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Abstract: Peridynamics (PD) is a widely used theory to simulate discontinuities, but its 

application in real-world structural problems is somewhat limited due to the relatively 

low-efficiency. The numerical substructure method (NSM) presented by the authors and 

co-workers provides an efficient approach for modeling structures with local 

nonlinearities, which is usually restricted in problems of continuum mechanics. In this 

paper, an approach is presented to couple the PD theory with the NSM for modeling 

structures with local discontinuities, taking advantage of the powerful capability of the 

PD for discontinuities simulation and high computational efficiency of the NSM. The 

structure is simulated using liner elastic finite element (FE) model while the local 

cracking regions are isolated and simulated using a PD substructure model. A force 

corrector calculated from the PD model is applied on the FE model to consider the effect 

of discontinuities. The PD is integrated in the substructure model using interface 

elements with embedded PD nodes. The equations of motions of both the NSM system 

and the PD substructure are solved using the central difference method. Three examples 

of two-dimensional (2D) concrete cantilever beams under the concentrated force are 

investigated to verify the proposed coupling approach. 
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1 Introduction 

Fracture plays an essential role in the analysis of brittle structures, e.g., concrete 

structures. However, it remains a challenge task in computational mechanics for 

simulations of the sudden discontinuities. Finite element method (FEM) based on 

continuum mechanics has a limitation in modeling the fracture, due to that displacement 

field is not continuous across the crack surface and derivatives are not available. In order to 

remedy the shortcoming, various ‘enhanced’ FE methods (e.g., molecular dynamics 

[Ravelo and Holian (1995)], extended FEM [Cox (2009); Mohammadi (2008)], virtual 

crack closure technique [Leski (2007)], discontinuous FEM [Belytschko, Moës, Usui et al. 

(2001)], etc.) have been proposed to solve the discontinuous problems. Peridynamics (PD) 

is one of the most widely used methods for simulating the discontinuities [Silling (2000, 
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2003); Silling and Askari (2004, 2005); Silling and Bobaru (2005)]. In the PD theory, the 

mathematical description of continuum mechanics is in the forms of integral equations 

rather than partial differential equations. Therefore, the spatial partial derivatives are not 

required, and the PD theory is able to simulate discontinuity behaviors, e.g., cracks. In the 

PD theory, the integral region is discretized into a collection of particles, and each 

particle only interacts with other ones in a fixed-radius neighborhood. There are two 

types of PD models available, i.e., bond-based PD and state-based PD models. The 

widely used bond-based PD model is capable of modeling three-dimensional (3D), two-

dimensional (2D) plane-stress and 2D plane-strain problems but with a fixed Poisson’s 

ratio of 1/4, 1/3 and 1/4, respectively [Gerstle, Sau and Silling (2005, 2007)]. In order to 

circumvent the limitation of the fixed Poisson’s ratio, Gerstle et al. [Gerstle, Sau and 

Silling (2007)] proposed a micropolar peridynamic model, in which a Poisson’s ratio 

range from -1 to 0.5 is specified to compute the pairwise force and moments between 

particles. On the other hand, the state-based PD theory calculates the material strain at 

one particle based on the displacements of all particles within its neighborhood. A 

constitutive model from conventional continuum solid mechanics can be adopted to 

calculate the stresses of each particle [Silling, Epton, Weckner et al. (2007)]. A large 

amount of research based on the state-based PD theory has been conducted in the past 

decade [Foster, Silling and Chen (2010); Foster, Silling and Chen (2011); Littlewood 

(2010); Warren, Silling, Askari et al. (2009)]. 

Although PD theory could well simulate the fracture behaviors or other discontinuities, it 

remains a difficult task to analyze the real-world practical engineering problems due to 

the prohibitive computational cost. Macek, Silling and their co-workers [Agwai, Guven 

and Madenci (2009); Lall, Shantaram and Panchagade (2010); Liu and Hong (2012); 

Lubineau, Azdoud, Han et al. (2012); Macek and Silling (2007); Madenci and Oterkus 

(2014a)] proposed an approach coupling of PD model and FEM, which is able to reduce 

the computational cost significantly. However, in the conventional PD and FEM coupling 

method, the local crack or fracture region needs to be pre-determined and the PD model 

is simulated during the whole process of analysis. Since that in the practical engineering, 

the location and area of crack region are unknown, in addition, the displacement field of 

the region may be still continuous before the crack occurs, and therefore, it is not 

necessary to use the PD model during the entire analysis process. In order to overcome 

these drawbacks of the FEM/PD coupling approach, this paper proposes a novel coupling 

approach based on an isolated substructure method [Sun, Gu, Zhang et al. (2017)], in 

which the global structural response is simulated using an elastic coarse-mesh FE model, 

named as the master model, while the local discontinuous region will be isolated and 

simulated using the PD substructure model. The Master model keeps unchanged during 

analysis, and the PD substructure models are created whenever new cracked regions 

occur. Therefore, there is no need to know the local discontinuous region in advance. 

The proposed approach has several advantages compared with the conventional FEM/PD 

coupling approach: (1) The location and area of the local cracked region do not need to be 

pre-determined; (2) The PD substructure system is only performed when the master 

structure detects the cracking behavior of this region; (3) Various PD substructures are not 

dependent on each other and they can be computed in parallel; (4) The master structure 

system and the PD substructure systems can be simulated using the most convenient 
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software platforms taking advantage of their powerful capacities of computation. 

This paper is organized as follows. Section 2 briefly summaries the bond-based PD 

theory and NSM, and the coupling of the PD and NSM; Section 3 introduces the central 

difference methods adopted to solve the PD model and NSM and the integration 

technique of PD and NSM; Section 4 gives three application examples of 2D concrete 

cantilever beam with pre-crack and subject to concentrated end force to verify the 

coupling approach. 

2 Coupling of peridynamic (PD) and numerical substructure method (NSM) 

2.1 Bond-based peridynamic theory  

In the conventional continuum mechanics, the equation of motion is satisfied at any 

material point. However, bond-based PD theory computes the material point force by 

integrating the forces exerted by all surrounding points within the horizon  . The 

equation of motion of the particle ix  in reference configuration as shown in Fig. 1 can be 

written as, 

( ) ( ) ( ), , ,
i

i j it dV t = +u x f η ξ b x  (1) 

where t represents the time, ( ),i tu x  denotes the acceleration of particle ix , b  is the 

body force of the particle ix ,   indicates the material density, i  is the neighborhood of 

particle ix , f  represents the pairwise force vector that particle jx  exerts on particle ix , 

j i= −ξ x x  indicates the relative position vector between the particles ix  and jx  at the 

reference configuration 0  and ( ) ( ), t ,j i t= −η u x u x  denotes the relative displacement 

vector at the current configuration t . 

 

Figure 1: Schematic of PD in reference and current configurations 

The pairwise force introduced in Huang et al. [Huang, Lu and Qiao (2015)] can be 

defined as, 
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( ) ( ) ( ), , ,sc t 
+

=
+

ξ η
f η ξ ξ ξ

ξ η
 (2) 

where s  denotes the bond stretch, given as ( )s = + −ξ η ξ ξ , and 

( ) ( ) ( ), 0, ,c c g  =ξ ξ  is the micromodulus function indicating the stiffness of a 

pairwise bond, and kernel function ( ),g ξ   describes the spatial distribution of the 

intensity of long-range forces in the material [Huang, Lu and Qiao (2015)]. The 

micromodulus ( )0,c   is obtained based on the consistency between the strain energy 

densities using the PD theory and classical continuum theory, respectively. Parameter 

( ),ij t ξ  is a factor reflecting the breakage of bond between the particles ix  and jx , 

( ) 0

0

1
,

0

ij

ij

ij

s s
t

s s



= 


ξ   (3) 

in which 0s  indicates the critical stretch for bond failure, which can be computed by 

setting the work required to break all the bonds per unit volume identical to the energy 

release rate fG [Silling and Askari (2005)]. 

A damage or failure degree for the PD material at particle ix  can be defined by using the 

ratio of amount of broken bonds to the total bonds [Silling and Askari (2005)], 

( )
( ), ,

, 1 i

i

j i j

i

j

t dV
D t

dV


= −





x x
x  (4) 

In the PD theory, the integral volume of the particles x  and x̂  near the surface (see Fig. 

2), referred as ( )V x  and ( )ˆV x , are smaller than that of the inside particle with full sphere 

0V  (i.e., 
3

0

4

3
V


=  in 3D and 2

0V =  in 2D). If the bond micromodulus near the surface 

is taken as that inside the material and, therefore, the strain energy density near the 

surface is smaller than that inside the material, resulting in a “softening effect” near the 

surface (named as surface effect herein). 

It is reasonable that the strain energy density in each particle should be the same, thus, 

the computed bond micromodulus value near the surface should be larger than that 

inside the material. 
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Figure 2: PD particles near the surface 

In order to counteract the surface effect, several methods, such as the volume method 

[Bobaru, Foster, Geubelle et al. (2016); Le and Bobaru (2018)], the force density method 

[Le and Bobaru (2018); Madenci and Oterkus (2014a, 2014b); Oterkus (2010)], the 

energy method and the force normalization method [Le and Bobaru (2018); Macek and 

Silling (2007)], have been proposed in the past few years. In this paper, the energy 

method is adopted to account for the surface effect, in which a multiplication correction 

vector is defined as, 

( ) ( ) ( ) ( )
T

x y zw w w w w w  
 =  h x x x x  (5) 

where ( ) ( ), ,iw i x y z=x  is the strain energy of the particle based on prescribing uniaxial 

tension boundary conditions in x, y, and z directions, respectively. Due to the symmetry 

inside the material, there is: ( ), y,ziw w i x = = . 

Since the multiplication correction vector ( )ih x  is only defined in the particle ix , the 

multiplication correction vector of the bond between ix  and jx  near the surface can be 

expressed as, 

( ) ( ) ( )( ) 2i j= +k ξ h x h x   (6) 

After substituting Eq. (6) into Eq. (1), the equation of motion with surface correction is 

modified as, 

( ) ( ) ( ) ( ), , ,
i

T

i j it dV t = +u x k ξ f η ξ b x   (7) 

It is worth mentioning that if the particles are inside the material, the multiplication 

correction vector  1 1 1
T

=k  and there is no surface correction. 

2.2 Numerical substructure method (NSM) 

The numerical substructure method (NSM) [Sun, Gu, Zhang et al. (2017)] provides an 

efficient way to model structure with local nonlinearities. The whole structure is 

simulated using a linear elastic FE model denoted as master structural model, while each 
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local nonlinear region is computed using an isolated and possibly refined substructure 

model. In the NSM, the equation of motion for a nonlinear structural system after spatial 

discretization can be expressed as, 

( )+ + =MD CD R D F  (8) 

where M and C are the mass and damping matrices, respectively, D  indicates the nodal 

displacement vector, the dot and double dot on top of a variable denote the first and second 

derivative of that variable, ( )R D  and F  represent the resisting force and external force 

vectors, respectively. A nonlinear force corrector F is introduced for computing the 

difference between the linear elastic prediction KD  and the nonlinear resisting force R , i.e.,  

= −F KD R  (9) 

Substituting Eq. (9) into Eq. (8), yields, 

+ + = +MD CD KD F F  (10) 

It needs to point out that the nonlinear force corrector F  is only contributed by the 

nonlinear regions, i.e., vanishes in the linear elastic regions. During analysis, the Master 

model keeps unchanged as indicated by the left hand side of Eq. (10), and new 

substructure models are created whenever new nonlinear regions are detected. There is no 

need to know the nonlinear region in advance. In this paper, the nonlinear force corrector 

F  is simulated by using the bond-based PD model. The coupling of PD model and NSM 

is presented in the following section. 

2.3 Coupling of PD and NSM 

In the coupling approach, the structure with local crack (see Fig. 3(a)) is simulated using 

the FE elements (as illustrated in Fig. 3(b)), and the local cracking region is modeled in 

an isolated substructure which is discretized into a collection of PD nodes as shown in 

Fig. 3(c). In this paper, additional auxiliary FE elements with embedded PD nodes [Liu 

and Hong (2012)] are established to connect the PD nodes with the FE elements. And the 

integration and data transfer between the master structure system and the PD substructure 

is achieved by an efficient and reliable client-server (CS) technique [Gu and Ozcelik 

(2011)], as depicted in Fig. 3. The procedures for coupling of PD and NSM are 

summarized as follows: 
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Figure 3: Coupling of PD and NSM 

Step 1: The structure with local crack (Fig. 3(a)) is discretized into an elastic linear FE 

model with coarse mesh (Fig. 3(b)), and the cracked FE elements (grey elements in Fig. 

3(b)) are simulated in an isolated substructure using the PD model. A socket connection 

is established between the ‘grey’ elements and the PD substructure system using the CS 

technique to transfer displacements and nonlinear force correctors, which will be 

explained in the next section. 

Step 2: The nodal displacements of the cracking elements (e.g., nodal displacements of 

cracking and boundary elements) in the master structure system are transferred to the PD 

substructure through the CS socket. As shown in Fig. 3(c), the nodal displacement of the 

i-th embedded PD node in the b-th auxiliary (boundary) FE element (i.e., b

iu ) can be 

computed by interpolation from the nodal displacements of the b-th auxiliary element b
D  

[Liu and Hong (2012)], i.e., 

( ) ( ), 1, , ; 1, ,b b b b

i i i b neigl t i n b n= = =u N D   (11) 

where bn  and neign  denote the numbers of total embedded PD nodes in the b-th auxiliary 

element and total auxiliary elements, respectively, b
D  indicates the displacement vector 

of the b-th auxiliary element, b

il  and b

it  represent the natural coordinates of the i-th 

embedded PD node in the b-th auxiliary element, those can be obtained by inverse 

isoparametric mapping from the global coordinate of the PD node [Liu and Hong (2012)]. 

Using the principle of virtual work, the virtual work of the embedded PD nodal force 

equals to that of the equivalent FE nodal force on the auxiliary elements attributed by the 

PD nodal force, i.e., 

( ) ( )
1

bn
T T

b b b b

i i

i

 
=

= u f d F  (12) 
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b

if  is the force of the i-th embedded PD node in the b-th auxiliary element, b
F  denotes 

the equivalent nodal force in the b-th auxiliary element contributed by all bn  embedded 

PD nodes. After substituting Eq. (11) into Eq. (12), the equivalent nodal force yields, 

( )
1

,
bn

T
b b b b

i i i

i

l t
=

 =
 F N f  (13) 

In this paper, a ‘CT-couple scheme’ proposed in Liu et al. [Liu and Hong (2012)] was 

adopted, in which the coupling forces on the embedded PD nodes are divided to the 

boundary nodes of the auxiliary FE element(see Fig. 3(d)). 

Step 3: In the master structure model, after accumulating all the equivalent nodal force 

transferred from the PD substructure, the equivalent resisting force of the cracking 

elements (i.e., the central finite elements in the Fig. 2(c)) can be obtained as, 

( )
1 1 1

neig neig b
n n n

T
b b b

s i i

b b i


= = =

 = − = −
  R F N f   (14) 

After substituting Eq. (14) into Eq. (9), the nonlinear force corrector for the cracking 

elements yields, 

( )
1 1

neig b
n n

T
b b

s s s i i

b i


= =

 = +
 F K D N f  (15) 

And substitute Eq. (15) into Eq. (10), the equation of motion for the coupling system can 

be expressed as, 

( )
1 1

b ebn n
T

b b

s s i i

b i


= =

 + + = + +
 MD CD KD F K D N f  (16) 

in which, sK  and sD  denote the stiffness matrix and nodal displacement vector of the 

crack elements, respectively. 

Step 4: After the Eq. (16) is solved for the current time step, the linear elastic elements in 

the  master structure models are checked to see whether there are new crack elements. If 

no one cracks, the above Steps 2-4 are repeated for the next time step analysis. Otherwise, 

the FE element is isolated and simulated by using a new PD model, when a new socket 

connection is established between the PD model and the element in the master structure, 

as described in Step 1. 

3 Numerical implementation 

3.1 PD substructure system 

In order to quantitate the quasi-static elastic deformation and stationary discontinuous 

behaviors, artificial damping is a good way to avoid oscillation about the steady-state 

solution. However, the constant damping coefficient introduced into the PD equation of 

motion may not be the most effective strategy. Herein, an adaptive dynamic relaxation 

(ADR) method introduced in Kilic et al. [Kilic and Madenci (2010); Lai, Ren, Fan et al. 

(2015)] is adopted. 
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When the damping is considered, the equation of motion for a particle ix  in accordance 

with Eq. (7) can be expressed as,  

( ) ( ) ( ) ( ) ( ), , , ,
i

T

i i j it c t dV t + = +u x u x k ξ f η ξ b x  (17) 

Therefore, the equation of motion for the whole PD model can be assembled as follows, 

( ) ( ) ( ), , , , ,st c t  + =ΛU X ΛU X F U U X X  (18) 

where Λ  indicates the diagonal mass density matrix ( , 1, ,ii i N = = ), 

 1 2, , ,T T T T

N=X x x x  and  1 2, , ,T T T T

N=U u u u  denote positions and displacements at the 

collocation particles, respectively, sF  is the summation of internal and external forces 

and its i-th component yields ( ),
i

T

si j idV= +F k f η ξ b , c  represents the damping 

coefficient. i
U  and i

X  are the displacement and coordinate of the neighborhood 

particles of particle ix . 

Without loss of generality, the central difference method, taken as an example, is adopted 

to solve Eq. (18) in this paper, the update velocity and displacement vectors can be 

obtained as, 

( ) ( )1 2 1 2 12 2 2n n n

n s nc t t c t+ − − = −  +  +  U U Λ F  (19) 

1 1 2n n nt+ += + U U U  (20) 

in which superscript n denotes n-th time step, t  is time step size.  

In each time step, the damping coefficient nc  needs to be computed to get the fastest path 

to the steady-state solution, i.e., 

( )( ) ( )( )2
T T

n n n n n

nc = U K U U U  (21) 

n
K  is the diagonal “local” stiffness matrix, and its i-th diagonal component yields, 

( ) ( )1 1 2n n n n

ii i ii si ii it − −= − − K F F u  (22) 

3.2 NSM master structure system 

In the master structure system, the central difference method is also adopted to solve Eq. 

(16), the velocity at the mid-point of the time step and acceleration are given as, 

( )1 2 11n n n

t

+ += −


D D D  (23) 

( )1 2 1 21n n n

t

+ −= −


D D D  (24) 

Substitute Eqs. (23)-(24) to Eq. (16), the updated velocity and displacement vectors, 

respectively, are, 
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( )
1 1

1 2 1 2

1 1

2 2

2 2

n n n n

m

t t

t t

− −
+ −

− −

−  
= + −

+  + 

M C M
D D F KD

M C M C
 (25) 

1 1 2n n nt+ += + D D D  (26) 

in which ( )
1 1

b ebn n
T

n n n b bn

m s s i i

b i

V
= =

 = + +
 F F K D N f  and bn

if  is calculated in the PD 

substructure. 

3.3 PD-NSM integration using the CS technique 

 

Figure 4: PD-NSM integration by using CS technique 

In this study, the PD theory is implemented in an open-source software framework, 

OpenSees (abbreviated for Open System for Earthquake Engineering Simulation) 

[Mckenna (1997)]. Both the master structure and the PD substructure are simulated by 

using the OpenSees platforms, as illustrated in Fig. 4. The analytical procedures are 

expressed as follows: 

Step I: The master structure is built using 4-node “TclQuadClient” elements, which are 

similar to the “quad” element and developed in the OpenSees. The developed 

“TclQuadClient” element has a private object inherited the OpenSeesHandler class, 

which has following interfaces: 
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class OpenSeesHandler 

{ 

public: 

        // full constructor 

OpenSeesHandler(double dT,int socketID); 

// methods to perform one-step analysis 

void setDisp(Vector disp); 

int runOpenSeesOneStep(double passedDT); 

// method for get loads 

const Vector &getResponse(); 

int commitOpenSeesOneStep(); 

} 

Step II: The PD theory is implemented in the OpenSees platform, therefore, the PD 

substructure model can be built using a Tcl script file, named as “PDmodel.tcl”. After 

creation and initiation of the PD substructure model, the PD substructure server waits to 

connect with the master structure (i.e., client) and then receives and deals with the request 

from the client. The Tcl command for connection is: 

socket -server accept socketID 

in which, socketID is an integer representing the socket channel number. 

Step III: Based on responses of the master structure, determine whether all “TclClient” 

elements crack or not. Once there exists an element cracks, establish the connection 

between the “TclClient” element and the PD substructure using the interface 

OpenSeesHandler(double dT, int socket). The developed C++ pseudo-code in the 

OpenSees can be expressed as: 

OpenSeesHandler:: OpenSeesHandler(double dT, int socket) 

{ 

interp = Tcl_CreateInterp (); 

char theStr[50]; 

char script[200] =  "set s [socket localhost "; 

itoa(socketID,theStr,10); 

strcat(script, theStr); 

strcat(script,"]; fconfigure $s -buffering none;"); 

strcat(script, "puts $s \"wipe  ;source PDmodel.tcl;\""); 

Tcl_Eval (interp, script); 

} 

where “int” denotes that integer, socket represents the socket channel number, which is 

consistent with socketID in the PD substructure model.  

Step IV: The master structure system conducts the numerical calculation and needs to 

obtain the nonlinear force corrector of the PD substructure, during which the client will 

send requests to the server, such as, setDisp, runOpenSeesOneStep, and getResponse; 

Step V: (1) After accepting the requests setDisp and runOpenSeesOneStep, the 

displacement is applied on the boundary of the PD substructure and then the computation 
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of the nonlinear force corrector is conducted, (2) the server sends back the results to the 

master structure and then waits for the next request. 

Step VI: The master structure accumulates the nonlinear force correctors of all PD 

substructure servers and solves the governing equation using the central difference 

algorithm to obtain the responses of the master structure. And then perform the analysis 

of the next step and repeat Step III-Step VI. 

4 Applications 

In this section, a concrete cantilever beam with length of L=1 m, height of H=0.2 m and 

thickness of 0.2 m under concentrated load at the free end is investigated to verify the 

coupling approach, as illustrated in Fig. 5. The elastic modulus and the Poisson’s ratio  

are 22 GPa and 1/3, respectively.  

 

Figure 5: Geometry of the cantilever beam under concentrated load at one free end 

4.1 Case I: the 2D concrete beam without pre-crack 

In this section, the 2D beam without pre-crack is investigated to simulate the crack 

behavior of concrete material. The crack strain 0s  in the PD substructure model is 

assumed to be 8e-5. 

 

Figure 6: The models for the concrete cantilever beam (a) master FE model (b) PD 

substructure model (c) PD-FEM coupling model 
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In the proposed coupling approach, the beam is analyzed using 76 four-node quadratic 

elements (see Fig. 6(a)) with four Gauss points for each element in the master structure. 

A plane-stress isotropic material constitutive model is adopted to simulate the behavior of 

the material point. The left cracking regions (e.g., left four quadratic elements) are 

isolated and simulated using a PD substructure model (as shown in Fig. 6(b)), which has 

5000 (50×100) PD nodes and 600 embedded PD nodes. In the PD model, the space grid 

dx  and horizon   are taken as 0.002m and 0.006m, respectively, and the bond 

micromodulus ( )0,c   is taken as 18 61.277 10 /N m . These parameters remain 

unchanged in the following sections unless otherwise mentioned. In addition, the 

conventional FEM and PD coupling approach (i.e., PD-FEM method) [Kilic and Madenci 

(2009); Liu and Hong (2012)] is adopted to verify the proposed PD-NSM coupling 

approach as illustrated in Fig. 6(c). 

During the analysis process, the concentrated force applied on one free end gradually 

increases with a load increment of 0.03 N, and the simulation results are recorded in 

every 500 time-steps. Fig. 7 depicts the crack growth and damage of the cantilever beam 

using the proposed approach. It shows that the ultimate elastic and plastic loads using the 

proposed coupling approach are 1.545 kN and 1.995 kN, respectively. When the 

concentrated load exceeds the ultimate elastic load, the crack grows along the vertical 

direction until the load increases to 1.605 kN (see Fig. 7(b)), and then extends towards 

bottom right when the load ranges from 1.605 kN to 1.775 kN (see Fig. 7(c)) and towards 

bottom until the ultimate load 1.995 kN is reached (Fig. 7(d)). 

 

Figure 7: The crack growth obtained using the damage quantification for the cantilever 

without pre-crack by PD-NSM for increasing loads: (a) 1.545 kN; (b) 1.605 kN; (c) 1.755 

kN; (d) 1.995 kN 

To verify the proposed coupling method, the traditional PD-FEM coupling approach is 

used to re-analyze the same problem. The comparative numerical results of the cantilever 

beam using the PD-NSM and PD-FEM are shown in Figs. 7 and 8. From these two 

figures, we can see that the crack path using the PD-NSM shows good agreement with 

that using the conventional PD-FEM. 
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Figure 8: The crack growth obtained using the damage quantification for the cantilever 

without pre-crack by PD-FEM for increasing loads: (a) 1.545 kN; (b) 1.605 kN; (c) 1.755 

kN; (d) 1.995 kN 

4.2 Case II: the 2D concrete beam with pre-crack in the left end 

The concrete cantilever beam with pre-crack in the left end is investigated in this section. 

The initial crack is 50 mm depth from the top and located at 10x mm= . The PD-NSM 

models are given in Figs. 9(a) and 9(b). Similar with those in the case I, the beam is built 

using 76 four-node quadratic elements in the master FE model (Fig. 9(a)), and the left 

pre-crack regions (i.e., the left four dark elements in Fig. 9(a)) are isolated and simulated 

using the PD substructure model with 4975 PD nodes, 600 embedded PD nodes and 8 

auxiliary FE elements (as illustrated in Fig. 9(b)). In addition, the conventional PD-FEM 

coupling model is shown in Fig. 9(c), which contains 4975 PD nodes, 300 fixed PD 

nodes, 300 embedded PD nodes and 72 four-node quadratic elements. 

 

Figure 9: The models for the concrete cantilever beam with pre-crack in the left end (a) 

master FE model (b) PD substructure model (c) PD-FEM coupling model 

The beam with pre-cracked in the left end is analyzed using the proposed PD-NSM 

approach, and it experiences elastic deformation until the concentrated load increases to 

1.02 kN (see Fig. 10(a)). Subsequently, the crack propagates along the vertical direction 

when the concentrated load is 1.125 kN (Fig. 11(b)), and then grows along the right 
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bottom direction until it reaches the ultimate plastic load of 1.74 kN, as illustrated in Figs. 

10(c), 10(d). 

 

Figure 10: The crack growth obtained using the damage quantification for the cantilever 

with pre-crack in the left end by PD-NSM for increasing loads: (a) 1.02 kN; (b) 1.125 kN; 

(c) 1.305 kN; (d) 1.74 kN. 

 

Figure 11: The crack growth obtained using the damage quantification for the cantilever 

with pre-crack in the left end by PD-FEM for increasing loads: (a) 1.02; (b) 1.125 kN; (c) 

1.305 kN; (d) 1.785 kN 

Meanwhile, the pre-cracked beam is re-analyzed using the traditional PD-FEM 

coupling approach, as shown in Fig. 11. The ultimate elastic load is same with that 

using the PD-NSM coupling approach, while the ultimate plastic load (i.e., 1.785 kN) is 

a little larger. From Fig. 10 and Fig. 11, the crack growing path and damage using PD-

NSM are slightly different with those using the conventional approach. Since a non-

iterative NSM is used in this paper, the boundary displacement sent from the master 

structure to the PD substructure in each time step is the previous ones, i.e., has one-step 

delay. This may cause numerical inaccuracies and discrepancies between PD-NSM and 

PD-FEM. An iterative NSM may reduce the discrepancies, as shown in Sun et al. [Sun, 

Gu, Zhang et al. (2017)].  

4.3 Case III: the 2D concrete beam with pre-crack in the middle 

The concrete cantilever beam with pre-crack in the middle is studied. The initial crack is 

located in the middle ( x=1000 mm) of the beam. In the proposed PD-NSM approach, 
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the master FE model, as illustrated in Fig. 12(a), consists of 76 four-node quadratic 

elements, in which the middle four element are isolated and simulated in the PD 

substructure model (Fig. 12(b)), and the PD-FEM coupling model is established as shown 

in Fig. 12(c). 

 

Figure 12: The models for the concrete cantilever beam with pre-crack in the middle (a) 

master FE model (b) PD substructure model (c) FE-FEM coupling model 

The numerical results using the PD-NSM approach are depicted in Fig. 13. The pre-crack 

does not grow until the concentrated load increases to 1.02 kN (Fig. 13(a)). After then, it 

propagates along the vertical direction (see Figs. 13(b), 13(c)), and goes through the entire 

section when the load reaches 1.845 kN (Fig. 13(d)). 

 

Figure 13: The crack growth obtained using the damage quantification for the cantilever 

with pre-crack in the middle by PD-NSM for increasing loads: (a) 1.02 kN; (b) 1.17 kN; 

(c) 1.26 kN; (d) 1.845 kN 

The simulating results using the conventional PD-FEM coupling approach are illustrated 

in Fig. 14. By comparing Fig. 13 and Fig. 14, the crack growing path, the ultimate elastic 

load (i.e., 1.02 kN) and the ultimate plastic load (i.e., 1.845 kN) using the proposed PD-

NSM approach are close to those using the conventional PD-FEM approach; and the 

damages of material using these two approaches are almost the same. 
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Figure 14: The crack growth obtained using the damage quantification for the cantilever 

with pre-crack in the middle by PD-FEM for increasing loads: (a) 1.02 kN; (b) 1.17 kN; 

(c) 1.26 kN; (d) 1.845 kN 

5 Conclusion 

This paper presents an approach to couple the peridynamic (PD) theory with numerical 

substructure method (NSM) to simulate the structures with local discontinuities. The 

bond-based peridynamic theory and the NSM are briefly reviewed. Then the coupling of 

PD and NSM is presented, in which the structure is simulated using liner elastic finite 

element (FE) model while the local cracking regions are isolated and simulated using PD 

substructure models. A force corrector is calculated from the PD model and applied on 

the FE model to account for the contribution of the discontinuities. The PD model is 

integrated in the substructure model using interface elements with embedded PD nodes. 

The equations of motions of both NSM system and PD substructure are solved using the 

central difference method. Finally, three examples of two-dimensional (2D) concrete 

cantilever beams under the concentrated force at the free end are investigated. The 

analysis results are verified by using traditional PD-FEM coupling approach. It is 

observed that the PD-NSM approach shows good agreement with the PD-FEM in the 

sense of the crack growth behaviors, the ultimate elastic load and the ultimate plastic load. 

The presented method of coupling PD and NSM are demonstrated to be an effective 

method for modeling structures with local discontinuities. 
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