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Abstract: The OpenSees computational platform has allowed unprecedented opportunities 
for conducting seismic nonlinear soil-structure interaction simulations. On the geotechnical 
side, capabilities such as coupled solid-fluid formulations and nonlinear incremental-
plasticity approaches allow for representation of the involved dynamic/seismic responses. 
This paper presents recent research that facilitated such endeavors in terms of response of 
ground-foundation-structure systems using advanced material modeling techniques and 
high-performance computing resources. Representative numerical results are shown for 
large-scale soil-structure systems, and ground modification liquefaction countermeasures. 
In addition, graphical user interface enabling tools for routine usage of such 3D simulation 
environments are presented, as an important element in support of wider adoption and 
practical applications. In this context, Performance-Based Earthquake Engineering (PBEE) 
analysis of bridge-ground systems is highlighted as an important topical application. 
 
Keywords: Numerical simulation, OpenSees, geotechnical, earthquake, soil liquefaction, 
seismic response. 

1 Introduction 
With the recent developments in material modeling techniques and high-speed computing, 
three-dimensional (3D) nonlinear Finite Element (FE) simulations are becoming 
increasingly feasible for geotechnical earthquake engineering applications [Elgamal, Yan, 
Yang et al. (2008); Kwon and Elnashai (2008); Asgari, Oliaei and Bagheri (2013); Torabi 
and Rayhani (2014); McGann and Arduino (2014, 2015); Rayamajhi, Nguyen, Ashford et 
al. (2013); Rayamajhi, Ashford, Boulanger et al. (2016a); Rayamajhi, Boulanger, Ashford 
et al. (2016b); Su, Lu, Elgamal et al. (2017)]. Calibration, on the basis of data from field 
case histories as well as centrifuge and shake table experiments, is gradually allowing for 
more accurate computational modeling efforts [Lu, Elgamal, Yan et al. (2011); Chang, 
Boulanger, Brandenberg et al. (2013); Karimi and Dashti (2015, 2016); He, Ramirez, Lu 
et al. (2017); Su, Wan, Li et al. (2018)]. As such, calibrated FE simulations are increasingly 
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providing a reliable environment for modeling geotechnical earthquake problems, such as 
soil liquefaction, soil-structure interaction (SSI), and ground modification. 
Particularly suited to seismic applications, the open-source computational platform 
OpenSees [Mazzoni, McKenna and Fenves (2006); McKenna (2011)] provides such 3D 
simulation capabilities. Implemented in OpenSees [Yang (2000); Yang and Elgamal 
(2002)] is an analysis framework for saturated soil response as a two-phase material 
following the u-p formulation of Chan (1988) and Zienkiewicz et al. (1990) [Chan (1988); 
Zienkiewicz, Chan, Pastor et al. (1990)], where u is displacement of the soil skeleton, and 
p is pore pressure. As such, the soil domain (in 3D) is represented by effective-stress solid-
fluid fully coupled brick elements [Parra (1996); Yang (2000); Lu (2006); Yang, Lu and 
Elgamal (2008)] to describe the solid translational degrees of freedom (DOFs) and the fluid 
pressure (e.g., OpenSees 20_8_BrickUP element, brickUP and bbarBrickUP elements). 
The OpenSees framework also includes a number of pressure-independent and pressure-
dependent soil constitutive models [Parra (1996); Yang and Elgamal (2002); Elgamal,  
Yang, Parra et al. (2003); Yang, Elgamal and Parra (2003); Yang, Lu and Elgamal (2008)], 
developed based on the multi-surface-plasticity theory [Mroz (1967); Iwan (1967); Prevost 
(1977, 1978, 1985)]. The pressure-independent models [Elgamal (2008); Yang, Lu and 
Elgamal (2008); Lu, Elgamal, Yan et al. (2011)] simulate the nonlinear cyclic hysteresis 
material response (e.g., undrained clay-type loading conditions). The pressure-dependent 
material models (typically used with the above mentioned solid-fluid fully coupled brick 
elements) mainly aim at simulating the liquefaction-induced shear strain accumulation 
mechanism in cohesionless soils [Yang and Elgamal (2002); Elgamal, Yang, Parra et al. 
(2003); Yang, Elgamal and Parra (2003); Yang, Lu and Elgamal (2008)]. Currently, the 
above modeling tools have been used by the co-authors and researchers worldwide in 
numerous reported studies [Elgamal, Yan, Yang et al. (2008); Elgamal, Lu and Forcellini 
(2009); Zhang, Conte, Yang et al. (2008); Kwon and Elnashai (2008); Aygün, Dueñas-
Osorio, Padgett et al. (2009, 2010); Ilankatharan and Kutter (2008, 2010); Atik and Sitar 
(2010); Lu, Elgamal, Yan et al. (2011); Asgari et al. 2013; Chang, Boulanger, Brandenberg 
et al. (2013); Torabi and Rayhani (2014); McGann and Arduino (2014, 2015); Hashash, 
Dashti, Romero et al. (2015); Tang, Cong, Ling et al. (2015); Rayamajhi, Nguyen, Ashford 
et al. (2013); Rayamajhi, Ashford, Boulanger et al. (2016a); Rayamajhi, Boulanger, 
Ashford et al. (2016b); Karimi and Dashti (2015, 2016); He, Ramirez, Lu et al. (2017); Su, 
Lu, Elgamal et al. (2017); Su, Wan, Li et al. (2018)]. 
In order to facilitate the OpenSees analysis pre- and post-processing phases, the graphical 
user interfaces OpenSeesPL [Lu, Yang and Elgamal (2006); Elgamal and Lu 2009)], 
BridgePBEE [Mackie, Lu and Elgamal (2012)] and MSBridge [Elgamal, Lu and Mackie 
(2014)] were developed and employed. OpenSeesPL allows for execution of push-over and 
seismic SSI pile-ground simulations [Lu, Yang and Elgamal (2006); Elgamal and Lu 
(2009)]. In addition, various ground modification scenarios may be studied in OpenSeesPL 
by appropriate specification of the material within the pile zone. BridgePBEE is a user-
interface for conducting performance-based earthquake engineering (PBEE) studies for 2-
span single-column bridge-ground systems [Mackie, Lu and Elgamal (2012)]. MSBridge 
focuses on efficiently conducting nonlinear FE studies for a wide range of multi-span 
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bridge systems [Elgamal, Lu and Mackie (2014)], with a recently added PBEE analysis 
option [Elgamal, Lu, Almutairi et al. (2017); Almutairi, Lu, Elgamal et al. (2018)]. 
To illustrate the above analysis components, this paper presents representative ground and 
ground-structure studies including a large-scale pile group, a ground-bridge system, a pile-
supported wharf, a stone-column liquefaction countermeasure, and bridge PBEE analysis 
applications. In the following sections, the pressure-independent and pressure-dependent 
soil constitutive models are briefly described, followed by the above-mentioned 
representative computational studies. Salient characteristics of the soil models are 
highlighted, and key results of the numerical studies are presented. 

2 Soil constitutive models 
The pressure-independent models exhibit plasticity in the deviatoric response and the 
volumetric response is linear-elastic, independent of the deviatoric response. The related 
OpenSees materials include PressureIndependMultiyield [Elgamal, Yan, Yang et al. (2008); 
Lu, Elgamal, Yan et al. (2011)] and PressureIndependMultiyieldSoftening [Qiu (2020)]. 
The pressure-dependent material models simulate the essential characteristics of pressure 
sensitive soil response under general loading conditions. As such, soil is simulated by the 
implemented OpenSees materials PressureDependMultiYield [Parra (1996); Yang (2000); 
Yang and Elgamal (2002); Elgamal, Yang, Parra et al. (2003)], PressureDependMultiYield02 
[Yang, Elgamal and Parra et al. (2003)], PressureDependMultiYield03 [Khosravifar, Elgamal, 
Lu et al. (2018)], and LadeDuncanMultiYield [Yang and Elgamal (2008); Qiu (2020)]. 

2.1 PressureIndependMultiYieldSoftening material 
Based on the existing multi-yield surface J2 associative plasticity formulation [Prevost 
(1977); Elgamal, Yan, Yang et al. (2008); Lu, Elgamal, Yan et al. (2011)], the 
PressureIndependMultiYield material (Fig. 1) has been implemented in OpenSees for 
simulating elasto-plastic undrained clay-type shear response. In this model, a hyperbolic 

backbone curve 
1 / r

Gγτ
γ γ

=
+

 can be employed to describe the backbone shear stress-

strain curve (Fig. 1(b)), where G  is the low-strain shear modulus, τ  and γ  denote the 
octahedral shear stress and shear strain, respectively, and rγ  is the reference shear strain 

(computed as ( )max max max maxr Gγ γ τ γ τ= − , in which maxτ  is the peak shear strength that 

corresponds to the shear strain maxγ ). Alternatively, conventional shear modulus reduction 
(G/Gmax) curves may be conveniently employed for the specification of yield surfaces and 
their characteristics. Further details and model implementation specifics can be found in 
Prevost [Prevost (1977)] and Gu et al. [Gu, Conte, Elgamal et al. (2009); Gu, Conte, Yang 
et al. (2011); Gu, Qiu and Huang (2015)]. 
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Figure 1: PressureIndependMultiYield material [Elgamal, Yan, Yang et al. (2008); Lu, 
Elgamal, Yan et al. (2011)] 

Extending the PressureIndependMultiYield material with a newly developed strain 
softening logic, a PressureIndependMultiYieldSoftening material was recently developed 
and calibrated based on a series of laboratory sample test data [Qiu (2020)]. For this model, 
Fig. 2(a) presents a range of response scenarios that can be generated by the incorporated 
softening logic [Qiu (2020)]. As such, representation of strain softening is an important 
consideration for a wide range of ground formations involving sensitive clays, cemented 
soils, over-consolidated soils, very dense soils, or frozen soils among others. Fig. 2(b) 
depicts the model response under cyclic loading with an imposed static shear stress bias. 
As can be seen in Fig. 2(b), the model reproduces the downslope cycle-by-cycle 
accumulation of shear deformations and the degradation of shear stiffness and strength. 
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(a) (b) 

Figure 2: Model simulation of PressureIndependMultiYieldSoftening material [Qiu 
(2020)]: (a) Monotonic loading; (b) Cyclic loading with static shear stress bias 

2.2 PressureDependMultiYield03 material 
The PressureDependMultiYield02 material (Fig. 3) has mechanisms to simulate the dilatancy 
and cyclic mobility of pressure sensitive soils [Elgamal, Yang, Parra et al. (2003); Yang, 
Elgamal and Parra et al. (2003)]. Calibration was performed based on a series of laboratory 
and centrifuge tests, and the model parameters were provided for sands with different relative 
densities. Representative simulation results using the PressureDependMultiYield02 material 
for a symmetric stress-controlled cyclic shear loading test are shown in Fig. 3(b). A large 
number of numerical studies employing the OpenSees PressureDependMultiYield02 
material have been conducted for simulating large-scale seismic soil-structure interaction and 
liquefaction scenarios [Shin, Arduino and Kramer (2007); Shin, Arduino, Kramer et al. 
(2008); Zhang, Conte, Yang et al. (2008); McGann and Arduino (2014, 2015); Karimi and 
Dashti (2015); He, Ramirez, Lu et al. (2017); Su, Wan, Li et al. (2018)]. 
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(b) 

Figure 3: PressureDependMultiYield02 material [Yang, Elgamal and Parra et al. (2003)]: (a) 
Yield surfaces; (b) Model response under stress-controlled, undrained cyclic shear loading 

In order to more closely capture the established guidelines concerning triggering of 
liquefaction [Idriss and Boulanger (2008)], the PressureDependMultiYield02 material has 
been recently updated (PressureDependMultiYield03 in Khosravifar et al. [Khosravifar, 
Elgamal, Lu et al. (2018)]. Fig. 4 depicts the calibration results of 
PressureDependMultiYield03 for direct simple shear loading tests with a vertical 
consolidation stress of 1 atm and lateral earth pressure coefficients Ko=0.5 (Fig. 4(a)) and 
Ko=1.0 (Fig. 4(b)), along with those of the PM4Sand model [Boulanger and Ziotopoulou 
(2015)] response for comparison. 

  
(a) (b) 

Figure 4: Calibration of PressureDependMultiYield03 material [Khosravifar, Elgamal, Lu 
et al. (2018)]: (a) Lateral earth pressure coefficient Ko=0.5; (a) Ko=1.0 

2.3 LadeDuncanMultiYield material 
To allow for further accuracy in capturing 3D shear response, the 
PressureDependMultiYield03 material has been extended to incorporate the Lode angle 
effect (Fig. 5(a)) by employing the Lade-Duncan failure criterion as the yield function 
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[Lade and Duncan (1975); Yang and Elgamal (2008); Qiu (2020)]. This failure criterion is 
represented by Chen et al. [Chen and Mizuno (1990)]: 

3
3 1 2 1

1

1 1 1( ) 0
3 27

J I J I
k

− + − =  (1) 

where, I1 is volumetric stress, J2 and J3 are second and third deviatoric stress invariants, 
respectively, parameter k1 (>27) is related to soil shear strength (or friction angle φ). A 
typical yield surface fm (Fig. 5(a)) is defined by Yang et al. [Yang and Elgamal (2008)]: 

( ) ( )3
3 1 2 1 1

1 0
3m m mf J I J a Iη η= − + =  (2) 

where ηm is a normalized yield surface size (0<ηm<1) and material parameter 𝑎𝑎1 = 1
27
− 1

𝑘𝑘1
 

[Yang and Elgamal (2008)]. In Eq. (2), 2
1 :
2

J = S S   and ( )3
1 :
2

J = ⋅S S S  , where, 

p′= −S S a   and 2p′= −S σ I   is the deviatoric stress tensor, 1

3
Ip′ =  is mean effective 

stress ( 1 3I p′= ), 2I  is 2nd unit tensor, deviatoric tensor a  is back stress (yield surface 
center), and the operators “·”and “:” denote single and double contraction of two tensors, 
respectively. 
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(b) 

Figure 5: LadeDuncanMultiYield material [Yang and Elgamal (2008); Qiu (2020)]: (a) 
Configuration in principal stress space; (b) Experimental and computed results [Hatanaka, 
Uchida and Ohara (1997); Qiu (2020)] 

For illustration, the LadeDuncanMultiYield material was calibrated using laboratory cyclic 
undrained stress-controlled test data of a reclaimed gravely fill Masado soil [Hatanaka, 
Uchida and Ohara (1997)]. It can be seen that the soil gradually loses its effective 
confinement during cyclic triaxial loading, and the axial strain accumulates on a cycle-by-
cycle basis (Fig. 5(b)) after liquefaction, with a strong dilative tendency. It is noted that 
this LadeDuncanMultiYield material was recently updated [Qiu (2020)] to include the 
liquefaction triggering logic proposed by Idriss et al. [Idriss and Boulanger (2008)]. 

3 Large-scale numerical modeling of 3D soil-structure interaction 
Seismic response of structures is dictated by soil-structure interaction (SSI) during 
earthquake loadings. To reproduce such SSI effects computationally, a large domain of the 
soil surrounding the structure is often necessary to be modeled [Chae, Ugai and Wakai (2004); 
Maheshwari, Truman, El Naggar et al. (2004); Elgamal, Yan, Yang et al. (2008); Elgamal, 
Lu and Forcellini (2009); Elgamal and Lu (2009); Wang, Lu and Elgamal et al. (2013); 
Chiaramonte, Arduino, Lehman et al. (2013); Su, Lu, Elgamal et al. (2017); Qiu (2020)].  

3.1 Bridge-ground seismic response 
Damage to large bridge overcrossings has been observed in recent earthquakes, including 
2010 Maule [Arduino, Ashford, Assimaki et al. (2010)] and 2011 Christchurch 
[Cubrinovski, Bradley, Wotherspoon et al. (2011); Cubrinovski (2013)]. The observed 
response was often noted to be highly influenced by the global bridge-ground overall 
characteristics as an integral system.  
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(a) 

 

 
(b) 

Figure 6: A bridge-ground system [Qiu (2020)]: (a) Ground configuration; (b) Deformed 
mesh at the end of shaking (factor=15) 
On this basis, a representative 3D FE model underlain by liquefiable soil was developed to 
numerically investigate the consequences of liquefaction-induced ground deformation [Qiu 
(2020)]. The overall ground configuration is shown in Fig. 6(a). In general, the site soil 
profile consists of shallow, fine-grained soils underlain by medium dense to dense sands, 
with loose sand layers (red zone in Fig. 6(a)). Water table was prescribed at the elevation 
of 30.5 m. The 18-span reinforced concrete bridge is approximately 197 m long and 9.9 m 
wide, composed of a reinforced concrete deck on vertical pier walls with pile groups and/or 
single piles. Two expansion joints (with a 0.05 m gap each, Fig. 6(a)) are located adjacent 
to the piers. In the transverse direction, a 1.83 m wide 3D slice was taken as a representative 
of the bridge’s geometric configuration. As such, the FE model of actual 3D geometric pile 
layout was presented, with the mesh composed of 17,415 brick elements. 
Along both side mesh boundaries, 2D plane strain soil columns of large size and depth (not 
shown) are included to minimize boundary effects, efficiently reproduce the desired free-
field site response at these locations [Su, Lu, Elgamal et al. (2017)]. Along the FE model 
base, the Lysmer-Kuhlemeyer absorbing boundary [Lysmer and Kuhlemeyer (1969)] was 
applied. Input motion was selected as that of the 1940 Imperial Valley earthquake at El 
Centro Station (Component S00E), scaled to a peak acceleration of about 0.4 g. Using this 
excitation, via deconvolution by Shake91 [Idriss and Sun (1993)], an incident earthquake 
motion was derived and imparted [Elgamal, Yan, Yang et al. (2008)] in the x-direction (i.e., 
input shaking only in the longitudinal direction), along the base of the FE model (elevation 
0.0 in Fig. 6(a)). 
Fig. 6(b) displays the deformed FE mesh at the end of shaking (colors show horizontal 
displacement). Away from the bridge, lateral deformation above the liquefied strata was to 
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the right, about 0.2 m on the left-side and only 0.008 m on the right-side. Superposed on 
this global displacement pattern (to the right), local downslope deformations are seen at 
both ends of the bridge (Fig. 6(b)). Near the abutments, additional downslope deformation 
relative to the surrounding ground was about 0.35 m (left-side), and 0.4 m (right-side). Due 
to the downslope deformations at both ends, expansion joint gaps were closed, with the 
bridge deck through its piers and foundations acting as a strut that provides added restraint 
to the slope deformations. 

3.2 Pile-supported wharf seismic response and OpenSeesMP 
Seaports are among the large-scale constructed facilities that are particularly vulnerable to 
damage and loss of function due to seismic activities [Akai, Bray, Christian et al. (1997); 
Mahoney, Francis and Kennard (2008); Percher, Bruin, Dickenson et al. (2013); Edge, 
Eskijian and Arulmoli (2013)]. The observed seismic performance of pile-supported 
wharves is significantly dictated by the behavior of the surrounding soil. 
To address this consideration, a ground-structure 3D FE model was developed [Su, Lu, 
Elgamal et al. (2017)] to capture and further elucidate many salient characteristics, such as 
pile-to-pile and pile-ground interaction mechanisms. On this basis, a representative 6.3 m 
wide 3D slice of a wharf-ground configuration (Fig. 7(a)) was presented [EMI (2001); Su, 
Lu, Elgamal et al. (2017)]. 
As such, the FE mesh of this pile-supported wharf included 9,649 3D brick elements (Fig. 
7(a)). The input motion was selected as 1994 Northridge earthquake (Component S48W) at 
the Rinaldi Receiving Station, scaled down to half amplitude [Su, Lu, Elgamal et al. (2017)]. 
Along both side mesh boundaries, 2D plane strain soil columns of large size and depth (not 
shown) are included to minimize boundary effects (Fig. 7(a)), efficiently reproduce the 
desired free-field site response at these locations [Su, Lu, Elgamal et al. (2017)]. 

 
(a) 
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(b) 

Figure 7: A pile-supported wharf [Su, Lu, Elgamal et al. (2017)], with total mesh length 
of 230 m, width of 6.1 m, height (landside) of 53.8 m and height (waterside) of 33.5 m: (a) 
FE mesh partitioning for parallel computation (different colors represents partitioned zones 
for different processors); (b) Deformed mesh (scale factor=20) 

A parallel version of OpenSees (OpenSeesMP) was employed to conduct the 3D simulations 
of this wharf-ground configuration (Fig. 7(a)). OpenSeesMP was created for running input 
scripts with user-specified subdomains, parallel equation solver and parallel numberer 
[McKenna (2011)]. As seen in Fig. 7(a), the FE mesh of the pile-supported wharf model was 
divided into three zones (handled simultaneously by three different processors). With the 
computations conducted in parallel (implicit time integration), execution time was reduced 
by more than 50% [Lu, Peng, Elgamal et al. (2004)]. 
Fig. 7(b) displays the deformed mesh at maximum deck displacement. In this figure, the 
largest lateral displacements showed in the upper layers, mainly due to the shear deformation 
in the relatively weak clay stratum (Fig. 7(a)). Away from the slope, lateral deformation on 
the landside above the clay was about 0.25 m towards the waterside. Superposed on this 
landside displacement pattern, local downslope deformation is seen in the slope zone (Fig. 
7(b)), reaching a peak value of about 0.45 m relative to the surrounding ground.  

4 OpenSeesPL, ground modification, and pile/pile group analyses 
A PC-based graphical pre- and post-processor (user interface) OpenSeesPL has been 
developed to facilitate efficient execution of 3D ground-foundation FE simulations [Lu (2006); 
Lu, Yang and Elgamal (2006); Elgamal and Lu (2009)]; http://www.soilquake.net/openseespl/) 
[Lu (2006); Lu, Yang and Elgamal (2006); Elgamal and Lu (2009)]. Currently, OpenSeesPL 
permits analyses of footings, piles and pile groups (Fig. 8) under static and earthquake loading 
conditions [Wang, Lu and Elgamal et al. (2013)]. Various scenarios of ground modification 
can be also studied by specifying the material within the pile zone [Elgamal, Lu and Forcellini 
(2009); Asgari, Oliaei and Bagheri (2013); Tang, Cong, Ling et al. (2015); Rayamajhi, 

http://www.soilquake.net/openseespl/)
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Nguyen, Ashford et al. (2013); Rayamajhi, Ashford, Boulanger et al. (2016a); Rayamajhi, 
Boulanger, Ashford et al. (2016b)]. FE computations in OpenSeesPL are conducted using 
OpenSees. 

 
(a) 

 
(b) 

Figure 8: Pre- and postprocessor graphical interface OpenSeesPL [Lu (2006)]: (a) FE 
mesh showing a 8×7 pile group (half mesh configuration because of symmetry); (b) 
Deformed mesh of the pile group under lateral loading 

OpenSeesPL includes options for (1) defining the pile geometry (circular or square pile) 
and soil material properties (linearly elastic or nonlinear), (2) defining the 3D spatial soil 
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domain, (3) defining the boundary conditions and ground input excitation or push-over 
analysis parameters, and (4) selecting soil materials from an available menu of cohesive 
and cohesionless soil materials. The menu of soil materials includes a complementary set 
of soil modeling parameters representing soft, medium, and stiff cohesive soils, and loose, 
medium, and dense cohesionless soils (with gravel, sand, or silt permeability). OpenSeesPL 
also allows convenient postprocessing and graphical visualization of the FE analysis results 
including ground response time histories, pile responses (profiles and time histories), and 
the deformed mesh (Fig. 8(b)). The user interface makes it possible for users to quickly 
build a FE model, run the FE analysis, and evaluate the performance of the ground-
foundation system [Lu, Yang and Elgamal (2006)]. Representative studies employing 
OpenSeesPL are presented below. 

4.1 Stone column mitigation of liquefaction-induced lateral ground deformations 
Liquefaction-induced lateral spreading may result in disruption of function, significant 
damage, and considerable replacement cost for existing foundations, buildings, and 
structures. This type of adverse response has been observed in many earthquakes, such as 
Niigata, Japan 1964 [Seed and Idriss (1967)], Chi-Chi, Taiwan 1999 [EERI (2000)], 
Kocaeli, Turkey 1999 [EERI (2001)] and Christchurch, New Zealand 2011 [Cubrinovski, 
Bradley, Wotherspoon et al. (2011); Cubrinovski (2013)]. The risk of liquefaction and 
associated ground deformation may be reduced by ground improvement approaches 
including solidification (cementation), densification, and gravel drains or stone columns 
(SCs). Use of gravel drains/SCs is a relatively recent development compared with more 
traditional soil remediation approaches [Elgamal, Lu and Forcellini (2009)]. 

4.1.1 Mitigation by stone columns 
Using OpenSeesPL, a mildly inclined 4° saturated sand layer of 10 m thickness was studied 
(permeability k=6.6×10−5 m/s), based on Nevada sand properties at a relative density Dr of 
about 40% [Yang, Elgamal and Parra et al. (2003); Elgamal, Yang, Parra et al. (2003); 
Elgamal, Lu and Forcellini (2009)]. Dense sand properties with a representative gravel 
permeability k=1.0×10−2 m/s were employed to represent the SC properties. In the 
remediated cases, the area replacement ratio 𝐴𝐴𝑟𝑟𝑟𝑟 = 𝐴𝐴𝑟𝑟

𝐴𝐴
= 𝜋𝜋𝑑𝑑2

4𝑠𝑠2
 is conventionally defined as 

the ratio of the SC area Ar over the tributary area A (Fig. 9(a)), where d=diameter of the 
SC, and s=distance (spacing) between SC centers.  
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(a) (b) 

Figure 9: Mitigation of liquefaction-induced lateral deformation in a sloping stratum (blue 
zone represents remediated domain; Elgamal et al. (2009)) [Elgamal, Lu and Forcellini 
(2009)]: (a) FE mesh (created in OpenSeesPL); (b) Ground surface lateral displacement 
response time histories (for 10%-50% Arr SC cases, along with remediated Medium Sand 
case for comparison) and base input motion 

Diameter of the SC in all remediated cases was kept at 0.6 m. A total of five simulations were 
conducted to explore Arr values from 10% up to 50% with base input motion being that 
recorded at the Wildlife site during the 1987 Superstition Hills earthquake [Elgamal, Lu and 
Forcellini (2009)]. The medium sand case (MS) represents the original benchmark 
unremediated scenario. As such, the MS results provide a reference of free-field site response 
for comparing with the remaining SC remediated cases (Fig. 9(b)). When the SC permeability 
k=1.0×10-2 m/s, the permanent displacement at the ground surface fell below the large 
displacement range (0.3 m or 1 ft according to Youd 1989 for Arr=20%-30%) [Youd (1989)]. 
To achieve a lower permanent displacement [CGS (2008)], an Arr=40% is required. 

4.1.2 Influence of stone column spatial distribution 
In order to explore influence of SC spatial distribution on liquefaction-induced lateral 
deformation, a number of SC configurations (1×1, 2×2 and 4×4) for a given Arr=10% were 
studied (Fig. 10(a)). In these configurations [Lu, Kamatchi and Elgamal (2019)], the same 
Arr is maintained by deploying smaller diameter columns, evenly distributed spatially, so 
as to increasingly reduce the drainage path (Fig. 10(b)). On this basis, a total of seven 
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simulations were performed exploring different combinations of SC geometric 
configurations and permeabilities. As mentioned above, the MS (unremediated) case 
represents the original benchmark situation to provide a reference of free-field site response 
for comparing with the remaining remediated cases. 
Figs. 10(c) and 10(d) show the lateral displacement time histories at the ground surface. 
Permanent ground surface displacement for the unremediated case is 1.15 m. A major 
reduction in ground deformation resulted because of the increased SC permeability. The 
more evenly distributed (or smaller-diameter) SC configuration (e.g., the 2×2 pattern 
compared to the 1×1, or the 4×4 compared to the 2×2) is seen to be more effective in 
reducing the lateral deformation of the sand stratum (Figs. 10(c) and 10(d)). As mentioned 
above, this is mainly attributed to the shorter drainage path in the smaller-diameter 
configurations. With a higher SC permeability k=0.1 m/s, permanent ground surface 
deformation falls below the large displacement range (0.3 or 1 ft m according to Youd 
1989) [Youd (1989)], with substantial reductions in the 2×2 and 4×4 configurations 
compared to the 1×1 scenario [Lu, Kamatchi and Elgamal (2019)].  

 
               (a)                                                            (b) 

1.68 m0.84 m

10 m
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                                    (c)                                                                (d) 
Figure 10: Ground modification study of drainage effect (blue zone represents remediated 
domain [Lu, Kamatchi and Elgamal (2019)]: (a) FE mesh (created in OpenSeesPL); (b) 
1×1, 2×2, and 4×4 SC configurations showing reduction in the radial drainage path; (c) and 
(d) Ground surface lateral displacement response time histories for permeability k=0.01 
m/s, and k=0.1 m/s, respectively 

4.2 Lateral load on a large pile group 
Using OpenSeesPL, a systematic 3D FE study of a large pile group subjected to lateral 
loading was performed (Figs. 11(a) and 11(b)). The FE model was representative of the 
Dumbarton Bridge (California) Pier 23 pile-group foundation geometry [Wang, Lu and 
Elgamal et al. (2013); Wang (2015)]. The pile group is configured in an 8×4 arrangement 
with a longitudinal spacing of 2 pile diameters and a transversal spacing of 2.15 pile 
diameters on center. The diameter and length for each pile were 1.37 m and 30.8 m, 
respectively. The group is rigidly connected by a pile cap, at a substantial distance of 14.3 
m above the mudline.  
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(b) 

 
(c) 

Figure 11: A large pile group subjected to lateral loading [Wang, Lu and Elgamal et al. 
(2013)]: (a) Close-up of FE mesh (created in OpenSeesPL); (b) Layout of pile group; (c) 
Axial forces, initial, and at 0.3 m pile cap deflection 
The pile response was assumed to be linear elastic and the bending stiffness for each pile 
was EI=2×106 kN-m2 [Wang, Lu and Elgamal (2013)]. A summary of the site soil profile 
is reported in Wang (2015) [Wang (2015)]. In the employed OpenSeesPL half mesh of Fig. 
11 (due to symmetry), the vertical dead load (28,900 kN representing the tributary own 
weight of the bridge deck.) was imposed initially (after application of soil own weight). A 
lateral pile cap longitudinal displacement was then applied (at the center of the pile cap) 
up to a maximum of 0.30 m. 
Fig. 11(c) shows the axial force distribution between piles (1-16). In this figure, a wide 
range in the share of load is seen in each pile. At the initial static state, the corner piles (1, 
8, 9 and 16) carry the highest force. At the 0.3 m pile cap displacement, the compressive 
axial forces of front piles (6-8 and 14-16) increase significantly, conversely the back piles 
(1, 2 and 9, 10) experience tensile forces. Such variation in axial forces is influenced by 
the relatively large distance between the pile cap and the mudline, exerting a significant 
moment on the overall pile foundation along with the pile lateral forces. 
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5 Performance-based earthquake engineering (PBEE) for bridge systems and 
MSBridge 
PBEE aims to quantify the seismic performance of engineered facilities, such as bridges, 
using metrics that are compatible with network risk assessment and of interest to engineers 
and stakeholders alike [Mackie, Lu and Elgamal (2012)]. Using a fully developed bridge 
PBEE assessment framework [Mackie, Lu and Elgamal (2012)], a pre- and post-processor 
user interface (Fig. 12) was developed for application within the simple environment of a 
2 span, single column bridge founded on a 3D ground soil mesh. This interface 
(https://peer.berkeley.edu/bridgepbee/) integrates all elements of the underlying FE 
simulations along with the subsequent PBEE calculations [Mackie, Lu and Elgamal 
(2012)]. In the time history analysis phase, the bridge column is modeled by nonlinear fiber 
section beam-column elements. Abutment models considering passive soil resistance, 
bearing pads, and shear keys are included. If a computation cluster is available, a parallel 
version of OpenSees (OpenSeesSP) can be used to efficiently complete all individual 
shaking event simulations simultaneously (Fig. 13), in a couple of hours versus a couple 
of days for instance. 

 
(a) 

https://peer.berkeley.edu/bridgepbee/
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(b) 

Figure 12: Pre- and postprocessor graphical interface BridgePBEE [Mackie, Lu and 
Elgamal (2012)]: (a) FE mesh of a bridge-ground system (2-span single-column type); (b) 
Deformed mesh (scale factor=50) of the bridge-ground model under lateral loading 
 

 
Figure 13: Parallel computation in BridgePBEE 
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The bridge-foundation-ground mesh is shown in Fig. 14(a) for illustration. Response of the 
same bridge is explored under stiff and soft supporting soil conditions [Mackie, Lu and 
Elgamal (2012)]. Fig. 14(b) shows the corresponding mean repair cost ratio (RCR) loss 
models. The consequences of shaking and repair do not begin to accumulate until a PGV of 
approximately 20 cm/s is reached, and repair costs are clearly higher for the soft soil scenario.  
Building on the above developments, systematic PBEE analyses were recently 
implemented for multi-span reinforced concrete bridges [Almutairi, Lu, Elgamal et al. 
(2018)]. In this regard, the bridge seismic response is handled by the new highly versatile 
pre- and post-processor graphical user interface MSBridge [Elgamal, Lu, Almutairi et al. 
(2017); Almutairi, Lu, Elgamal et al. (2018)], http://www.soilquake.net/msbridge/) 
[Elgamal, Lu, Almutairi et al. (2017); Almutairi, Lu, Elgamal et al. (2018)]. Using 
OpenSees, this interface is focused on efficiently conducting nonlinear time history 
analyses for a wide range of multi-span bridge configurations. In this tool (Fig. 15(a)), 
bridge structures, abutments, and foundation response mechanisms are integrated within a 
unified framework. Furthermore, MSBridge allows for addressing possible variability in 
the bridge deck, bent cap, column, foundation, and/or ground configuration properties (on 
a bent-by-bent basis). As such, MSBridge permits the simulation of key scenarios of 
significance for bridge upgrades, widening, extensions, and retrofits. Convenient post-
processing capabilities allow graphical visualization of the results including the deformed 
mesh (Fig. 15(b)), as well as column/pile response. Using MSBridge, it is possible for 
structural engineers/researchers to rapidly build models of complex multi-span bridges, run 
the FE analysis, evaluate performance of the bridge-ground system, and assess the PBEE 
outcomes [Elgamal, Lu and Mackie (2014); Almutairi, Lu, Elgamal et al. (2018)]. 

 
(a) 

http://www.soilquake.net/msbridge/
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(b) 

Figure 14: PBEE analysis of a bridge-ground system [Mackie, Lu and Elgamal (2012)]: 
(a) FE mesh (created in BridgePBEE); (b) Mean repair cost ratios (case 1 represents stiff 
ground, and Case 2 represents soft ground) 
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(b) 

Figure 15: Pre- and postprocessor graphical interface MSBridge [Elgamal, Lu, Almutairi 
et al. (2017); Almutairi, Lu, Elgamal et al. (2018)]: (a) FE mesh of a multi-span bridge; (b) 
Deformed mesh of the bridge model under lateral loading (scale factor=50) 
In summary, the main capabilities of MSBridge include: i) horizontal and vertical 
alignments, with different skew angles for bents/ abutments; ii) beam-column element with 
fiber section for bridge columns and piles; iii) deck hinges, isolation bearings, steel jackets, 
and abutment models; iv) foundation represented by Foundation Matrix or soil springs (p-
y, t-z and q-z); v) analysis for suites of ground motions (built-in and/or user-defined); vi) 
PBEE outcomes in terms of repair cost, time and carbon footprint; and vii) pushover and 
mode shape analysis options. 

6 Summary and conclusions 
Recent research efforts that address the static and dynamic/seismic response of ground-
foundation-structure systems have been presented. Specifically, developments within the 
computational platform OpenSees were outlined. Representative numerical results were 
included for the response of large foundation-ground-structure systems, ground 
modification liquefaction countermeasures, and PBEE analyses. To facilitate 3D 
computations, graphical user interfaces (OpenSeesPL, BridgePBEE and MSBridge) were 
shown to be useful tools for conducting simulations of ground modification, ground-pile 
SSI, and multi-span bridge-ground systems with PBEE assessments.  
Overall, the presented studies aim to illustrate the potential for further reliance on computer 
simulation in the assessment of nonlinear SSI response. Challenges in calibration and in high 
fidelity modeling are being gradually overcome. With careful attention to the involved 
modeling details, effective insights may be gleaned for a wide range of practical applications. 
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