Fig. 5(a) shows the relationship between the normalized moment (κ=M/Mmax) 
and the horizontal and vertical displacements at the loading point. Fig. 5(b) shows the 
deformed shape of the cantilever beam under different bending moments. The results 
show that the NLDKGT element can simulate the large deformation and rotation 
problems with good accuracy, which is similar to the S4 element in ABAQUS. Such a 
large deformation capacity makes the NLDKGT element highly suitable for geometric 
nonlinearity problems.  
 

 
Figure 4: A cantilever beam subjected to a bending moment at the end 
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(a) Displacement of the loading point (u 
and w are the displacements in the X and 
Z directions, respectively) 

(b) Deformed shape of the 
cantilever beam 

Figure 5: Deformation of the cantilever beam 

2.4.4 Buckling analysis of an H-shaped beam 
An H-shaped beam shown in Fig. 6 is used to demonstrate the buckling analysis. An 
isotropic elastic material (E=2.06×1011 Pa, ν=0.3) is used for the beam. Both the 
NLDKGQ and NLDKGT elements were adopted in this analysis, and the corresponding 
meshes are shown in Fig. 6. The two ends of the H-shaped beam were simply supported. 
In finite element simulations, initial defects (e.g., initial bow imperfections leading to 
additional moment to the middle of components) are theoretically necessary to simulate 
the buckling phenomenon. According to the recommendations in EN 1993-1-1 [CEN 
(2005)], a distributed load of p=0.5 N was imposed at each node on the web of the H-
shaped beam to simulate the initial defects. Subsequently, a pressure load was applied at 
the top of the H-shaped beam, and the relation between the vertical load and 
displacement along the loading direction was recorded, as shown in Fig. 7.  

 
Figure 6: H-shaped beam for buckling analysis (Unit: m) 
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Figure 7: Force-displacement relation at the top of H-beam 

As shown in Fig. 7, the model using NLDKGQ fails to converge when the imposed load 
approaches 200 kN, i.e., when the H-shaped beam just begins to buckle. This 
phenomenon is due to the warping of the quadrilateral shell element. In contrast, a stable 
result is obtained using the triangular shell element NLDKGT. Fig. 8 shows the 
deformation of the H-shaped beam along the Z direction. The blue and red solid lines 
denote the deformation shape using the NLDKGT and NLDKGQ elements, respectively, 
at the time step when NLDKGQ fails to converge. The dashed blue line denotes the final 
deformation of the model using the NLDKGT element. Through the analysis of this case, 
the NLDKGT element is proven as more stable and reliable than the NLDKGQ element 
for the buckling analysis.  
 

 

 

(a) Deformation of the web along the Z 
direction 

(b) Deformation of the H-shaped beam  
(with a displacement scale factor of 10) 

Figure 8: Deformation of H-shaped beam 
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2.4.5 RC shear wall experiments  
To investigate the performance of the NLDKGT element in simulating RC specimens, 
the hysteretic behavior of two shear wall specimens is analyzed using OpenSees based on 
the multilayered shell section model [Lu, Xie, Guan et al. (2015)] and the NLDKGT 
element. The test specimens include one rectangular wall (denoted as SW1-1) [Zhang 
(2007)], and one coupled wall (denoted as CW-3) [Chen and Lu (2003)]. The meshing 
schemes and corresponding hysteretic curves are shown in Fig. 9. The comparisons 
between the test and simulation results indicate that the NLDKGT element can provide 
satisfactory simulation results in the nonlinear behavior of RC shear walls. 
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(b) CW-3 

Figure 9: Lateral force versus top displacement hysteretic curves of RC shear walls 

3 Explicit algorithm and its implementation in OpenSees 
Eq. (27) shows the equations of motion for a structural system. After adopting the central 
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difference method, Eq. (27) can be expressed as Eq. (28). 
tttt PRuCuM =++               (27) 
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where M and C are the mass and damping matrices of the system, respectively; R and P 
are the resisting and external force vectors of the system, respectively; u, u , and u  
denote the displacement, velocity, and acceleration, respectively; the subscript denotes 
the time. 
It is difficult to decouple the equations if C is not a diagonal matrix. To avoid this 
problem, most researchers adopt the mass-proportional damping model for the central 
difference method. However, mass-proportional damping will underestimate the damping 
ratio of high-order vibration modes, which sometimes leads to unreasonable results. 

3.1 Leapfrog integration method  
The leapfrog integration method [Hockney (1970)] is an improved format proposed based 
on the Verlet integration method [Verlet (1967)]. In the leapfrog method, the equations 
for updating velocity and displacement are as follows: 

tttttt
∆+=

∆−∆+
uuu 

2
1

2
1              (29) 

t
ttttt ∆+=

∆+
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2
1uuu               (30) 

To adopt the leapfrog method, Eq. (27) and Eqs. (29)-(30) must be solved simultaneously. 
The velocity and displacement are not defined at the same time step. Thus, at first, tu  in Eq. 
(27) is replaced with 

tt ∆−
2
1u  to perform the computation, which is equivalent to the backward 

difference format for velocity. Subsequently, Eq. (27) can be expressed as follows: 

tttt PRuCuM =++ ̂              (31) 
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Substituting Eqs. (29)-(30) and Eq. (32) into Eq. (31) yields 
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Eq. (33) shows that the system of equations can be decoupled when the mass matrix is 
diagonal. However, in this method, the kinetic and potential energies of the system are 
not defined at the same time step, leading to a failure in calculating the total energy 
directly. To solve this problem, certain additional steps are added to revise the algorithm. 
The entire process of the revised format is as follows [Sandvik (2018)]: 
(1) First, calculate tt ∆+u  through Eq. (33); 
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(2) Subsequently, calculate tu  again through the central difference method using tt ∆+u  in 
Step (1); 
(3) Solve tu  using the newly obtained tu : 

( )tttt RuCPMu −−= 

-1              (34) 

(4) Solve tt ∆+u  using Eqs. (29)-(30). 
The revised format above was performed through an iterative process. However, the 
additional computational cost is still relatively small, because the equations are simple. In 
addition, the revised format will provide the velocity and displacement at the same time 
step and is convenient to calculate the total energy at each time step directly. 
Because the backward difference format is adopted for the velocity, the stability criterion 
of the algorithm is different from the central difference method. Here, the conclusion will 
be given directly as follows (more details are provided in Appendix A): 

( ) ( )
π

ζζ
ω

ζζ n

n

Tt -12-1 22 +=+≤∆              (35) 

where, ωn is the highest angular frequency of the system; Tn is the shortest period of the 
system; ζ is the damping ratio corresponding to ωn. Eq. (35) shows that the numerical 
stability of the algorithm is not only related to the system frequency but also to the 
damping ratio. 
For a finite element model, the shortest period Tn can be determined by solving 
generalized eigenvalues of the system. But, to simplify this procedure, an additional 
method is often adopted: to solve the shortest period of each element (denoted as 
min(Tn

(e))) [Wang (2003)]. It has been proved that, the substitute period min(Tn
(e)) is 

always not longer than Tn. The min(Tn
(e)) for each element is usually approximately 

estimated by using πL/C. Here, L is the characteristic length of the element; C is the wave 
speed. These parameters may differ for different kinds of elements. 
For example, for truss and beam elements, L is the length of the element, and C can be 
taken as ρE , where E is the Young’s modulus, and ρ is the mass density. For shell 
elements, three kinds of L are provided by Hallquist [Hallquist (2006)], and C can be 
taken as ( )21 νρ −E , where ν is the Poisson’s ratio. 

Although different estimation methods can be found for min(Tn
(e)), the basic concept is 

identical: The stable time step will be smaller for models with smaller element sizes and 
larger stiffness. Therefore, appropriate meshing schemes should be adopted for models 
using explicit algorithms. 
The explicit algorithm above was implemented in OpenSees through a new class called 
Explicitdifference, which falls under the class of Integrator. The new algorithm fits the 
OpenSees framework. The source code of the method is available at the official website 
of OpenSees (http://opensees.berkeley.edu). 
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3.2 Damping model adopted in explicit algorithm 
To avoid a high computational cost, restrain unreasonably high frequency vibrations, and 
ensure the equations to be decoupled, it is necessary to use the superposition of the modal 
damping and mass-proportional damping models. Thus, the modal damping model was 
implemented in OpenSees. The modal damping can be expressed as follows [Clough and 
Penzien (2003)]: 

MφφMC )2(
1

T
m ∑

=

=
N

n
nn

n

nn

m
ωζ

             (36) 

where Cm is the modal damping matrix; M is the mass matrix; mn, ζn, ωn, and φn are the 
modal mass, modal damping ratio, natural vibration frequency, and mode shape 
corresponding to the nth mode, respectively. The damping model that this work adds to 
OpenSees ensures that the superposition of the damping ratios from the modal damping, 
and the mass-proportional damping of each vibration mode is equal to the assigned total 
damping ratio. 

4 Collapse simulation of a high-rise RC frame-core tube building 
In this section, a 42-story RC frame-core tube building with a height of 141.8 m (Fig. 10) 
(denoted as Building 2N by Lu et al. [Lu, Xie, Guan et al. (2015)]) was simulated using 
OpenSees. More details about this building are provided by Lu et al. [Lu, Xie, Guan et al. 
(2015)]. The beams and columns were simulated with fiber beams. The shell element 
combined with the multilayered shell section was adopted to model the shear walls. Hence, 
both the material and geometric nonlinearity can be considered. The shear walls in this 
high-rise building are of regular shapes. In this work, coupling beams of the core tube were 
simulated using NLDKGT, while other shear walls were modeled using NLDKGQ.  

 
Figure 10: Three-dimensional view and typical layout of Building 2N (units: mm) [Lu, 
Xie, Guan et al. (2015)] 
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First, the El-Centro 1940 ground motion was adopted as the input along the X direction. 
The peak acceleration was adjusted to 5.1 m/s2 (2% probability of exceedance in 50 years, 
as defined in the Chinese code [CMC (2010)]). According to the mesh size, material 
property, and element size, the time step was set to 4×10-5 s for the explicit algorithm, and 
0.01 s for the implicit algorithm. Tab. 3 provides the information of the analyzed cases. 

Table 3: Case information for Building 2N 

ID Time integration Damping model Remarks 
Im-RL Implicit method Rayleigh damping  

Ex-MS Explicit method Mass-proportional 
damping  

Ex-MS+MD10 Explicit method Mass-proportional+Modal 
damping 

First 10 modes are 
considered 

Ex-MS+MD30 Explicit method Mass-proportional+Modal 
damping 

First 30 modes are 
considered 

Fig. 11 shows the comparison of the roof displacement time history. The results of the 
Ex-MS+MD model agree well with that of the Im-RL model (using the implicit algorithm 
and the Rayleigh damping). The results of the Ex-MS+MD10 model are sufficiently 
accurate, while the results of the Ex-MS+MD30 model are smoother. This implies that, in 
this case, the modal damping of the first 10 vibration modes is sufficient to avoid 
unreasonably high frequency vibrations. In contrast, significant variations exist when 
only the mass-proportional damping model is adopted (i.e., the Ex-MS model). The 
results of the Ex-MS model underestimated the damping ratio of high-order vibration 
modes. Consequently, the contribution of the high-order vibration model to the structural 
deformation cannot be ignored.  

 

Figure 11: Time history curves of roof displacements in Building 2N 

Fig. 12 shows the comparison of the inter-story drift ratio (IDR) envelop. Similar to the 
findings in Fig. 11, the superposition of the mass-proportional and modal damping (i.e., 
the Ex-MS+MD model) will provide similar results to the implicit algorithm using the 
Rayleigh damping (i.e., the Im-RL model). However, if only the mass-proportional 
damping model is adopted, the IDR results are much greater. 
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For large-scale engineering structures, the fundamental periods are relatively long. 
Consequently, the high-order vibration modes contribute significantly to the structural 
responses. Thus, the mass-proportional damping model alone, to some extent, is not 
suitable for large-scale structures. It is more appropriate to adopt the superposition of the 
modal damping and mass-proportional damping models to avoid unreasonably high 
frequency vibrations.  

 

Figure 12: Inter-story drift envelope of Building 2N 

An incremental dynamic analysis (IDA) was performed using the Ex-MS+MD10 model, 
and the peak accelerations were adjusted to 5.1 m/s2, 20 m/s2, 40 m/s2, and 50 m/s2, 
respectively. Here, 20% of the initial slope is used to find the collapse intensity [FEMA 
(2000); Jalayer (2003); Villaverde (2007)]. According to the criterion above, Building 2N 
will collapse when the peak acceleration of the El-Centro record is larger than 40 m/s2.  

  

            (a) Inter-story drift envelope (b) Relation between PGA and the 
maximum IDR  

Figure 13: IDA results 
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Tab. 4 shows the efficiency comparison among different cases in Tab. 3 and an additional 
case (explicit algorithm+Rayleigh damping). Among all the cases using the explicit 
algorithm, the Ex-MS, and Ex-MS+MD models both require the least computational time 
cost. However, when the Rayleigh damping model is adopted for an explicit algorithm, 
the time cost becomes much larger (approximately three times that of the Ex-MS model). 
The primary reason of this phenomenon is that, the Ex-RL model spends significantly 
more time on the damping matrix contributed by the stiffness matrix at each time step. 
The total computational cost of the two cases using the implicit algorithm is less than that 
of the explicit algorithm. It is noteworthy that, when the implicit algorithm is adopted to 
perform the collapse analysis (i.e., the Im-RL2 model), the computational time will 
increase significantly. This is because the number of iterations will increase significantly 
when the structural components enter strong nonlinearity. Even with a larger convergence 
tolerance, the average time cost at each step is still 2.4 times that of the Im-RL1 model 
(which has a smaller ground motion intensity). The explicit algorithm does not require 
any iteration. This advantage means that the time cost of the explicit algorithm is 
proportional to the number of time steps. Thus, for strongly nonlinear problems, 
compared with the explicit algorithm, the implicit algorithm requires more time cost, and 
sometimes demonstrates no satisfactory results because of convergence failure. 
Although the Ex-MS model also demands less computational time, its results are not 
accurate because the mass-proportional damping alone cannot control the unnecessary 
high-order vibration. Thus, the Ex-MS+MD model is the best option for the collapse 
analysis of this building. 

Table 4: Computational efficiency of each case 

ID Time 
integration Damping model Time step Time cost Time cost 

per step 

Ex-MS 
Explicit 
method 

Mass-proportional 
damping 4×10-5 s 117 h 0.7 s 

Ex-MS+MD Mass-proportional 
+ modal damping 4×10-5 s 118 h 0.7 s 

Ex-RL Rayleigh damping 4×10-5 s 360 h 2.2 s 

Im-RL1 Implicit 
method 

Rayleigh damping 
(5.1 m/s2) 0.01 s 38.4 h 57.6 s 

Im-RL2 Rayleigh damping 
(60 m/s2) 0.01 s 79 h* 140.7 s 

* Failed to converge at t=20.21 s, while the total analysis time is 24.00 s. 

5 Conclusions 
For strongly nonlinear analysis, the element and time integration algorithm are two 
important challenges. However, the shell elements and the explicit algorithm in 
OpenSees still require further improvements. Therefore, a triangular shell element 
NLDKGT and an explicit algorithm are proposed and implemented in OpenSees in this 
work. The conclusions are as follows: 
(1) Through the validation of classical benchmarks, the triangular shell element 
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NLDKGT was proven accurate and reliable. Compared with the quadrilateral element, 
the NLDKGT element could not only well consider the geometric nonlinearity, but also 
exhibited great advantages in strong nonlinear and warpage problems, such as buckling 
analysis. In addition, it is more flexible to use NLDKGT elements in complicated 
boundary areas to avoid mesh distortion; 
(2) An explicit algorithm, along with a modal damping model, was implemented into 
OpenSees based on the leapfrog method. Through the nonlinear time history analysis of a 
high-rise RC frame-core tube building, the proposed shell element and explicit algorithm 
demonstrated higher efficiency and more stable results in strong nonlinear problems. 
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Appendix A. Stability of proposed explicit algorithm 
For simplicity, a single DOF elastic system without external load is considered. Eq. (34) 
can be expressed as follows: 
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where m denotes the mass; c denotes the viscous damping coefficient; k is the stiffness; F 
is the external load; u is the displacement; the subscript denotes the time. 
According to structural dynamics, the following relations exist: 

ωζω mcmk 2,2 ==                         (A2) 

Substituting Eq. (A2) in Eq. (A1) yields 
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Substituting ii uu = , Eq. (A3) can be expressed as follows: 
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The stability criterion of the algorithm is 
1])([ ≤Aρ                         (A8) 

where ρ is the spectral radius of [A]. This implies that ρ is the upper bound of the absolute 
values of the eigenvalues for [A]. The eigenvalues of matrix [A] are as follows: 

( )[ ]222342
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Subsequently, the stability criterion can be obtained as follows: 
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