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ABSTRACT

With the rapid development of deep learning, the size of data sets and deep neural networks (DNNs) models are also
booming. As a result, the intolerable long time for models’ training or inference with conventional strategies can
not meet the satisfaction of modern tasks gradually. Moreover, devices stay idle in the scenario of edge computing
(EC), which presents a waste of resources since they can share the pressure of the busy devices but they do not.
To address the problem, the strategy leveraging distributed processing has been applied to load computation tasks
from a single processor to a group of devices, which results in the acceleration of training or inference of DNN
models and promotes the high utilization of devices in edge computing. Compared with existing papers, this paper
presents an enlightening and novel review of applying distributed processing with data and model parallelism to
improve deep learning tasks in edge computing. Considering the practicalities, commonly used lightweight models
in a distributed system are introduced as well. As the key technique, the parallel strategy will be described in detail.
Then some typical applications of distributed processing will be analyzed. Finally, the challenges of distributed
processing with edge computing will be described.
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1 Introduction

In recent years, the rapid development and popularity of deep learning have promoted the progress
of various fields [1–3], including intelligent medicine, automated driving, smart home and so on. DNNs
[4], the core components of deep learning, are used to complete the tasks such as image classification
and natural language processing by extracting the intrinsic features of the input to help people achieve
pattern recognition and decision making. The cost of deep learning lies mainly in two aspects: the time
consumed for the training as well as inference of neural networks and the requirement of materials
like hardware providing computing power or the recourse of devices. Nowadays, to get the more
accurate results of prediction or decision, the volume of data sets and the size of models are booming
as well [5–7], resulting the intolerable time consumption. However, some devices can not afford the
size of models or recourse required by the processing. As a result, the distributed scheme [8–10] where
multiple devices cooperate to complete the computing tasks has become an inevitable trend since the
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single performance of common devices could not deal with these hard tasks well. Moreover, since the
distributed processing usually takes place in a parallel way, the efficiency of training and inference of
large DNNs models also gains a significant increase.

In the conventional way of distributed processing, tasks are allocated or offloaded to different
devices simply, considering little about the fine-grained distribution. In the era of the Internet of Things
(IoT), massive devices organized under the paradigm of edge computing have greater performance
and potential in realizing distributed processing compared with the conventional way [11,12]. In the
scenario of edge computing [13], there are closer ties between edge devices as well as edge servers so
that they can execute assigned parallel strategies well. From another point of view, the distribution
of devices also helps improve the edge computing system. Due to the characteristics of modern large-
scale DNNs models, the models could be partitioned into different edge devices or different blocks
in one device so to make the sub-tasks be completed parallelly. Data sets can also be partitioned
into subsets and assigned to different devices deployed with the same model. Moreover, there is a
further parallel strategy called hybrid parallelism [14] applied in the distribution, which combines the
advantages of both model and data parallelism. Therefore, the original large models or data sets can be
processed efficiently. In general, the distribution with parallelism in edge computing has the following
contributions to accelerating the processing of large-scale DNN models:

• The efficiency of processing is improved significantly.

• The utilization of devices or hardware is higher with suitable parallel schemes.

• The useless communication between devices in edge computing can be reduced during
processing.

At present, there are various frameworks, languages and applications based on the strategies
mentioned above being studied. To offer systematical elaboration of the strategy for accelerating the
processing of DNNs models leveraging the ideas of distributed operation and parallel schemes in edge
computing, a concrete and enlightening survey of the recent efforts is conducted in this literature.
Additionally, considering the practical demand for recourse-constrained devices in edge computing,
several popular lightweight models are introduced for the sake of providing new ideas for conducting
distributed processing better in the world of IoT. In this paper, we integrate and propose some methods
and ideas for optimizing deep learning in edge computing using distributed processing, especially
focusing on parallel processing.

Although there have been many papers on distributed deep learning and federated learning, this
paper has its significance to exist. These existing papers usually focus on a single perspective and do
not explain how distributed processing of DNN is facilitated in edge computing. Besides, papers on
federated learning do not provide a comprehensive survey on distributed processing of DNN in edge
computing scenarios. Moreover, distributed deep learning is only a strategy to accelerate the processing
(training and inference) of deep learning and federated learning aims at protecting users’ privacy and
helping corporate to model while edge intelligence’s goal is to promote the collaboration of multiple
devices for the optimization of the whole edge system. As a result, this paper provides a survey of
edge computing combined with deep learning in a distributed way from a higher and more holistic
perspective, with the expectation that it will inspire more novel research on these aspects.

The organization of the rest part is as follows. Section 2 introduces the related background of
DNN and edge computing and the latter is presented in detail to inspire more ideas about combining
edge computing and distributed processing. In Section 3, some lightweight models are introduced since
they are novel in implementing distribution. The key technique of parallelism is presented in Section 4.
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Representative applications based on distribution, parallelism and edge computing will be presented
and analyzed in detail in Section 5 for inspiring further research. In Section 6, challenges and future
directions are given. Finally, the paper will be concluded in Section 7.

2 Preliminary of DNN and EC
2.1 DNN

Inspired by the framework of animals’ visual systems, DNNs have been created with multiple
layers stacked to extract the features from the input data. Recently, DNNs have become an important
method in machine learning or deep learning since it has a great ability to find the distributed
expression of data. In this subsection, some typical DNN models [15] will be listed and a most popular
method for training will be introduced. Fig. 1 shows some fields where DNNs could be made used.
Since the following models could be seen as the basic and core components for DNN models, the
general methods to combine complicated DNN models consisting of them are analyzed in the third
sub-section.

Figure 1: Areas where DNNs could be applied

Deep Belief Network A Deep Belief Network (DBN) is made up of a large number of Restricted
Boltzmann Machines (RBMs), which is a two-layer network for unsupervised learning and can fit
the samples’ feature [16]. Since RBMs are stacked in a sequence in a DBN, the former RBM’s output
can be viewed as the latter’s input. This process presents how the DBN continuously extracts further
features from the extracted feature. Based on this thought, more and more large models with huge
numbers of layers are created for deep learning to achieve better classification tasks.

Stacked Autoencoder The basic components of an autoencoder are the encoder and the decoder,
which are both made up of numbers of neurons. The input data in the form of vectors are compressed
by the hidden layer and then the input vector becomes a vector of lower dimension, namely encoding.
The decoder is required to map the vector produced by the hidden layer back to the original input
space with the mapping functions. Then we will optimize the autoencoder by minimizing the average
error between the input data with the coded data. After lots of rounds of training, test data can be fed
into it to gain the result by comparing the error with the threshold. Additionally, activation functions
of encoders and decoders are supposed to be non-linear functions, which can extract the non-linear
correlation of input data’s features. Different from the conventional autoencoder, the convolutional
autoencoder is proposed in paper [17]. By stacking these autoencoders in a sequence, a DNN model
is constructed and some more complex tasks can be tackled.

Deep Convolutional Neural Network In recent years, the Convolutional Neural Network (CNN)
has attracted great interest from researchers in various fields, especially in pattern recognition, whose
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name comes from a linear operation in mathematics called convolution. As a multiple-layer network,
CNN consists of four components: layers for convolution, non-linearity, pooling and full connection
[18]. CNNs perform significantly well especially in tasks dealing with image data such as image
classification and natural language processing (NLP).

The core operation of CNN is convolution. The diagram of this operation is shown in Fig. 2.
Abstractly speaking, in convolution, the input image is partitioned into numbers of regions with exact
size (decided by the width and height) and then these regions are connected to the next layer’s neurons
correspondingly. That is to say, every neuron only receives data from the corresponding region. Due
to the convolution, the input data’s dimension is dropped dramatically and the features are extracted
at the same time. Similar to other neural networks, non-linearity functions are applied in neurons as
well. Pooling layers are used in CNNs to reduce the complexity of computation for the following layers.
For example, max-pooling partitions the sub-regions into further rectangles and uses their maximum
value to represent the sub-region. The idea can be summarized as down-sampling. The fully-connected
layers have a similar mechanism and function as conventional neural networks. Additionally, the idea
of CNN is also learned by other neural networks.

Figure 2: The diagram of convolution

Recurrent Neural Network In addition to networks consisting of sequential layers, many networks
are organized circularly. Recurrent Neural Network (RNN) [19] is a typical architecture of networks
in deep learning. RNN is good at processing sequential information, such as natural language
processing (NLP). Its recurrent structure makes it could make use of previous computation in the
form of ’memory’. However, vanishing gradients and exploding gradients are significant drawbacks
of standard RNNs. To address these issues, LSTM (Long Short-Term Memory) is proposed, which
consists of three basic gates: forget gate, input gate and output gate. Forget gate is used to control the
influence of historical information on the current memory unit so that the important information
is preserved for better processing. Many networks based on RNN or LSTM are applied in text
generation, machine translation, voice recognition, image description and so on. The combination of
RNN and edge computing is of great practical significance. For example, a deep RNN-based network
is applied to classify applications from traffic patterns in the hybrid scenario of edge computing and
cloud computing [20]. Some other networks with complicated architecture are also mostly based on
the RNN, such as echo state networks (ESNs), and liquid state machines (LSMs).

Generative Adversarial Network Based on game theory, a generative adversarial network (GAN)
[21] consisting of two core networks–efficient and distributed training. For exagenerator and discrimi-
nator is widely applied in image generation, semantic segmentation and other fields [22]. The generator
is supposed to generate fake data by learning the distribution of true data and the discriminator
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shall classify the fake data from true data. Both of them tend to improve their ability in adversarial
processing, which will finish when a Nash equilibrium is found. Through the learned features, the
generator can fabricate fake information without being detected.

Training Approaches In the training of DNNs models, the main purpose is to minimize the loss
function to optimize the networks, which reflects the gap between the prediction and the true value
of samples. There are many methods for optimizing the the training processing of deep learning,
such as SGD [23], Momentum [24], NAG [25], Adagrad [26], Adam [27], AMSGrad [28] and so on.
Stochastic gradient descent (SGD) is widely applied in the training as a general approach and it is also
suitable for distributed training. Unfortunately, since the traditional SGD is inherently sequential,
it is hard to train a huge amount of data sets by it because of the long time required by data to
complete the trip through the whole model. So, considering the massive data produced by various
devices in edge computing or IoT, some improved approaches based on SGD have been proposed to
realize efficient and distributed training. For example, De et al. [29] proposed a method for highly
parallel platforms and distributed computation. In addition, Downpour SGD [30] was proposed to
deal with large data sets in an asynchronous way supporting numbers of model replicas. However,
when the surface curvature in one dimension is much larger than in another which usually occurs near
the optimal point, SGD is hard to go through the ravine. Momentum is a method that helps SGD
accelerate in a related direction and suppress the jittering of gradients. In Momentum, the update of
parameters not only relies on the current gradients but also depends on the direction of the parameters’
last update. NAG (Nesterov accelerated gradient) is a bit different from Momentum. In NAG, the
gradients are computed according to the situation after taking the planned step instead of the current
gradients. That is to say, NAG could ‘look forward’ by using the information of the second derivative.
Adagrad is an optimization algorithm based on gradients. In Adagrad, parameters of low frequency
are updated with larger step sizes while parameters of high frequency are updated with a smaller
step size. By Adagrad, SGD gets more robustness. Adam (Adaptive Moment Estimation) is also an
algorithm that could adapt the learning rate. It assigns a learning rate to each parameter. In some
scenarios, some mini-batches generate gradients of rich information while they rarely appear. As a
result, exponential averaging diminishes their impact so that the convergence is not so well. AMSGrad
uses the maximum value of the historical gradient squared to update the parameters instead of using
exponential averaging in order to correct the above behavior. There are also some effective methods
for optimizing the training of deep learning, such as QHAdam, AGGMo, etc.

Since almost all DNNs could be classified into two categories according to the structure:
sequential networks and recurrent networks. The former is easy to be partitioned and then deployed
to multiple networks so that the distribution of these models is available. As to the recurrent one,
such as some models in the form of a graph, there are also methods to partition them for parallel
processing [31].

2.2 EC
In recent years, with the fast development of IoT, millions of devices and sensors are playing

various and important roles in our life, such as real-time information collection and monitoring, image
transmission, and dynamic solutions to complex problems. At the same time, they are constantly
generating huge amounts of data, which gradually creates problems such as resource congestion,
as evidenced by high service response delays and information transmission speed hindrance. In
such a context, edge computing has become a new paradigm to solve the local computing of IoT
devices. Cloud computing reduces the computational pressure on local devices by offloading the
computation of local devices directly to the central cloud server, which improves the user experience
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to a certain extent, but there are still problems such as long transmission time and resource congestion
[32]. Compared with traditional cloud computing, edge computing migrates the computation and
storage of data from local devices to edge networks, making them closer to users. There are nodes
for computation distributed in the edge network, and devices can offload computation to these
distributed nodes instead of all to the cloud processing center. Such processing not only reduces the
transmission latency between user devices and edge servers but also strongly eases network congestion.
In addition, with the advantage of its multi-node architecture, edge computing can achieve system-level
optimization by shifting the computation and communication overhead from energy-limited nodes to
energy-rich and more capable nodes, i.e., achieving a dynamic distribution of tasks.

Edge intelligence [33] is defined as a set of connected systems and devices that collaborate for data
collection, caching, processing and analysis proximity to where data are captured based on artificial
intelligence [34]. Empowered by distributed deep learning, edge intelligence is able to make better
decisions on how to offload computation and how to allocate sources and so on. That is to say,
distributed deep learning promotes edge intelligence to achieve a system with greater scope, which
could process assigned tasks with higher efficiency and quality.

2.2.1 Architecture

Different from the architecture of traditional cloud computing, edge computing is aimed to reduce
the distance between data and the place where it is computed. The changes are requested by the low
latency required by users’ modern applications. From the view of hardware, there are three types of
devices in an edge computing system respectively for generating raw data, performing data processing,
and receiving the processed data. The architecture of edge computing can be hierarchically divided into
three layers shown below [35,36]. The architecture of edge computing is shown in Fig. 3.

Figure 3: The architecture of edge computing

Front-End In the architecture of edge computing, edge devices compose the front-end, which
makes the interaction with end users more frequent and the responsive latency lower. Since nearly
all edge devices are able to compute, edge computing could meet the requirements of some real-time
applications such as information forwarding. However, due to the limited computing and storage
capacity as well as energy, edge devices cannot satisfy most applications’ requirements, which need
massive computation and consume the life of batteries. Therefore, edge devices need to forward the
requirements to edge servers.

Near-End In most cases, the data computation and storage of applications will be migrated to edge
servers, which make up the near-end environment. Therefore, the end users could get access to a more
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enjoyable service through the improvement of data computation and storage as well as transmission
latency. Edge servers, also called cloudlets, could be viewed as the miniaturized versions of central
cloud servers and realize the distribution of tasks in edge computing as well. They are commonly
composed of CPUs and GPUs with one or more processors [35]. Compared to traditional cloud
computing, the near-end environment makes servers much closer to users so that the distribution
of computation and storage is easier to achieve. However, these servers are not good at providing
consistent performance for dynamic streaming data from IO channels. As a result, a general-purpose
computing system stack focusing on processing streaming data with higher energy efficiency and lower
consumption in the scenario mentioned above [37] is expected to be built. Moreover, edge servers can
also meet some requirements including data caching, real-time processing and so on.

Far-End Since cloud servers are deployed in the far-end environment, the transmission latency and
consumption are much higher compared with that of edge servers. Nonetheless, due to limitations in
computing power as well as storage on edge servers, some of the computation offloaded past by edge
devices still can not be done in the near-end environment, so the existence of cloud servers makes a lot
of sense. With the powerful computing power and large storage capacity, cloud servers make up for the
shortage of edge servers, though tasks being achieved in the near-end environment is an ideal state. As
the cloud servers and edge servers are both of significance and have their advantages respectively, their
collaboration has become a trend in the related works of edge computing [38]. In recent years, more
and more research has revolved around improving the overall performance of the system through the
collaboration of them [39,40].

The architecture of edge computing makes the collaboration of edge devices as well as servers
more convenient. For example, devices could communicate with each other and exchange data or
parameters due to the end-to-end structure; the cloud server could help edge devices and end devices
help end devices so that some communication and transportation overhead is removed due to the
hierarchical model.

2.2.2 Implements

In order to implement the architecture of edge computing mentioned above, many researches have
focused on the designing of edge computing models. There are two models as below that dominate [32].

Hierarchical Model Given that edge servers can be deployed at different locations from edge
devices, the entire edge computing architecture can be divided into different tiers. The layers are
differentiated by function and distance. So, a hierarchical model can describe the architecture clearly.

Composing the first tier of the structure, the edge servers could receive workloads from the edge
devices such as mobile phones and onboard computers directly [41]. Then, these edge servers are
connected to cloud servers and remote processing centers that belong to higher tiers through the
backbone network.

Due to the hierarchical structure, servers on different tiers can share real-time information on
workloads so that they can work cooperatively. That is, if some servers can not afford the workloads
of computation or storage, they can further offload them to servers on higher tiers. Consequently, the
peak loads can be much larger with the same number of servers in this way.

Software Defined Networking Model Considering the massive applications and sensors on the
edge, it is of great complexity to manage edge computing. Software Defined Networking (SDN) is
a solution to the problem [42]. Different from the conventional paradigm where networks depend
on devices realized by vendors, SDN sets a customized SDN controller that could control the whole
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network in a logically-centralized way. The new architecture can simplify the management of edge
computing and improve the flexibility of the network [42].

SDN is built to separate the data-plane and the control-plane. In this architecture, the network
nodes implement the data-plane alone, while the control-plane is realized by a separated architecture
element–SDN controller. That is, the SDN controller is software for logical controlling. Therefore, the
SDN is capable of easing the design and management of the network by customizing and centralizing
the control-plane.

2.2.3 Applications

With the growing development and popularity of edge computing, more and more scenarios
are undergoing unprecedented changes with its support, not only in technology but also in people’s
lifestyles. In this part, several applications enabled by deep learning in edge computing will be
introduced.

Smart Multimedia Over the past few years, there has been an increasing demand for multimedia
information on the Internet. To meet this demand, better techniques for video processing have become
the center point of research in various efforts [43–45], specifically including video processing, caching
and delivery. Combining deep learning with edge computing is an effective intelligent processing
method.

In terms of video analytics, DeepCham [46], an edge master server that coordinates with partic-
ipating users to train CNN models for better mobile object recognition. Wang et al. [47] designed
a framework assisted by edge computing, which can assign users to the most proper edge servers
intelligently by deep reinforcement learning to solve the problems of latency and congestion. Zhang
et al. [48] proposed an algorithm named LSTM-C that could decide the cache placement without data
pre-processing or additional information.

Smart Transportation Various applications of the Internet of Vehicles (IoV) have emerged to
improve the efficiency, security and comfort of driving [49,50]. In the real world, a large number of
in-vehicle applications are advanced latency-sensitive, yet edge computing can make the information
processing and transmission latency significantly reduced, so the integration of edge computing is an
inevitable trend.

In the scenario of autonomous driving, Chen et al. [51] proposed a multi-view 3D deep learning
network for high-accuracy 3D objection detection. Lv et al. [52] leveraged deep neural networks to
realize the analysis and prediction of traffic by mining the short-term information of traffic situation.
Moreover, Chu et al. [53] contributed to the intelligent control according to the traffic features by
taking a multi-agent actor-critic approach.

Smart City Edge computing is a powerful distributed paradigm for processing the distributed big
data of cities. The combination of deep learning and edge computing enables the cities to become more
economic, green and efficient [54,55].

Wang et al. [56] proposed a method combining LSTM and CNN that can recognize people’s
different gestures. Therefore, users could control the events like turning on the light remotely. A deep
learning mechanism in literature [57] facilitated people to detect the attack behavior and invalid data
injection to the grid in real-time. To some degree, the smart grid is a scenario where edge computing
and deep learning will shine since the distributed structure and massive data produced every second.

Smart Industry The two principles of smart industry are production automation and smart
analysis. In industrial manufacture, the huge amount of data produced by tremendous sensors and
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devices could be processed well if edge computing is made the most of to make the industry more
smart [58,59].

A system in paper [60] was used for machine health monitoring based on the combination of CNN
and bi-LSTM. As a result, all machines can achieve the longest life from a global perspective. Wang et
al. [61] proposed an architecture based on DNN that can predict the remaining energy as well as the
lifetime of batteries.

2.3 Collaboration of EC and DNNs
In edge intelligence, EC and DNNs collaborate tightly and benefit from each other, which

enhances the controlling of edge networks and improves the efficiency of task processing. Based on
the relationship between EC and DNNs, the collaboration is reflected in two aspects: DNNs for
EC and DNNs on EC [62]. For one thing, equipped with intelligent methods with DNNs, devices
in EC could be organized or managed more intelligently, thus unleashing the significant potential
and gaining great scalability of EC. And for another, by deploying DNN models in edge devices
distributedly, the applicability of deep learning models is improved and DNNs could be processed
more efficiently compared with the conventional distributed deep learning paradigm. Additionally,
it is worthwhile explaining the relationship between distributed deep learning and edge intelligence.
Distributed deep learning is a general processing architecture enabling computation to be executed on
multiple devices. However, the communication cost, data security and resource allocation make it hard
to determine an optimal policy efficiently in a naive distributed architecture. Hence, edge intelligence,
based on distributed deep learning architecture, is proposed to solve the above challenges intelligently
with the application of EC, thus achieving the high utilization of resources in edge networks. In
summary, distributed deep learning is the fundamental base of edge intelligence and edge intelligence
enables distributed deep learning to maximize its potential. Federated learning is another deep learning
architecture with distribution, which can be viewed as an implementing technology to achieve edge
intelligence in the co-training and co-inference in edge networks for efficient communications and
data security of edge nodes. The further introduction of federated learning is represented in the
following part.

2.3.1 DNNs for EC

As a distributed paradigm equipped with software-defined networks, EC can organize devices
and provide services robustly and elastically. However, the heterogeneity and dynamicity of the EC
scenario lead to the difficulty of the resource allocation and offloading decisions. To tackle these
problems, deep learning strategies based on DNNs are proposed to obtain the optimal policy. Elgendy
et al. [63] proposed an optimization scheme with deep learning to optimize the resource allocation
problem with non-deterministic polynomial complexity. Considering that the states of edge devices
and edge servers are various and the offloading modes of vehicles are different, the determination
of an efficient offloading policy has become a challenge. Leveraging the deep Q-learning scheme,
Zhang et al. [64] proposed an optimal offloading strategy to improve efficiency and reliability,
which considered the determination of target servers and transmission modes. Equipped with DNNs,
traditional reinforcement learning evolves into deep reinforcement learning (DRL) and is widely
applied in the above resource allocation problems. To achieve a higher quality of service in a greatly
dynamic environment composed of multiple agents, He et al. [65] proposed a resource allocation
strategy based on multi-objective DRL considering multi-dimensional resources. In summary, deep
learning-based strategies are leveraged to optimize the allocation of various resources and determine
optimal offloading policy since they can extract deep features from practical scenarios. Since EC is
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a scenario consisting of massive devices and factors required to be considered are tremendous, deep
learning strategies tend to perform better than traditional optimal algorithms of the powerful ability
to extract features and fit functions. However, there are still some challenges in the processing of
DNN-assisted optimization. Firstly, during the construction of models, models shall be formulated
with limits and restrictions mathematically. Otherwise, the curse of dimension may lead to the failure
of processing. Commonly, denoting constraints as penalties in the formulas of models and then
combining them into system-wide optimization is a solution. Moreover, given the large volume of
DNNs, they require a long delay to achieve the inference tasks. Hence, how to deal with the trade-off
between optimality and efficiency shall be considered in depth according to different scenarios and
requests [62]. Since how DNNs serve edge intelligence is not the focus of this paper, more information
could be obtained in papers [10,33,62,66].

2.3.2 DNNs on EC

With the development of IoT and the surge of mobile communications, there are massive data
are generated on the network edge. To serve better intelligent applications, more and more DNNs
are deployed in the edge devices and exchange data frequently, which increases the pressure on the
resources of devices [67,68]. Thus, DNN tasks requiring large computation or low delay can be
offloaded to edge devices in a collaborative manner instead of processing them in a single resource-
constrained device. Furthermore, as to DNN tasks processed with frequent communications in could
servers, they shall be migrated to the edge. Hence, EC is applied to manage these DNN models
deployed in edge devices for better utilization of resources and quality of service. In the aspects of
DNNs on EC, the collaboration lies in that EC provides decentralized and distributed platforms based
on edge devices, which enable the training and inference of DNNs to be processed efficiently [69].
To introduce this kind of collaboration in-depth, efforts on how DNNs achieve co-inference and co-
training under EC will be presented in detail. The general ideas for combining complicated DNN
models with EC are introduced as follows.

Co-Inference To provide mobile intelligent applications, some small DNN models are directly
deployed in edge devices with model compression techniques and the inference tasks are completed
locally by themselves. However, there are great challenges when large-scale DNN models are deployed
in single devices since tremendous computation power and memory are required. Hence, empowered
by EC, it is a rational and good choice to partition large-scale DNN models into several sub-models
and send them to different edge devices, thus being inferred distributedly with collaboration. To
achieve the above effects, two main techniques are applied: task offloading [70,71] and DNN model
partitioning [31,72].

If the inference requests require a highly low delay while the computation power of the single
device is constrained, the device can migrate computation partially or entirely to other devices.
Therefore, the inference speed is improved and the energy consumption is saved as well, especially
for resource-constrained devices. However, the determination of offloading policy shall consider
both the acceleration payoff and transmission cost. Ran et al. proposed a framework for mobile
deep learning called DeepDecision [73], which considered processing accuracy, energy constraints,
network conditions and so on to achieve a system-wide optimization. This framework could adapt
to variable network conditions automatically. Han et al. [74] proposed MCDNN, an offloading
decision framework to optimize stream processing, which is based on approximate. This paper worked
out how to serve heterogeneous request streams with restricted resources in an optimal manner.
However, this work did not support the execution under model partitioning. As a real-time recognition
system based on EC, Glimpse [75] could offload the computation of recognition algorithms to other
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devices with high computing capability for faster inference. FemtoClouds [76] could leverage other
resource-constrained edge devices to accelerate the computation instead of offloading tasks to remote
cloud servers, which saved massive energy and time for transmission. Benefiting from EC, resource-
constrained mobile devices can be fully utilized, thus improving the scalability and reliability of the
co-inference system without depending on single powerful servers. However, the great dynamicity,
instability and heterogeneity will make it difficult for decision algorithms to converge and lead to
some potential security challenges.

According to the structure of them, DNN models could be partitioned into several parts or blocks
with several layers and the inference of each sub-model could be executed on distributed devices in
EC. Although there exists the communication delay generated by intermediate results, the system-
wide revenue of processing delay and energy consumption still makes it worthwhile to apply these
strategies. As the extension of traditional offloading, before deciding how to offload the computation
of sub-models, it is of great significance to determine how to partition the raw DNN models.
Commonly, to adapt to the dynamic and heterogeneous environment in EC, device resources, network
conditions, service requests, energy consumption and other factors are taken into consideration for
optimal partitioning policy. Moreover, there are two mainstream partitioning methods: partitioning
horizontally and vertically. CNN models can be partitioned vertically while traditional DNNs are
partitioned horizontally, where several layers are executed on a device and other layers are inferred on
other edge nodes. Neurosurgeon [31] is a framework that can partition DNN models in the grain of
layers intelligently and automatically for lower delay and energy consumption. ECRT [77], a real-time
object tracking system, partitioned a CNN into two parts and they were executed in the local device
and edge device respectively to achieve the minimum power consumption of devices, considering the
dynamic environment and delay requests. By partitioning large-scale DNN models into smaller sub-
models, the capabilities of edge devices and resources in the edge networks could be considered and
allocated more precisely and efficiently, thus easing some problems such as delay, energy consumption
and overload. However, how to partition a model more reasonably and how to adapt to the dynamic
EC environment better are still challenges.

In conclusion, EC enables the DNN inference more intelligently and efficiently by leveraging the
resources of the EC system more optimally.

Co-Training In the conventional training mode like centralized cloud training, the data trans-
mission cost and privacy problems are challenges of co-training. However, in decentralized EC, these
issues could be solved by partitioning raw DNN models into several sub-models and they are trained
on an edge node respectively and directly with local data. In this manner, the network burden resulting
from data transmission is eased and private data security is enhanced since each edge node trains its
sub-models. The partitioning strategy of raw DNN models is similar to the mentioned above, thus
not repeating here. DNN partitioning, federated learning and transfer learning are three common and
powerful techniques enabling co-training in EC and they will be introduced as follows.

Same as the DNN partitioning scheme applied in co-inference, DNN models are usually parti-
tioned into several parts and the former part delivers partially processed data to the next sub-model.
Matsubara et al. [78] proposed to distill the architecture of head sub-models after partitioning DNNs
into head and tail parts, which were deployed in a local device and edge node, respectively. Hence,
the intermediate data delivered to the tail part was simplified, thus easing the transmission load.
However, in this manner, the process of distillation would impact the accuracy and transmission
quality. Moreover, the determination of the proper splitting point according to the dynamic and
heterogeneous environment still requires research efforts.
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To ensure the data security and improve communication efficiency among edge nodes, federated
learning [79] is applied in c-training with the server-client architecture, where the server averages
models uploaded from clients. Since each client or edge node trains the local model based on the
global model with local data, information security is ensured. In this perspective, federated learning
can be viewed as a platform provided by EC and such a platform promotes the co-training, which
reflects the collaboration of EC and DNNs as well. Wang et al. [80] proposed an adaptive federated
learning strategy to optimize the trade-off between updating data from local devices and aggregating
global parameters in the resource-constrained EC.

Transfer learning enables DNNs to initialize some parameters with weights learned from models
pre-trained before and copes with problems that how to process distributed data. Zhang et al.
[81] proposed to apply transfer learning to improve the service performance of edge devices with
poor computing capacity and obtained a high improvement in system-wide efficiency. Cartel [82],
a collaborative transfer learning system applied in an edge-cloud environment, aimed to facilitate
edge devices with better adaptability to the situation changes. Compared with isolated and centralized
training, the training time and transferred data decrease significantly.

3 Lightweight Models Applied in EC

Due to their limited computing and storage resources, many edge devices need to deploy relevant
lightweight models or environments to implement distributed inference. In distributed inference,
lightweight models could reduce the communication overhead with servers efficiently. Moreover, they
are composed of fewer parameters so that devices download fewer data from the cloud compared
with common models. For some embedded devices as well as mobile devices, lightweight models are
easier to deploy. This section will introduce lightweight models in the view of realization strategies and
application scenarios.

3.1 Strategies to Create Lightweight Models
To make heavy and large DNN models more lightweight for faster training and inference

[83], there are four mainstream strategies: model pruning, quantization, low-rank factorization and
knowledge distillation. Each of them will be introduced briefly below.

Pruning For the sake of improving the accuracy, more and more modern DNN models have
become very large or with tremendous numbers of layers. However, the massive parameters always
lead to an unbearable long time and huge storage, which makes it difficult to apply them in mobile
environments, especially in the scenario of end-edge collaboration. DNNs usually include lots of
redundant weights that could be removed without reducing the accuracy of prediction. Model pruning
[84] is the method that simplifies heavy models to lightweight models able to be deployed in the end
or edge devices with low computing power. Fig. 4 shows the basic implementation of pruning.

A DNN model could be pruned during the training or after it. Various techniques have existed
such as weight pruning, neuron pruning, filter pruning, layer pruning and so on. In weight pruning, if
the value of weight is lower than the threshold, the weight will be pruned or thrown away. Obviously,
it makes sense since the low weight means a low contribution to the result. Neuron pruning saves a
large amount of time by virtue of removing the whole redundant individual neuron instead of exact
weights, which is time-consuming. After a neuron pruning, all connections with it will all disappear. As
a type of DNN, CNNs also could benefit from model pruning. In filter pruning, while the ’importance’
of each filter is calculated, they are going to be ranked according to it. Similarly to weight pruning,
the least important filter is expected to be removed for its low contribution and high consumption.
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Layer pruning is suitable for a very deep DNN in which even some layers could be seen as useless or
redundant.

Figure 4: The schematic diagram of pruning a DNN

Quantization Normally, the weights of DNNs are presented as 32-bit floating-point numbers.
Nevertheless, this representation leads to pressure on computation as well as storage. Reducing the
number of bits can result in a huge reduction in the number of operations required, let alone the size
of DNNs. Specifically, quantization [85] also reduces the transferring overhead in the scenario of edge
computing collaboration. Inspired by the idea of weight quantization, we can also reduce the bits of
other parameters involved in training or inference including the gradient and activation. Besides, there
is another method to achieve quantization where weights belong to different clusters and they share
the same value in the same cluster. And then, the processing of actual 32-bit weights could be simplified
to fine-tune the shared weights. Fig. 5 illustrates the effect of quantization, which is a simple example.

Figure 5: The schematic diagram of compressing a DNN by quantization

The strategy of quantization can be applied during the training or after it. During the training, the
time consumption of learning could be saved a lot due to the fewer weights used for training actually.
The efficiency of inference and the energy consumed both get improved significantly since the heavy
DNN model is simplified when it is quantized after the training.

Low-Rank Factorization In this method, low-rank factorization [86], a weight matrix is replaced
by several smaller dimension matrixes. As to feed-forward neural networks and CNNs, the popular
technique to realize low-rank factorization and reduce the number of parameters is singular value
decomposition (SVD). For any matrices A ∈ R

m×n whose dimension i m × n, there is always a
factorization: A = USV T . Assuming that r is the rank of a matrice, U = R

m×r, S = S
r×r, and

V T = R
r×n. In the equalities above, S is a diagonal matrix in which the singular values are on

the diagonal and U as well as V are two orthogonal matrixes. In this way, a large matrix could be
factorized into smaller ones so that the storage requirement is improved. The process could be seen in
Fig. 6. Meanwhile, considering that filters in CNNs are made up of matrixes, this technique is able to
accelerate the processing. Besides, in fully-connected layers, low-rank factorization could be applied
to reduce storage and accelerate inference. Given the frequent communication of devices in the end
and edge, the cost of transferring weights and storing weights is improved by this strategy. In this view,
heavy DNN models become more lightweight so that the performance of edge intelligence gets better.
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Figure 6: SVD–a scheme of low-rank factorization

Knowledge Distillation In knowledge distillation (KD) [87], the much heavier models, or teacher
models, are trained on a very large dataset and then we transfer the knowledge learned by them to
smaller models, or student models. That is to say, the final objective of the above processing is to
equip student models with the generalization capability learned from teacher models while being more
lightweight. Due to this strategy, some computation-intensive models which are not suitable for the
resource-constrained devices in edge computing could be replaced with the smaller models with smaller
sizes and computation without much loss of accuracy. It is worth noting that KD is different from
transfer learning. The former is commonly used to realize model composition and get a lightweight
model while in the latter we use the same model architecture and weights, only replacing some fully-
connected layers. The diagram could be seen in Fig. 7.

Figure 7: General process of knowledge distillation

The idea of KD matches the hierarchy architecture of edge computing. As to some quite heavy
models, the cloud or powerful edge devices could pre-train the teacher models and then the knowledge
could be transferred to end devices conveniently. Finally, the end devices or low-ability edge devices
could apply the generalized small models to do some inference [88].

3.2 Application of Lightweight Models
There are several deployment scenarios for lightweight models in EC: image processing, privacy-

preserving, prediction and monitoring. These models and their highlights are listed in Table 1.

Image Processing Nowadays, a huge amount of information is presented in the form of images
and videos. However, some processing of images, such as recognition, classification, and picture
enhancement, often require a large number of resources. But this is indeed a very luxurious behavior
in the environment of edge computing. For example, in traffic, real-time monitoring and behavior
determination requires a lot of analytical work. The deployment of lightweight models in surveillance
devices to replace the original recognition system can effectively reduce the consumption of resources.

Image detection is a common kind of task in edge computing. Agarwal et al. [89] proposed a
lightweight deep learning model for human activity detection on edge devices so that it could reduce
the latency and cost of communication. The model was developed based on the shallow recurrent
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neural network combined with LSTM. In the future, this model could be extended to realize other
more complex tasks and be deployed on more kinds of edge devices. A hybrid multi-dimensional
spatial and temporal segmentation model for detecting defects was proposed by Hu et al. [90]. It
had two core techniques: sequence-PCA layer as well as spatio-temporal and channel attention block.
Compared with models for segmentation, this model yielded better performance and has much fewer
parameters. In edge computing, many object detection models are sensitive to computing complexity
and they need to be modified before being deployed commonly. Yao et al. [91] introduced CrossNet,
a compute-friendly anchor-free detector. To improve the performance, it adopted a new sample
matching strategy based on neighbor points. Although it is more than ten times smaller than the
CenterNet, the performance is only a little weaker. In order to reduce the cost of computation, it is
of great significance to generate redundant features. Zhang et al. [92] proposed the CSL module using
a lightweight convolutional method to generate redundant features which could cost fewer FLOPs to
approximate convolution-3×3’s fitting ability. Moreover, they built CSL-YOLO, the object detector
with two lightweight components: CSL-Bone and CSL-FPN.

Recently, many image classification techniques have been combined with edge devices. Convo-
lutional neural networks are of great significance in constructing a good classifier. Nonetheless, the
large numbers of layers for accuracy make it difficult for the classifier to be realized on edge devices.
To tackle this problem, Sharma et al. [93] proposed a lightweight image classifier–LightNet, which
could extract more features from the input with fewer parameters by making good use of different
receptive fields. It replaced the stand convolution with point-wise and depth-wise convolution. These
two lightweight convolutional layers make up the principle blocks of LightNet–main block as well
as the transition block. The former takes the input from the previous layer and passes it to the
transition block through two paths. The latter based on DenseNet is responsible for the down-
sampling. Experiments show that LightNet could perform better with fewer parameters on the
CIFAR-10 dataset. Consequently, it is suitable to be implemented on edge devices.

Image classification usually needs a large number of parameters. However, deep learning models
are prone to overfitting when tuning a large number of parameters with a limited number of labeled
samples. Jia et al. [94] proposed a lightweight CNN (LWCNN) that could deal with a small sample
set problems well for hyperspectral image classification. In this framework, a dual-scale convolutional
(DSC) module was designed to represent data from different aspects, then a bi-channel fusion (BCF)
module filtered the feature vectors from DSC layers. In computer-aided diagnosis, many deep learning-
based methods are difficult to be implemented on edge devices due to their massive number of
parameters and high computational costs. So, it is important to find a low-cost solution where models
are compressed while maintaining accuracy. Kumar et al. [95] proposed MobiHisNet, a lightweight
CNN model based on MObileNet, which was applied to histopathological image classification (HIC).
It reduced the computational parameters efficiently by applying a range of depth-wise separable
convolutions. Thus, MobiHisNet could extract features from histopathological images to contribute to
the diagnosis. Compared with the state-of-the-art models, it is faster in image classifying. Additionally,
experiments illustrated that it had better adaptation on edge devices in terms of accuracy, inference
time, model size, and memory footprint.

There are also some models for improving the quality of images. Tang et al. [96] proposed a
model for single image haze removal. It was an end-to-end system learning the mapping between
the original images and the latent images without haze directly. Zhang et al. [97] proposed STAR,
a lightweight structure-aware transformer, for enhancing images in real-time by capturing the long-
range dependency of different image patches. For example, STAR could be used for photo retouching
as well as illusion enhancement, which is indispensable for mobile phones.
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In edge computing, since some sensors can not provide high-definition images and the quality of
images is different, these lightweight models could accelerate the servers’ processing by dehazing or
enhancing the images locally for they are lightweight and can be deployed on edge devices. Moreover,
due to these lightweight models or components, the whole edge system could realize distributed
processing of images collaboratively.

Privacy Preserving With the prevalence of IoT and edge computing today, the massive amount
of sensors and applications that access, collect, and compute sensitive user information provides
convenience but also poses a threat to the privacy and security of users. Especially, when distributed
inference is performed in edge computing systems, much private information will be exposed to other
devices or servers for collaboration, which creates opportunities for malicious attackers. Combined
with various recent studies, deploying suitable lightweight privacy-preserving models on edge devices
is a very effective way to address the above problem.

Li et al. [98] proposed a lightweight data aggregation for privacy preservation, which could be
deployed on edge devices with a constrained resource to protect the users’ information. Different from
the traditional schemes for data aggregation, this scheme could aggregate multiple target groups’ data
at the same time and update the aggregation rule list dynamically so that it is capable of protecting
privacy practically and efficiently. In the scenario of diagnosis adopting edge computing, the diagnosis
models requiring massive data will inevitably leak patients’ privacy. To ease the problem, Ma et al. [99]
proposed LPME, a lightweight diagnosis mechanism for privacy preservation. Instead of encrypting
local data, this mechanism encrypts model parameters to remove the computation from ciphertext
to plaintext. Therefore, it achieves lightweight privacy protection on edge devices when distributed
inference or collaborative processing takes place.

E-health is another scenario where users’ privacy is easy to be compromised. Zhang et al.
[100] designed a data access scheme to address the security problems of e-health supported by edge
computing, which adopts a lightweight encryption based on attribution. The algorithm outsources
the data to be shared to the edge servers which are not trusted and then verified the correctness of
results sent back while realizing the lightweight computation. The Mask Algorithm proposed by them
cooperates with blind pairs to hide the bases and exponents of the data, thus achieving the preservation
of privacy when outsourcing computation. In addition to medical aspects, various monitoring devices
also have access to users’ privacy. For example, home surveillance or public surveillance has been
carried out in real-time monitoring, and if a malicious person intrudes, then a large amount of
private information will be leaked. Fitwi et al. [101] proposed EnPec, a lightweight scheme for privacy
protection, which could be applied on edge cameras robustly and securely. One component of EnPec is
a lightweight frame classifier aiming to label frames as harmful or harmless according to the content
of frames.

Monitoring and Prediction Intelligent monitoring and prediction as well as estimation have been
playing a significant role in terms of production and life. However, since the sensors are so massive
and they almost always transmit real-time images or videos, the transmission, storage and computation
give a huge burden to the servers because of the edge devices’ constrained source and power. Therefore,
to ease the burden of edge servers even center servers, increasing efforts are made to design lightweight
models or schemes able to be deployed on edge devices. Additionally, edge devices themselves also
deserve to be monitored, such as rest-life prediction and production estimation.

Chang et al. [102] proposed a training framework to obtain prediction models for predicting
the power output of solar energy. Compared with the traditional scheme where training is carried
out on a single machine, this lightweight framework is more energy-efficient and suitable for devices
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with constrained power and resources. Due to the development of edge computing, the industry is
transforming. Ren et al. [103] designed an edge-based method–lightweight temporal convolutional
networks (LTCNs) that could predict the remaining useful life of devices in IoT, which is driven by data.
In this method, the real-time prediction was obtained in the edge environment and then the prediction
with higher accuracy could be obtained through the cloud. As a result, the method could reduce the
processing time while the accuracy was not influenced. Deep learning technologies combined with
edge computing also play an important role in public safety. Wang et al. [104] proposed a lightweight
model based on the residual bottleneck block and dilated convolutional for crowd density estimation
so that once accidents take place, feasible and efficient evacuation strategies could be developed in time.
Compared with the state-of-the-art models, this model could compress nearly half of the parameters
without much loss of accuracy. Zhao et al. [105] designed LCANet, an aftershocks monitoring system.
To meet the requirements of real-time monitoring, it uses a lightweight context-aware attention
network to detect the earthquake signal and pick phases. The computation requirements are reduced
for the sake of it could be deployed to the edge devices. Moreover, this system is robust and could be
generalized to other platforms easily.

Table 1: Several lightweight models and their highlights as well as effectiveness

Models Highlights Effectiveness

Agarwal et al. [89] Reduce the latency and communication
cost with great extension.

Accuracy: 95.78%

Hu et al. [90] Have good performance in defect
detection with fewer parameters.

Average F-score: 89.67%

Yao et al. [91] More lightweight than CenterNet but
has slightly less performance.

Model compression: 12.8x
Achieved mAP: 74.2%

Zhang et al. [92] Perform better with fewer FLOPs and
parameters since it is compute-friendly.

Saved FLOPs: 43%
Compressed parameters: 52%

Sharma et al. [93] Make good use of different receptive
fields with point-wise and depth-wise
convolution.

Parameter size: Only 26 MB
Classification accuracy: 90%

Jia et al. [94] Good at dealing with small sample set
problems with robustness.

Average accuracy: 93.77%

Kumar et al. [95] Realize histopathological image
classification efficiently and be
lightweight enough to be applied on
edge devices.

Accuracy: 83.79%∼90.19%

Tang et al. [96] Achieve the haze removal of single
image in end-to-end systems by
learning the mapping between it with
the originals.

PSNR: Higher than average
SSIM: Nearly average
Model size: Only 707.00 KB

Zhang et al. [97] Enhance the images in real-time by
capturing their dependency of different
image patches.

Compressed parameters: 75%
Improved PSNR: 1.8 dB

(Continued)
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Table 1 (continued)

Models Highlights Effectiveness

Li et al. [98] Aggregate multiple target groups’ data
concurrently and update the rule list
dynamically to protect privacy.

Saved computation time: More than
50%
Saved communication overhead:
More than 60% even 80%

Zhang et al. [100] Adopt a lightweight encryption based
on attribution.

Encryption efficiency: 1.5x

Fitwi et al. [101] Provide a framework to classify the
harmful or harmless frames.

Average accuracy of capturing
harmless frames: 96.04%

Chang et al. [102] More energy-efficient and fit edge
devices with constrained power and
resources well.

Acceleration: Nearly 2x

Ren et al. [103] Reduce the time for computation while
not reducing the accuracy.

RMSE: Nearly 0.035%

Wang et al. [104] Improve operational efficiency
considerably with the same-level
accuracy.

Compressed parameters: 50%
Accuracy loss: Less than 10%

Zhao et al. [105] Suitable for edge devices with low
computing power and have good
portability.

Model size: 3.7 MB

4 Key Techniques to Achieve Distribution

Deep learning has been playing a significant role in large numbers of fields such as medicine,
finance, security, and so on. With its penetration, the data quantity of applications is undergoing a
tremendous increase and the trend is still growing. Meanwhile, the complexity of computation and
models’ parameters are booming, thus leading to the higher consumption of training and inference
time. Considering recent research [106,107], adopting distributed deep learning training and inference
is one of the feasible solutions to deal with this problem.

Distributed deep learning works mainly in the form of parallelism, in which several devices
work for the same target while doing different parts at the same time, such as synchronously or
asynchronously. In parallel processing, workers need to synchronize every gradient to an exact
gradient, then they could generate and process the next gradient [106]. However, the highly frequent
synchronizations of gradient limit the scale of algorithms based on gradient descent. Data parallelism
and model parallelism are two main schemes for distributing computation to different devices in the
distributed system, especially in edge computing. In the scenario of edge intelligence, many devices
collaborate to achieve the goal task by doing each one’s assigned sub-task. The processing of achieving
sub-tasks together is the processing of distributed deep learning.This section will first introduce the
hardware foundation of distributed or parallel processing and then present the implements as well as
some applications of the two parallel schemes.
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4.1 Hardware Foundation
A CPU (Central Processing Unit) [108] is the core of a computer, which is composed of arithmetic

and logical units (ALU), caches, and control units. The common structure of a CPU is shown in
Fig. 8. CPUs are involved in general-purpose computing where computation is usually not massive
but complex. So, CPUs require adequate controlling units to realize complex data controlling and
transfer data while operating and caches to storage some results which are just worked out or will be
used soon later. Due to the feature of their architecture, CPUs are suitable for scenarios where complex
tasks like moving to control and managing the sequence between instructions take place.

Figure 8: The common structure of a CPU

A GPU (Graphic Process Unit) consists of a set of multiprocessors, each of them having its stream
processors and sharing the memory [109]. The stream processors can execute integer as well as single-
precision floating-point operations. Additionally, they also own cores for double-precision operations.
Since all multiprocessors can access the global device memory and they execute thousands of threads
at the same time, the latency produced by accessing memory could be ignored. Register and resources
sharing memory are partitioned by the threads being executed. The multi-stream architecture enables
GPUs to do parallel computation where every step is independent of others. Fig. 9 shows the diagram
of a GPU.

Figure 9: The common structure of a GPU
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Compared with CPUs, GPUs have fewer components for controlling and caching while most of
them are ALUs. As a result, CPUs do better in controlling and doing complex arithmetic while GPUs
are more suitable for achieving the simple and repetitive. This feature makes GPUs widely applied in
processing parallel arithmetic, which is the core operation of training deep neural networks or doing
deep learning inference.

Constructing CPUs clusters has also been proposed to train deep neural network models. By
leveraging the powerful computing power of clusters and the features that models can be stored
distributively and parameters can communicate asynchronously, this scheme presents huge potential
to compete with GPUs. Once a deep learning model is too large to be contained by a GPU, using the
CPUs cluster teed to be a better plan. With 1000 CPU servers, the scheme in Dean et al. [30] achieved
the training of deep neural networks by using model parallelism and data parallelism. Inspired by
the advantages of GPUs and CPUs clusters, it seems a feasible and efficient solution that constructs
GPUs clusters on the base of the CPUs-GPUs system. In this scheme, the large scaled training can be
accelerated by playing to the strengths of single nodes’ high performance as well as multiple servers’
collaboration.

4.2 Data Parallelism
Before introducing the principle of data parallelism, the definition of parameter server needs to be

learned about [110], whose diagram is shown in Fig. 10. Severs and workers are the two components
of this architecture. Servers maintain the whole or partition of parameters shared globally, and
synchronize the weights of every worker node. The number of server nodes is usually the same as
the hosts’ and each of them will operate as part of the synchronization. Worker nodes play the role of
realizing the primary computation of algorithms, namely, some simple and low-level arithmetic like
back propagation, convolutional computation, weights updating, and so on. They update and receive
gradient only from server nodes and do not communicate with each other. Thanks to the parameter
server, some deep learning algorithms can be accelerated nearly linearly. Additionally, the parameter
server is a definition in logic, which may be not an independent server.

Figure 10: The architecture of a parameter server system

In data parallelism, data are distributed or partitioned into different workers, where complete
models are deployed. That is to say, a worker node runs a whole model but processes data differently
from others. Data parallelism achieves data exchange by the parameter servers mentioned above.
The diagram of data parallelism is shown in Fig. 11. During the whole process of training and
inference, every sub-process of each step is independent since servers communicate with worker nodes,
respectively. In edge computing, many scenarios need and suit data parallelism since that many



CMES, 2023, vol.136, no.1 25

devices cannot carry these huge amounts of data. For example, traffic monitoring equipment is always
deployed with the whole model while they could collaborate on a task due to the massive data that
they cannot afford.

Figure 11: The diagram of data parallelism

There are two modes of data parallelism–synchronous and asynchronous modes. In synchronous
mode, all the procedures train the data of the same batch and then exchange parameters when they all
complete the computation. After exchanging parameters, procedures can start the training of the next
batch on the base of the same new model. However, in asynchronous mode, if a procedure completes
the training of a batch, it will exchange the parameters with parameter servers immediately not caring
about other procedures. So, the latest result of a procedure will not be reflected in other procedures
until the next exchange. In practice, since GPUs are connected with PCIe links, the synchronous mode
is preferred.

In the rest of this subsection, some frameworks, models, or libraries will be presented for relevant
workers to do further applications or research.

NOVA NOVA [111] is a functional language and compiler that is significantly useful in multi-core
CPUs and GPUs. It is a polymorphic and statically functional language with higher-order functions
used to express parallelism which includes scan, map, and reduce. The NOVA compiler is an optimizing
compiler, lightweight but powerful. The NOVA compiler produces target codes from the NOVA
language. It is stand-alone and can be embedded in other applications or used as a target for specific
languages easily. Existing code could be integrated into NOVA programs thanking foreign functions.
Nonetheless, foreign functions are considered to be of no side effects.

Over the last few decades, a large number of programming systems have been invented to make it
more accessible for parallel programming to be used on multi-core CPUs and GPUs, including CUDA
[112], OpenCL [113] and TBB [114]. These systems are targeted toward programmers familiar with
the theory of the underlying parallel hardware and proficient in fine-tuning applications to improve
performance. However, the feature that they are close to the bottom of hardware also becomes an
obstacle for others to use them. Compared to them, NOVA is a system with high-level abstraction and
performance. Meanwhile, NOVA has almost the same performance.

In summary, NOVA has the following two characteristics: recursion and type inference. NOVA
could realize recursion by using μ-expressions, which are like fixed-point combinators. The NOVA
language operates Hindley-Milner type inference [115] and does some extensions to support the
polymorphism of some built-in parallel operators.
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MALT MALT [116], a library integrating with existing machine learning algorithms and software,
enables machine learning applications to realize distributed learning or inference leveraging data
parallelism. By providing abstractions for memory updates that are fine-grained, it reduces the cost of
data movement when incremental models change or update. With its general API, the developers can
provide distributed applications written in C++ and Lua with data-parallelism, which are based on
support vector machine, matrix factorization as well as neural networks.

During the distributed inference, the model replicas operate training on different sets of cores
across nodes in a parallel way. Machine learning libraries use the vector library of MALT to produce
the parameters or gradients of models that require to be synchronized among machines. Moreover,
it loads the data of model replicas from distributed file systems like NFS and HDFS. Developers,
use the API to input, send, and receive data across model replicas so achieve the synchronization of
algorithms.

In conclusion, the existence of MALT makes various machine learning software leverage data par-
allelism efficiently, and the framework itself reduces the cost of network processing and transmission
overhead.

AsynGraph In recent years. iterative graph algorithms have been proposed to be operated by
accelerators based on GPUs. Nonetheless, existing methods do not make good use of the parallelism
of GPUs, which limits the process of iterative algorithms. AsynGraph [117] was proposed to maximize
the data parallelism of GPUs to accelerate the convergence speed of the process. Firstly, it is an
asynchronous system with highly efficient structure-aware ability. AsynGraph extracts a graph sketch
consisting of the paths between vital vertices from the original graph and treats it as a bridge where
states could propagate fast. In this way, the states of most vertices can be conducted parallelly on
the GPUs. Therefore, the utilization of GPUs is improved since the important vertices are processed
efficiently. Moreover, AsynGraph adopts a forward-backward intra-path way of processing, which
could handle every path’s vertices asynchronously to boost the propagation speed while reducing the
cost of accessing data. The research about how to extend it to heterogeneous platforms for the process
on a larger scale has been carried out, which means the further exploitation of the high parallelism of
GPUs in graph processing.

In summary, data parallelism is penetrating various aspects of distributed learning or inference,
from whose underlying implementation to its conduction on different devices.

4.3 Model Parallelism
Model parallelism is another way of parallelism. Different from data parallelism’s operation on

data, model parallelism partitions a large model into smaller model layers among GPUs [118], namely,
every GPU in the system only needs to be responsible for the assigned model layers’ weight. The
diagram of model parallelism is shown in Fig. 12. One model layer’s output is the input of the next
model layer and the gradients produced by backpropagation are transferred from one sub-model to
another. These intermediate data are transferred among GPUs. Unfortunately, due to the dependence
among each sub-model, if model parallelism is implemented in a naive way where only one single GPU
works at a time, the efficiency and utilization of GPUs are very low. To tackle this problem, PipeDream
[119] realized the pipeline of model parallelism by injecting several mini-batches into the pipeline at
the same time. As a result, every GPU can operate its training and inference simultaneously.
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Figure 12: The diagram of model parallelism

When it comes to model parallelism, there are two main paradigms–layer-wise pipeline and tensor
computation [120]. In pipeline one, the operations are performed on one sub-model or device before
they are completed and outputs are transferred to the next device in which the further computation
is performed. Harlap et al. [119] proposed an approach where a parameter server is combined with
pipeline model parallelism. Nonetheless, these methods need to bear the suffering of inconsistency
issues. Leveraging the synchronous gradient decent, Huang et al. [121] overcame the above issues.
However, the additional logic for handling pipelining of communication and computation leads to
reduced efficiency or changes to the optimizer itself.

Distributed tensor computation is a more general method, in which a tensor operation is
partitioned to several devices to accelerate computation or to improve the scale of original models.
FlexFlow [122] is a framework that provides a method to find the best strategy for parallelism. Shoeybi
et al. [120] made the use of parallelism of transformer’s attention to achieve the parallelism of their
model.

Since accessible devices in edge computing are usually heterogeneous if they deploy the same
model, their utilization of them is very low and each device’s advantages may be wasted. For example,
different devices can be assigned models of the appropriate size according to their capacity. On this
basis, it can be further adjusted according to the actual situation. In this way, the overall benefits of
edge computing can be further optimized.

SpecTrain Although data parallelism is the most common method for parallel computation of
distributed inference, its high cost of communication between GPUs is still a serious issue. Pipelined
model parallelism is an approach that reduces the communication cost but suffers from the weight
staleness issue, namely, this approach leads to instability and the loss of accuracy since it uses stale
weights. SpecTrain [118], a new weight prediction technique, is proposed to be applied in a pipelined
method to solve the staleness and accuracy loss. The method efficiently improves the utilization of
GPUs and maintains the same level’s accuracy.

During the training procedure, the same version of a mini-batch will be used in a whole round trip,
however, which makes GPUs have to queue for old versions so that wastes memory space. However,
GPUs could adopt future weights instead of waiting for the earliest version of weights due to the
prediction of SpecTrain. Specifically, if a mini-batch completes the round trip at time t, it could predict
the t-version of weights in the early stage and perform computation with this version. The specific
implementation of this approach is omitted here, and the details can be found in the papers cited in
this section.

In edge computing, the massive edge devices will produce a long queue if they are processed in
the traditional model parallel method and the waste, as well as waiting time, are catastrophic. So,
SpecTrain is expected to be a powerful tool to ease the problems.

LAMP Large deep 3D ConvNets with Automated Model Parallelism (LAMP) [123] is proposed
and it is feasible for large deep ConvNets to be trained using a large input block or even the whole
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image with LAMP. As is shown in the experiments, the accuracy of image segmentation could be
improved by increasing the model size or input context.

It can reduce the inference time and improve the accuracy when the size of the input is very large,
which seems to be contradictory. It benefits many areas where large image input is inevitable such as
the analysis of medical images and 3D architecture search.

GEMS GEMS [124] is a memory-aware system of model parallelism based on GPUs. There
are designs of GEMS: GEMS-MAST, GEMS-MASTER, and GEMS-Hybrid. Memory-Aware Syn-
chronous Training (GEMS-MAST) makes use of the free memory and the computation is produced
when GPUs have completed their forward and backward passes to train the same DNN’s replicas
in an inverted manner. Memory-Aware Synchronized Training with Enhanced Replications (GEMS-
MASTER), a generalized version of GEMS-MAST, makes it possible for researchers to train a model
with any batch size but on resources of the same numbers. GEMS-Hybrid, which combines data
parallelism and memory-aware model parallelism, takes the advantage of data parallelism’s near-linear
speedup to accelerate the training.

This scalable hybrid system for out-of-core parallel computing contributes to various fields
requiring large-scale training, promoting the popularity of distributed inference in edge computing.

4.4 Convergence of Data and Model Parallelism
Nowadays, for the sake of leveraging both parallel strategies at the same time and make the most

of them, the convergence of them has been taken into research [30].

HetPipe HetPipe [125] is a DNN training system for large models’ training on a heterogeneous
GPU cluster which consists of low-level GPUs that could not achieve training independently. Its basic
architecture is a heterogeneous pipeline, integrating data parallelism and pipelined model parallelism
to take advantage of them. In the process of real training, a virtual worker composed of a group of
GPUs processes mini-batches in a way like pipelined model parallelism, and multiple workers perform
in a data-parallel way to improve the efficiency. To facilitate the convergence of parallelism of virtual
workers, WSP, a novel model for parameter synchronization, is proposed as well. Experiments have
proved that HetPipe is feasible and efficient and achieve 49% faster than the latest data parallelism
technique.

In the real world, large numbers of edge devices have no powerful hardware for standalone training
or inference and they are almost heterogeneous in an edge computing system. So, Hetpipe seems to be
a good solution for utilizing these fragmentary GPUs to the most degree.

Model Dataflow Graph Pal et al. [126] proposed a method for hybrid parallelism. In this method,
every worker with data parallelism consists of several devices and it partitions the model dataflow
graph (DFG) with model parallelism, then allocates the partitioned to multiple devices. To the shortage
of data parallelism, the increasing number of epochs resulting from the increasing size of the mini-
batch will lead to a longer time of training and the acceleration could not be extended well when there
are too many devices. So this method of hybrid parallelism tries to solve these problems by making
every worker with a data parallelism model parallel as well in each device. During the running time,
when the efficiency of data parallelism reaches a bottleneck, the hybrid parallelism will extend more
devices to train.

To find the time when hybrid parallelism needs to be applied, researchers also develop a framework
for analyzing the crossing point of devices. It is proved that this method performs than schemes with
data parallelism only when training DNNs of different scales.
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4.5 Comparison of Two Parallelism
In this subsection, data parallelism and model parallelism are compared in three aspects and their

prospects of them will be introduced. The category is according to the paper [118]. The diagram of the
collaboration of data and model parallelism is shown in Fig. 13.

Figure 13: The convergence of data and model parallelism

Load Balance Across GPUs Since the implementation of data parallelism is to partition data
into several sets across multiple GPUs, load balance is easy to maintain. However, it is very hard for
model parallelism to allocate load in a balanced way because different DNN layers vary complexly.
To solve this problem, Harlap et al. [119] proposed to use dynamic programming to achieve the
balanced partition of models. Mirhoseini et al. [127] used reinforcement learning to partition models
dynamically when they are running.

Inter-GPU Communication Although both of them require inter-GPU communications while
running, model parallelism usually communicates much less than data parallelism because it has few
intermediate parameters between layers. The frequent communication of data parallelism results in
the slowdown with experiments showing nearly a quarter of the time is spent between inter-GPUs.

Training Efficiency For data parallelism, the mini-batch size decided by data partition influences
the training efficiency and accuracy. Researches in [128,129] showed that if the mini-batch is large, the
utilization of GPUs will increase but the accuracy will decrease. For model parallelism, the problem
mainly lies in the staleness since the recent popular training is in the pipelined way where the latter
mini-batches adopt stale weights to produce gradients, which decreases the steadiness and accuracy of
training.

Considering the existing problems of data and model parallelism, future research is expected to
be around the optimization of data partition and the staleness issues in pipelined model parallelism.
Additionally, if approaches for improving the scalability of data parallelism are designed, data
parallelism will show more significance in the booming scale of multiple-GPUs clusters. Moreover,
the combination of data and model parallelism is the trend of distributed parallel computing, in which
case the two methods can maximize their advantages.

5 Applications of Distributed Inference in Edge Intelligence

At present, many methods based on deep learning are proposed to optimize the processing of
edge computing, such as the decision that how to allocate computation and storage to each device. For
example, a computation offloading strategy is proposed in paper [130] by deep reinforcement learning;



30 CMES, 2023, vol.136, no.1

augmented reality is processed by taking advantage of edge intelligence with reinforcement learning
[131]; the energy consumed by computation is reduced by a game-based reinforcement learning and
the efficient is improved [132]. In edge computing, massive numbers of edge devices could be applied as
workers for the distributed training or inference of large DNN models, which are used to be processed
only in cloud servers. In this way of combining distributed deep learning with edge intelligence, the
whole system could gain lower latency, higher energy efficiency, and better utilization. The basic
structure of distributed processing in edge computing is in Fig. 14 and there are many other realizations
of this structure. In this structure, many heterogeneous devices are accessible in the edge scenario, so
they are supposed to collaborate in the form of data parallelism or model parallelism and even hybrid
parallelism according to the practical context of the scenario.

Figure 14: The structure of distributed processing in edge computing

Typically, under the control or allocation of edge intelligence, raw data (input data) may be
distributed to edge devices and the target tasks are going to be processed. In this stage, the controller
device needs to determine the way of parallelism and determine whether cloud servers are required
to help process task according to the practical situation. To satisfy the requirements above, cloud
servers need to deploy relevant models in advance. Many factors impact the decisions, such as the
characteristics of tasks, the quantity of intermediate data, the quality of the network, etc.

DeeperThings When it comes to image classification, the inference of huge CNN models is harder
to be executed on a single device, especially in edge computing and IoT where devices are recourse-
constrained while tasks are heavy. However, although a single device is not powerful, we can make the
most of the number of devices. That is why distributed inference makes sense. DeeperThings [133], the
improved version of DeepThing [134], is proposed in this background. It is a method that supports
the CNN inference’s full distribution by partitioning layers that are fully connected and intensive in
weights as well as features. Moreover, the team also achieves the joint optimization of computation,
memory, and communication demands on the base of distribution. Moreover, a novel approach to
integer linear programming (ILP) is designed. As is shown in experiments, with the integration of
layers, this method could balance the memory footprint among devices and reduce the communication
demand by over a quarter. According to experiments, the integration of layer fusion helps reduce
the demands of communication by 28.8%, which results that the inference task being accelerated by
1.52x compared to naive layer partitioning. Although model partition has been a technique to achieve
parallel processing, some novel methods could improve them and then have better effects.
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To some degree, this scheme reveals the general idea of dealing with large CNN models in
scenarios rich in computation- and recourse-constrained devices. Moreover, since partitioning layers
is the core operation in it, this scheme may apply data or model or hybrid parallelism to achieve
further improvement. For example, the devices with similar power and recourse could operate similar
computations in parallel to improve the utilization of the whole system.

DeepHome The smart home is a promising scenario where edge intelligence plays a significant role
while the tasks of inference on various devices are also a problem.

DeepHome [135], a novel distributed inference system, is capable of allocating the tasks of machine
learning inference to heterogeneous devices distributively, aiming to improve the integral low latency
and privacy preservation and achieve the most utilization of devices in the home. Considering the
present and future situation of the intelligent home, this system is of great enlightenment.

The architecture of DeepHome is composed of two main modules: the resource negotiator and the
scheduling module. The resource negotiator is responsible for managing devices’ resources, tracking
the working states of devices and maintaining the network connections of devices. The other module is
used for scheduling the tasks of devices and making distribution plans, which consists of components
for task admission, task monitoring and task scheduling. There is a selected centralized node as a
’registry’ for the management of the whole system, whose work includes the dynamic distribution of
tasks to suitable devices. For example, tasks will be allocated to free devices when others are occupied
or operating their primary function and a complex task that consumes a huge amount of recourse and
time will be distributed to multiple devices for accelerating.

The experiment shows that their scheduling algorithm makes the most of scheduling delays of less
than 20 ms, which could satisfy daily requirements. Moreover, most of the inference delays lie between
200 and 400 ms, which is also acceptable. As a result, edge intelligence has the potential to collaborate
with distributed processing well.

For further improvement, some specific lightweight models can be deployed to devices according
to the personalized environment of the home. It can be foreseen that with the progress of hardware,
parallel schemes will optimize the distributed tasks.

HierTrain Liu et al. [136] proposed HierTrain to accelerate the DNNs processing on the MECC
(Modele-Edge-Cloud Computing), which overcomes the drawback of consuming a long time and
requiring massive resources when transferring data from the edge to center. HierTrain, a hierarchical
framework for edge AI, deploys the training tasks of DNN on the hierarchical architecture efficiently.
The key to this framework is the hybrid parallelism strategy, which assigns the layers of DNN and
data samples in an adaptive way across the edge devices, edge servers and the cloud center. To obtain
the scheduling policy under the parallel strategy, they formulate the scheduling of computation as an
optimization problem for minimization.

According to the experiment, HierTrain can achieve up to 6.9x speedups compared to the training
approach based on cloud hierarchical.

Compared with other applications of parallel strategy, HierTrain assigns the data and model layers
to three levels which consist of different types of devices. This novel scheme pioneers the more granular
applications of parallelism considering the hierarchical architecture of edge computing.

Systems Considering Privacy and Security In edge computing, the massive communication
between edge devices may also bring the problems of a privacy breach. One of the solutions is to
apply the distributed deep learning system in edge computing, which could provide efficient and
reliable protection for local users’ private data.
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Saputra et al. [107] proposed a novel framework, allowing model edge nodes (MENs) to cooperate
and exchange their information to improve the accuracy of the prediction of content demand, to
realize the highly accurate and secure prediction. In this framework, MENs are only allowed to
exchange the gradients and privacy is preserved well. To some degree, this framework achieves a very
fine-grained scheme for privacy preservation in edge computing by adopting distributed processing,
which has far-reaching significance since the booming of edge devices is inevitable in edge computing.
Moreover, for more personal protection, each device may construct its lightweight model locally for
better performance detection of invasion.

Kozik et al. [137] proposed a scheme for attack detection based on distributed ELM (Extreme
Learning Machine) leveraging the HPC clusters to deal with training requiring a long time and huge
computation. In this scheme, the construction of large-capacity models takes place on the cloud with
adequate resources so that classification models resulted could run on multiple devices in the whole
system of edge computing.

Summarized from the above applications, we can see that distributed processing could offer further
improvement to the scenario of edge computing by providing more fine-grained service.

6 Challenges and Prospects
6.1 Challenges

Since there is great potential in combining edge intelligence with distributed deep learning, further
research needs to be done for addressing the current problems, such as the sensitive data of users,
latency due to network congestion, offload failure due to insufficient computing and storage capacity,
etc. To enable parallel strategies to cooperate with distributed processing well in edge computing, there
are still several challenges to overcome.

• Scalability: The construction of the distributed strategy when devices are highly heterogeneous
in a cluster still has space for improvement. Although there are large numbers of devices available in the
scenario of edge computing, they are usually highly heterogeneous so it is difficult for the distributors
to make proper plans of distribution with the consideration of each device’s cost and utilization. If
excellent strategies applicable to groups full of heterogeneous are not found, the scale of devices can
contribute to the distributed processing concurrently to further improve the allowed scales of DNN
models and data will be limited. A scheme proposed in [138] does an attempt in the aspect of model
parallelism and adapts the distribution to heterogeneous devices well. Strategies based on other forms
of parallelism such as hybrid parallelism need to be proposed to take the most advantage of parallelism
and distribution.

• Fault Tolerance: Since universal failures are inevitable, the abortion and exit of tasks have
become a problem. Therefore, it is vital to monitor the state of each device while the cost increases.
Moreover, transferring the tasks done partly to other devices without influencing the whole efficiency
intolerably is also an issue. However, when the number of devices or working nodes is passed a certain
quantity, the probability of failures will reach a very high level and the continued abortion could
damage the training or inference. As is proposed in paper [139], very specific hardware could be used
to decrease the probability of failure while high expense and hard access make this scheme effect little.
As a result, strategies or hardware that could deal with the problem of failure needs to be researched
at present. Moreover, beyond failure detection, activities such as transferring tasks taken after which
are also important.
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• Privacy: The problems of privacy and security of each device in the system of distributed
processing remain to be addressed especially in edge computing where devices are connected tightly.
From now on, while there have been some theoretical schemes to ease the problems of privacy, current
frameworks do not perform well in supporting even basic privacy [140]. In edge computing, the privacy
of devices or users is the foundation of any applications so the research of frameworks or schemes
considering privacy while distributing the target models is of great priority.

• Performance: The performance of distributed processing is not so good when the number of
devices is significantly large. In the reality, it seems that fast training will always benefit if the resource
used is sufficient. For example, the framework in paper [30], which utilizes thousands of machines to
train large DNN models, achieves great acceleration in training. However, although the distributed use
of GPUs brings high performance, the efficiency is usually below 75%. So, more efforts of research
can be taken to explore the joint optimization of efficiency and performance.

6.2 Prospects
Since edge computing has been integrated into various aspects of life, for further improvement

and development, distributed processing is expected to take the most advantage of edge computing in
several fields. Now that the popular fields of edge computing have been introduced clearly in detail in
the section about the background, the prospects of the combination of them will be presented briefly
below:

• Smart Multimedia: Nowadays, data and computation coming from real-time multimedia have
made some image or video processors deployed with large-scale models tired especially during peak
periods. Therefore, the distributed processing of compression or decompression of images and videos
is much needed. In this field, distributed processing can combine with edge computing well for the
scenario is usually abundant in edge devices.

• Smart Transportation: Automated driving and the transmission of information on the road
are two main directions for researchers. The computation produced by automated driving can be
partitioned to other devices if cars have poor power or their resource is constrained. Additionally,
passengers’ applications also add a burden to the servers, whose DNN models are large and real-time
input data are massive as well. As a result, many efforts need to be made in this direction.

• Smart City: A city can be viewed as a complex system that contains all kinds of devices. So,
distributed processing should explore the diversity and maximize the utilization of free and available
devices. For example, some blocks are of few activities at night, so the devices can be leveraged by the
tasks that are still active.

• Smart Industry: In some large-scale factories where machines are connected to be integrated
into edge computing, the monitoring and prediction of machines can be processed in a distributed
way to achieve the balance of the whole system. Moreover, considering the feature that machines are
usually the same in a group or cluster, distribution and parallelism are easier to achieve.

7 Conclusion

The convergence of distributed processing and edge computing significantly accelerates the
training and inference of modern large-scale DNN models. This paper aims to provide an enlightening
review of distributed processing schemes based on data and model parallelism in edge computing. The
main background of DNN and edge computing is introduced in the beginning. After the description
of lightweight models deployed on distributed devices, the research and applications of this scheme
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are presented. Eventually, several challenges and prospects of distributed systems in edge computing
are discussed.
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