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ABSTRACT

Medical image super-resolution is a fundamental challenge due to absorption and scattering in tissues. These
challenges are increasing the interest in the quality of medical images. Recent research has proven that the rapid
progress in convolutional neural networks (CNNs) has achieved superior performance in the area of medical image
super-resolution. However, the traditional CNN approaches use interpolation techniques as a preprocessing stage
to enlarge low-resolution magnetic resonance (MR) images, adding extra noise in the models and more memory
consumption. Furthermore, conventional deep CNN approaches used layers in series-wise connection to create
the deeper mode, because this later end layer cannot receive complete information and work as a dead layer. In
this paper, we propose Inception-ResNet-based Network for MRI Image Super-Resolution known as IRMRIS. In
our proposed approach, a bicubic interpolation is replaced with a deconvolution layer to learn the upsampling
filters. Furthermore, a residual skip connection with the Inception block is used to reconstruct a high-resolution
output image from a low-quality input image. Quantitative and qualitative evaluations of the proposed method are
supported through extensive experiments in reconstructing sharper and clean texture details as compared to the
state-of-the-art methods.
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1 Introduction

One of the most important and demanding imaging procedures is magnetic resonance imaging
(MRI). MRI provides detailed, high-resolution images of human tissues. Super-resolution (SR) has
proven to be very good for image quality, both in terms of peak signal-to-noise ratio and image acqui-
sition time [1]. The main purpose of image SR is to generate a high-resolution (HR) output image from
a degraded low-resolution version of the input image, which is common in the field of digital image
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processing, especially satellite imaging, medical image enhancement, facial recognition, and security
surveillance. In the area of medical images, MRI is used to expose anatomical and cellular information
and plays a vital contribution for both clinical and preclinical studies. Higher-resolution of MRI
images are always used in imaging modalities. In addition, the physics of MRI severely attempts, that
how high image resolution can be obtained within a specific time frame of the scanner because the
MRI scanning process requires more time than the computerized tomography (CT) scanning process.
Generally, for clinical MRI scanning process typically take 20 min at millimeter-size image resolution
compared to a typical CT scan, which can be performed in seconds [2]. At present, innumerable
approaches are available in the literature for MRI image super-resolution. The image SR can mainly
be categorized into three: (1) interpolation, (2) reconstruction, and (3) learning based. Interpolation-
based is a simple method of estimating neighboring values of a pixel’s intensity, this technique
creates the extra noise in the model and induces ringing-like jagged artifacts. Reconstruction-based
methods have mainly two domains, namely space-based and frequency-based domains. Spatial-based
domain methods have reasonable potential for constraining priori information, whereas frequency-
based approaches typically improve image resolution by removing spectral aliasing. Application of
Maximum a Posteriori (MAP) method, the Projection onto Convex Sets (POCS) method, the hybrid
MAP/POCS method, and the Iterative back-projection (IBP) method [3,4] are the most representative
reconstruction-based methods. Irani et al. [5–7] proposed reconstruction-based algorithms in the field
of medical MRI images to reconstruct the SR image. These approaches are very easy to implement, but
do not yield unique solutions due to the ill-posed nature of the inverse problem. Sparse Representation
method proposed by Ismail et al. [8] and Sparse-coding-based SR MRI algorithm suggested by
Wang et al. [9] to find the sparse representation through a dictionary learning process. This algorithm
has a little bit of improvement in the MRI low-resolution image, but still, the result is not satisfactory
due to the limited resolution improvement, and it turns very slowly for 3D MRI images. The third
category of image SR is deep learning-based algorithms into MR image super-resolution [10–18]. They
have achieved a tremendous improvement due to their ability to self-learn from the large amount of
data quickly and accurately. Furthermore, its design architecture is very simple and has an excellent
reconstruction quality of the low-resolution MRI image. A shallow three CNN layers model was
introduced by Dong et al. [19]. The first CNN layer is used to extract features from the original LR
input image, the second CNN layer is used to nonlinearly map the HR patches, and the third layer
is used to rebuild the HR image from the resultant patches. Kim et al. [20] presented an extremely
accurate SR technique based on a VDSR convolutional neural network motivated by ImageNet
classification model of Visual Geometry Group Network (VGG-net) [21]. The Fast-Super-Resolution
Convolutional Neural Network (FSRCNN) [22] used an hourglass-shaped CNN with more layers
but fewer parameters to speed up SR reconstruction. The Efficient Sub-Pixel Convolutional Neural
Network (ESPCN) [23] completely extracts features in the LR image space and replaced the bicubic
up-scaling procedure [24] with an efficient sub-pixel convolutional layer. To reduce the computational
cost in terms of several parameters, Kim et al. [25] suggested a new type of network architecture
with deeply recursive layers (DRCN). Lai et al. [26] presented a deep Laplacian pyramid network
up to 27 convolutional layers of network depth, which dramatically improved accuracy and speed. To
producing plausible-appearing HR images with acceptable perceptual quality, Ledig et al. [27] offered
a generative adversarial networks method. Even though the above CNN-based SR techniques have
achieved excellent reconstruction quality and efficiency, they still have some deficiencies that need
to be addressed. The most recent CNN-based approaches face the challenging of vanishing gradient
problem during the training by stacking CNN layers side by side to build a deeper network architecture.
Besides that, the bicubic interpolation approach is utilized as a pre-processing step, which increases the
extra burden on the model during the training. Therefore, the reconstructed SR images have the jagged
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ringing effect and blurring problem. In this paper, to address the aforementioned issues, we present
a new approach named as Inception-ResNet-based Network for MRI Image super-resolution, which
employs well-designed residual with inception blocks to generate the required HR output images from
the observed input LR images.

The main contribution of our proposed work can be summarized as:

• A lightweight skip connection block is used to avoid the problem of vanishing gradients during
the training. These blocks extract the features information with the help of local as well as global
skip connections.

• The PReLU activation function is utilized to resolve the issue of dying of the ReLU activation
function.

• The pre-processing step of bicubic interpolation is replaced with a deconvolution layer to extract
the features information from the low-resolution domain.

The remainder of the paper is formatted in the following manner. In Section 2, a concise overview
of related work is given. Our proposed network design is presented in Section 3. The experimental
qualitative/quantitative results, implementation details, and ablation study are provided in Section 4.
In Section 5, the conclusion of our work is presented.

2 Related Work

Single Image Super-resolution (SISR) approaches have been used for a wide variety of real-
world applications, including remote sensing [28,29], computer vision tasks [22,23,30], face-related
applications [31,32], and medical image analysis-based applications [33,34]. Recently, deep CNN-
based approaches have been widely employed for image SR tasks. Dong et al. [19] published the
groundbreaking shallow type three-layer network for image super-resolution. In this approach authors
produced better quantitative results than earlier approaches. The main flaws of this approach [19] has
a very low number of layers. After that, Kim et al. [20] proposed a 20-layer deeper CNN architecture
network with a global residual learning connection. To increase the performance of very deep SR
(VDSR), authors used a faster convergence rate. The main problem with VDSR is to utilize the pre-
processed bicubic upscaled version of an input image to the network, so it had an increase in the
computation burden on the model. Subsequently, SR Generative Adversarial Networks was proposed
in [27], which include a combination of a generator part and a discriminator part. To overcome the
vanishing gradient problem, the generator part of the network has B residual blocks with short-cut
skip connections [35]. Small down-sampled images are used as inputs to this method, which reduces
the computing cost. This network, however, proved unable to produce SR images at all enlargement
factors in a single network, which was the disadvantage of this approach. Lim et al. [36] were inspired
by SRResNet and gave the idea of an Enhanced Deep Residual SR network abbreviated as EDSR
approach, which won the SR NITRE 2017 challenge. Batch normalization layers were removed in this
strategy, resulting in a network that has low memory consumption. Some of the methods described
above are used for natural image super-resolution tasks and other MRI-related images are described
below.

The use of a high-dose tracer is one of the strategies for obtaining a superior quality of the
Positron Emission Tomography (PET) image and can raise the risk of radiation damage. As a
result, several efforts have been made to evaluate PET images (high-dose) from a low-dose [37–40].
Xiang et al. [38] attempted to apply this kind of approach to calculate the fast and better estimation
of PET images (high-dose) due to the achievement of neural networks, particularly SRCNN [19] in
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image super-resolution. One of the recent works has been proposed by Song et al. [41], for obtaining
HR PET images through a multi-channel input. Hong et al. [42] provided another approach for
image enhancement, especially for PET images. Malczewski [43] proposed super-resolution with
compressively sensed MR/PET signals as an input to obtain excellent performance in boosting the
quality of PET images. Moreover, deep learning-based algorithms have proven to be useful tools for
various MRI image enhancement applications including MRI reconstruction and super-resolution
[44–49]. For static brain MRI, various deep learning-based image super-resolution MRI concepts have
been proposed. Deep convolutional neural network approaches have been used to tackle the Spatio-
temporal trade-off [50] and used for dynamic cardiac MRI image reconstruction [51,52]. A tight-frame
UNet architecture using wavelet decomposition was proposed by Han et al. [53], which enhances
the performance of UNet for inverse issues of the 2D view of CT images. Qiu et al. [54] proposed
a multi-window back-projection residual network model known as (MWSR). In this approach, the
authors used the multi-window technique to improve the similar features mapping to reconstruct the
richer high as well as low features information. Qiu et al. [55] suggested a novel method of multiple
improved residual networks (MIRN) based on image SR reconstruction. In this approach, ResNet
blocks are coupled through multi-level skip connections to build up different improved ResNet blocks.
For training purposes, they used the stochastic gradient descent method. GAN network for medical
image SR proposed by Ma et al. [56]. The proposed network architecture is divided into five different
stages, namely sub-pixel as a pre-processing stage, and others are feature extraction, mapping stage
(nonlinear, which consists of 128 residual blocks), sub-pixel convolution, and final summation of
pixel mean as a post-processing stage. Feng et al. [57] proposed the concept of multi-modal based
MRI technique with transformer concept. In this paper, the author initially used the transformers
which are used to extract the global features. Additionally, the same author improved the performance
of MRI images with the concept of Multi-contrast MRI image SR with the help of a multi-stage
integration network [58]. This work explores the response of multi-contrast with fusion at various
phases. In the field of deep convolutional neural networks, attention mechanism plays a crucial role to
reconstruct the high-quality MRI images. In this regard, Feng et al. [59] suggested the idea of separable
attention for Multi-contrast MRI image SR. Separable attention mechanism is used to extract the
contrast anatomical information such as blood vessels, tissues, and bones. Chen et al. [60] proposed
trusted deep CNN based SR model known as feedback adaptive weighted dense network (FWDN) to
reconstruct the high-resolution medical image from the low-resolution medical input image. All the
low-level features information is transmitted through a feedback connection.

Our proposed method designed a novel network architecture, which depends on the capabilities
of deep learning-based CNN architecture such as GoogLeNet Inception block-based network archi-
tecture. In the fields of image SR and classification tasks, GoogLeNet Inception blocks are considered
a successful approach to reducing the number of parameters. Furthermore, rather than relying on
hand-designed features, deep learning-based networks can extract rich feature information from the
training set of samples automatically, which is better for MRI image reconstruction. Although there
have been reported significant performance, still there are many flaws. For example, the vanishing
gradient problem occurs in the deeper CNN model during the training and causes the overfitting and
underfitting in the model. Though the short, as well as dense skip connections, were used to overcome
a vanishing gradient problem. To solve the issues mentioned above, we offer a unique deep neural
network-based approach for reconstructing an HR MRI image from an LR.
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3 Proposed Methodology

As we know, the fact that low-resolution MRI images are very hard for doctors to identify the
disease and do not take the proper decision about the health of the patient. To alleviate this problem,
we proposed a very fast and robust network architecture for MRI images, especially brain MRI low-
resolution images, which is based on ResNet and Inception blocks. Our proposed methodology used
two CNN layers, 4 ResNet with 4 Inception blocks, one deconvolution layer, and one bottleneck layer.
All layers in our proposed network architecture are followed by the PReLU activation function except
the last layer. For initial low-level features are extracted from the original LR domain by using two
CNN layers with 4 ResNet blocks. The resultant low-level features are sent to the Inception blocks for
multiscale feature reconstruction purposes. To update the features information using local, as well as
global skip connections simultaneously. The cumulative sum of features is used by the deconvolution
layer to transform LR features into HR features. During training, the proposed design solves the
problem of vanishing gradients [20] with the support of local as well as global skip connections.
The complete framework of our proposed method as shown in Fig. 1. Furthermore, our proposed
algorithm depends on the learning-based approach, but earlier deep learning-based CNN algorithms
used interpolation (bicubic) as a pre-processing step to enlarge the LR image.

Figure 1: Proposed inception-ResNet-based network for MRI image super-resolution

3.1 Low-Level Feature Extraction
Feature extraction is the first and most important stage in every image analysis method. Initially,

for low-level feature extraction purposes, the researcher community used traditional approaches
like a hand-designed filter. Our approach replaces the conventional hand-designed approach with
deep convolutional neural network-based approach, which automatically learns the features from
the training dataset. In addition, earlier approaches were used the interpolation technique as a pre-
processing step to upsample the LR image. Wang et al. [61] claimed that bicubic interpolation is not
intended for this purpose and even damages the most critical LR image information, which is crucial
in reconstructing the HR image. Our proposed approach applies an alternative strategy to extract the
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features information from the original input low-resolution image. Our low-level feature extraction
stage depends on two convolution layers with four ResNet blocks both are followed by Parametric
Rectified Linear Unit (PReLU) acting as nonlinear mappings. The Convolutional neural network
layers can be expressed as:

Fm = max (0, Cm ∗ Fm−1 + bm) , (1)

where Cm and bm denote the convolution kernel and bias of the bm layer, respectively; Fm indicates the
output feature map.

3.2 PReLU Activation Function
One of the keystones to recent deep learning achievements has been due to the involvement of

Rectified Linear Unit (ReLU) [62] activation function. It performs a better operation than the sigmoid
activation function. In the case of sigmoid activations, this is partly related to the vanishing gradient
problem. To resolve the difficulty of the computational complexity of the deep CNN model with the
introduction of the ReLU activation function. Since it poses no restriction on positive inputs, gradients
have more chances to reach deeper layers in backpropagation, thus enabling learning in deeper layers.
In addition, the computation of the gradient in backpropagation learning is reduced to multiplication
with a constant, which is far more computationally efficient. The one main drawback of the ReLU is
that it does not activate for non-positive inputs, causing the deactivation of several neurons during the
training, which can view again as a vanishing gradient problem for negative values.

Mathematically, ReLU can be explained as:

y = max {0, x} = x|x > 0 (2)

This issue is resolved by the derivative of ReLU known as Parametric Rectified Linear Unit
(PReLU) [63], which has a learnable parameter α, controlling the leakage of the negative values, as
shown in Eq. (3). In other words, PReLU is a Leaky ReLU, because the slope of the curve for the
negative value of x is learnable through the adaptation instead of being set at a predetermined value.

y =
{

αx if x < 0
x if ≥ 0

(3)

From the comparison, as shown in Fig. 2 below in the negative portion, and the positive portion
of ReLU is introduced by PReLU as a learnable parameter, which making it slightly symmetric.
Additionally, earlier research has shown that PReLU converges quicker than ReLU and achieves
improved performance [64]. Thus, our proposed method adopts PReLU as an activation function to
provide a more powerful representational ability.

3.3 Residual Learning
Inspired by He et al. [35] which was initially proposed a residual network in 2016. In this approach,

a series of feature maps of the first input layer is skipped, and output is added to the third layer with
identity mapping. According to [35], shortcut skip connections can efficiently enable gradient flow
through numerous layers, hence increasing the efficiency of deeper network architecture during the
training. The structural diagrams of the original ResNet [35], SRResNet [27], and proposed ResNet
block as shown in Fig. 3. In the proposed block remove the batch normalization (BN) layers, as
suggested by Nah et al. [65] in image deblurring work. The proposed block used the dense skip
connection with two kernels of size 3 × 3 followed by PReLU with a shrinking layer of size 1 × 1.
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Figure 2: Comparison of ReLU (a) vs. PReLU (b). The PReLU includes a learnable parameter that
can slightly symmetrically counterbalance the ReLU’s positive mean

Figure 3: Comparison of basic skip connection blocks, such as original ResNet [35], SRResNet [27],
and our proposed ResNet block

3.4 Inception (GoogLeNet) Block
Inception-V1 is another name for GoogLeNet, which won the 2014 ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) competition. The GoogLeNet architecture’s primary goal was to
achieve excellent accuracy at a low cost of computing [66–69]. Inception block is a novel concept
from CNN that combines split, transform, and merge techniques with multi-scale convolutional
transformations. The proposed design of the inception block is shown in Fig. 4. The proposed block
has filters of different kernel size of the order 1 × 1, 3 × 3, 5 × 5, and 7 × 7 for capturing spatial
information at various enlargement factors. GoogLeNet divide, transform, and merge concepts help
to solving different resolution problems in the images. To reduce the computation burden, GoogLeNet
first adds a bottleneck layer of 1 × 1 convolutional filter. To prevent redundant features and cut costs
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by eliminating pointless feature map, it also uses sparse connections (not all the output feature maps
are connected to all the input feature maps).

Figure 4: Proposed multi-path inception block

3.5 Deconvolution Layer (UpSampling Stage)
Different from the earlier proposed models in [19,20], we replaced the hand-designed interpolation

technique with a Deconvolution layer to upscale the low-resolution MRI image. For reconstructing a
high-resolution MRI image adding a deconvolution layer is a very popular choice. This approach has
been successfully used in [70] and in [71].

4 Experimental Results

The experimental results were carried out using the Windows 10 operating system. The deep
learning library ran on an NVIDIA GeForce RTX2070 GPU with a 2.6 GHz Ci7-9750H CPU and
16 GB RAM, PyTorch version 1.6.0, and Python version 3.6. The training phase and testing phase
were used as the divisions for the proposed network design. In the training phase, we used the data
augmentation technique in terms of flipping, rotation, and cropping. The difference in value between
the predicted value and the desired value is calculated using the mean-square loss function. The
formula for calculating Mean Squared Error (MSE) is as follows:

L (θ) = 1
n

n∑
i=1

‖G (Yi, θ) − Xi‖2 , (4)

where n is the number of training samples, Xi is the sample of the HR image, Yi is the sample of the
corresponding LR image, and G (Yi, θ) is the reconstructed image, and θ is estimated by minimizing
the loss of the reconstructed image.
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4.1 Training Datasets
There are many datasets available to train the proposed model, but we used the same training

datasets that are commonly used by well-known image Super-Resolution methods, like VDSR,
DRCNN, and LapSRN. So, for the first proposed model is trained on Natural image datasets. To
further illustrate our proposed method, authors separately trained another model using a purely MRI
image dataset which is obtained from I DO Imaging (IDI) [72,73]. The Knee MR dataset contains 23
sagittal MRIs, each with a size of 512 × 512 × 23 pixels, 0.33 mm × 0.33 mm × 3.5 mm, and the heart
MR dataset contains 30 axial MRIs, each with a size of 256 × 256 × 30 pixels, 1.4 mm × 1.4 mm
× 8 mm. The IDI medical image dataset contains 192 axial MRIs, each with a size of 192 × 256 ×
192 pixels, 1 mm × 1 mm × 1 mm. The complete dataset is divided into 80% and 20% percent ratios
for training and validation datasets. Further complete details of image dataset are available in Table 1.

Table 1: Detailed information IDI medical MRI image datasets

S.No. Type of
patient

Image description File format Number of
images

Size Type of folders

01 Patient 1010:
Brain MR

Series 2/12: T1 Axial MRI
192 × 256 × 192 pixel
1 mm × 1 mm × 1 mm

DICOM LEE 192 9 MB 1010_brain_mr_02_lee.zip

02 Patient 1010:
Brain MR

Series 4/14: T2 Axial MR
216 × 256 × 32 pixel
0.9 mm × 0.9 mm × 5 mm

DICOM LEE 32 3 MB 1010_brain_mr_04_lee.zip

03 Patient 1010:
Brain MR

Series 6/16: T2 Sagittal MR
256 × 320 × 192 pixel
0.9 mm × 0.9 mm × 0.9 mm

DICOM LEE 192 14
MB

1010_brain_mr_06_lee.zip

04 Patient 1020:
Abdominal
CT

Series 500/510: Axial CT
512 × 512 × 370 pixel
0.71 mm × 0.71 mm ×
0.75 mm

DICOM LEE 370 83
MB

1020_abdomen_ct_500_lee.zip

05 Patient 1030:
Knee MR

Series 2/12: Axial MR
512 × 512 × 20 pixel
0.33 mm × 0331 mm × 4 mm

DICOM LEE 20 6 MB 1030_knee_mr_02_lee.zip

06 Patient 1030:
Knee MR

Series 3/13: Sagittal MR
512 × 512 × 23 pixel
0.33 mm × 0.33 mm ×
3.5 mm

DICOM LEE 23 8 MB 1030_knee_mr_03_lee.zip

07 Patient 1040:
Cardiac MR
Cine

Series 5: Axial MR
256 × 256 × 30 pixel
1.4 mm × 1.4 mm × 8 mm

DICOM LEE 30 2 MB 1040_cardiac_mr_05_lee.zip

08 Patient 1050:
Arm CT

Series 600/610: Axial CT
512 × 454 × 220 pixel
0.62 mm × 0.62 mm × 3 mm

DICOM LEE 220 6 MB 1050_arm_ct_600_lee.zip

09 Patient 1060:
Brain MR
with patient
data

Series 4: T2 Axial MRI
216 × 256 × 32 pixel
0.9 mm × 0.9 mm × 5 mm

DICOM LEE 32 3 MB 1060_head_brain_lee.zip

10 Patient 3000:
Brain PET,
Static FDG

Series 10: Neuro FDG
216 × 256 × 207 pixel
1.22 mm × 1.22 mm ×
1.22 mm

DICOM LEE 207 8 MB 3000_brain_pet_10_dicom.zip

(Continued)
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Table 1 (continued)
S.No. Type of

patient
Image description File format Number of

images
Size Type of folders

11 Patient 3100:
Brain PET,
Static receptor
binding

Series 10: Neuro receptor
binding
216 × 256 × 207 pixel
1.22 mm × 1.22 mm ×
1.22 mm

DICOM LEE 207 8 MB 3100_brain_pet_20_dicom.zip

4.2 Training and Testing Image Generation Model
The main purpose of image generation in super-resolution is to generate the realistic training

datasets to improve the SR performance. The detailed experimental scheme is shown in Fig. 5. For
image generation purpose, initially we apply the bicubic interpolation technique to generate the LR
patches. The generated LR patches apply the data augmentation technique in terms of rotation,
flipping, and cropping to increase the training data size as well as reduce the overfitting chances of the
model. Afterward, the generated dataset is used to minimize the training loss and optimize the model
efficiency. Finally, evaluate the performance of the proposed model on different testing image datasets
to reconstruct the HR image.

Figure 5: Training and testing image generation model scheme for image super-resolution model

4.3 Hyper-Parameters
Our proposed model is implemented in PyTorch version 1.6.0, Keras backend as a TensorFlow.

The other image processing libraries like OpenCV, Scikit-image, and SciPy were used before and after
the training. Our model is trained on 200 epochs, with an initial learning rate is 0.0001 of a mini-batch
size is 32. Initially, the model was trained with the following parameters: epoch = 10, learning rate =
0.001, Batch size = 32, and filter size impacts spread velocity. Large batch sizes will result in increased
complexity and memory costs for training but less loss.

For quantitative measurement, the higher value of PSNR indicates the better reconstruction of
HR image and is generally obtained from the MSE function:

MSE = 1
mn

m−1∑
i=0

n−1∑
j=0

[I (i, j) − K(i, j)]2, (5)
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The PSNR is expressed as:

PSNR = 20. log10

(
MAXI√

MSE

)
, (6)

where the terms I and K describe the size values of two images of order m×n, dB is the unit of PSNR.
The value of PSNR is higher means less distortion in the image and vice versa.

Mathematically, the terms SSIM are expressed as:

SSIM (x, y) = (2μxμy + C1)(2σxy + C2)

(μ2
1 + μ2

2 + C1)(σ
2
1 + σ 2

2 + C2)
, (7)

where μx and μy is the average value of x and y. The variance of x and y is represented as σx and σy.
The covariance of x and y represented as σxy.

4.4 Comparison with the State-of-the-Art Method
To evaluate the comparison quality of image SR methods with the proposed approach, partic-

ularly Bicubic, A+, SelfExSR, RFL, SRCNN, FSRCNN, VDSR, DRCN, LapSRN, DRRN, and
IDN techniques. Table 2 presents the quantitative results of different algorithms on the Set5, Set14,
BSDS100, and Urban100 test data sets, with an enlargement factor of 2×, 3×, and 4× accordingly.
Fig. 6 shows the quantitative performance of state-of-the-art approaches in terms of PSNR vs. network
parameters. Our proposed model (IRMRIS) has fewer parameters than the VDSR, DRCN, and
LapSRN. Despite having a lower footprint as compared to CNN-based approaches, the performance
of the proposed model was demonstrated to be state-of-the-art. As compared to the Bicubic, A+,
SelfExSR, RFL, SRCNN, FSRCNN, VDSR, DRCN, and LapSRN. Furthermore, our IRMRIS
model has about 1.87, 0.78, 0.79, 0.86, 0.67, 0.56, 0.56, 0.29, and 0.27 dB improvement on the BSDS100
dataset for enlargement factor 3× image SR. Figs. 7–10 present a visual performance comparison of
the brain MRI images at enlargement factor 4× SR. The result of the baseline method (bicubic) and
SRCNN clearly shows blurry MRI image, but our proposed IRMRIS reconstruct the best results as
compared to another state-of-the-art methods MRI image SR.

Table 2: Quantitative evaluation on two quality matrices of PSNR/SSIM of different image SR
methods for scale factors 2×, 3×, and 4× on four benchmark test datasets. The best quantitative
evaluated results are highlighted in bold

Method Scale #Param Set5 Set14 BSDS100 Urban100
K↓ PSNR↑/SSIM↑ PSNR↑/SSIM↑ PSNR↑/SSIM↑ PSNR↑/SSIM↑

Bicubic 2× -/- 33.66/0.9299 30.23/0.8687 29.56/0.8431 26.87/0.8401
A+ 2× -/- 36.54/0.9544 32.28/0.9056 31.21/0.8863 29.20/0.8938
SelfExSR 2× -/- 36.49/0.9537 32.22/0.9034 31.18/0.8855 29.54/0.8967
RFL 2× -/- 36.55/0.9540 32.36/0.9050 31.16/0.8850 29.13/0.8910
SRCNN 2× 57 36.66/0.9542 32.42/0.9063 31.36/0.8879 29.50/0.8946
FSRCNN 2× 12 37.06/0.9554 32.76/0.9078 31.53/0.8912 29.88/0.9024
VDSR 2× 665 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140
DRCN 2× 1,775 37.63/0.9584 33.06/0.9108 31.85/0.8947 30.76/0.9147
LapSRN 2× 812 37.52/0.9591 33.08/0.9109 31.80/0.8949 30.41/0.9112
DRRN 2× 297 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188
IDN 2× 553 37.83/0.9600 33.30/0.9148 32.08/0.8985 31.27/0.9196

(Continued)
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Table 2 (continued)

Method Scale #Param Set5 Set14 BSDS100 Urban100
K↓ PSNR↑/SSIM↑ PSNR↑/SSIM↑ PSNR↑/SSIM↑ PSNR↑/SSIM↑

IRMRIS
(Our)

2× 413 37.97/0.9603 33.48/0.9165 32.17/0.8992 31.83/0.9249

Bicubic 3× -/- 30.39/0.8682 27.54/0.7736 27.21/0.7384 24.46/0.7344
A+ 3× -/- 32.58/0.9088 29.13/0.8188 28.29/0.7835 26.03/0.7973
SelfExSR 3× -/- 32.58/0.9093 29.16/0.8196 28.29/0.7840 26.44/0.8088
RFL 3× -/- 32.45/0.9050 29.15/0.8190 28.22/0.7820 25.87/0.7910
SRCNN 3× 57 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989
FSRCNN 3× 12 33.18/0.9140 29.37/0.8240 28.53/ 0.7910 26.43/0.8080
VDSR 3× 665 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279
DRCN 3× 1,775 33.85/0.9215 29.89/0.8317 28.81/0.7954 27.16/0.8311
LapSRN 3× 812 33.82/0.9227 29.79/0.8320 28.82/0.7973 27.07/0.8272
DRRN 3× 297 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378
IDN 3× 553 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359
IRMRIS
(Our)

3× 413 34.31/0.9262 30.18/0.8409 29.09/0.8034 28.08/0.8494

Bicubic 4× -/- 28.42/0.8104 26.00/0.7019 25.96/0.6674 23.14/0.6570
A+ 4× -/- 30.28/0.8603 27.32/0.7491 26.82/0.7087 24.32/0.7183
SelfExSR 4× -/- 30.31/0.8619 27.40/0.7518 26.84/0.7106 24.79/0.7374
SRCNN 4× 57 30.48/0.8628 27.49/0.7503 26.90/0.7101 24.52/0.7221
FSRCNN 4× 12 30.72/0.8660 27.61/0.7550 26.98/0.7150 24.62/0.7280
VDSR 4× 665 31.35/0.8830 28.02/0.7680 27.29/0.0726 25.18/0.7540
DRCN 4× 1,775 31.56/0.8810 28.15/0.7627 27.24/0.7150 25.25/0.7530
LapSRN 4× 812 31.54/0.8855 28.19/0.7720 27.32/0.7280 25.21/0.7553
IDN 4× 553 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632
CARN 4× 1,592 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837
IRMRIS
(Our)

4× 413 32.14/0.8935 28.63/0.7806 27.59/0.7350 26.07/0.7840
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Figure 6: Comparison of computational cost (number of K parameters) vs. PSNR (dB)
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Figure 7: Perceptual quality comparison of our method with other deep learning-based methods using
MRI images at 4× super-resolution

Figure 8: Perceptual quality comparison of our method with other deep learning-based methods using
MRI images at 4× super-resolution. The image is obtained from “1010_brain_mr_04_lee/4_2.png”
dataset
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Figure 9: Perceptual quality comparison of our method with other deep learning-based methods using
MRI images at 4× super-resolution. The image is obtained from “1010_brain_mr_04_lee/4_10.png”
dataset

Figure 10: Perceptual quality comparison of our method with other deep learning-based methods using
MRI images at 4× super-resolution. The image is obtained from “1010_brain_mr_04_lee/4_14.png”
dataset

4.5 Ablation Study
4.5.1 Skip Connections

We further evaluate the importance of skip connections in the image reconstruction process. In this
section, we will discuss four cases of skip connection such as network without skip connection, network
that includes only local skip connection, other is a network only involves global skip connection and
finally, we used the local as global skip connection in the network. All simulation results are performed
on MRI image IDI [72,73] dataset with enlargement factor 2× in terms of PSNR/SSIM as shown in
Table 3. Initially, we evaluate our model without skip connection. The result is satisfactory, but training
have some issues and is not stable. In our local and global skip connections, results are satisfactory.
All simulation results are conducted on 30 epochs with 4 medical images obtained from medical IDI
[72,73] image dataset. All other hyper-parameters are the same during the ablation study. Finally, we
confirmed that only local skip connection mainly drops the value of the quality matrix. In conclusion,
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our conducted study shows that global with local skip connection plays a vital role in the overall image
reconstruction process in the field of image super-resolution.

Table 3: Ablation study conducted on local as well as global skip connections in terms of PSNR

Type of skip connections Te-gl_0010.png Te-gl_0011.png Te-gl_0012.png Te-gl_0013.png
PSNR PSNR PSNR PSNR

IRMRIS (Without Skip
Connections)

29.06 31.32 29.23 32.05

IRMRIS (Local Skip
Connections only)

29.099 31.65 29.13 32.33

IRMRIS (Global Skip
Connections Only)

29.087 31.54 29.19 32.23

IRMRIS (Local + Global
Skip Connections)

30.31 32.49 29.21 32.67

4.5.2 Activation Functions

The visualization of the convergence process is presented in Figs. 11–13. The curves verify the
analyses to show that the proposed model with PReLU activation function stabilizes the training
process and accelerates the model convergence. From these curves, we can see that the ReLU activation
function reduces the performance, but PReLU based activation function provides better performance.

Figure 11: Our model convergence with different activation functions. The curves of PSNR vs. epoch
were performed on a very small MRI test dataset (5 images) with enlargement factor 4×. Remaining
other setting of models is similar to an original IRMRIS model discussed in experimental sections
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Figure 12: Our model convergence with ReLU activation functions. The curves of ReLU accuracy
vs. epoch were performed on a very small MRI test dataset (5 images) with enlargement factor 4×.
Remaining other setting of models is similar to an original IRMRIS model discussed in experimental
sections

Figure 13: Our model convergence with PReLU activation functions. The curves of PReLU accuracy
vs. epoch were performed on a very small MRI test dataset (5 images) with enlargement factor 4×.
Remaining other setting of models is similar to an original IRMRIS model discussed in experimental
sections

4.5.3 Kernel Size in ResNet Block

The selection of kernel size plays a crucial role in the design of network architecture as well as
handle the issue of overfitting during the training. Initially, we evaluate the complexity of our block
with the supporting of two different kernel size in the order of 3 × 3 and 9 × 9 with same number
of filters 64 in both branches. The resultant output parameter of such arrangement is 796 K. Next.
We replace the kernel size is 3 × 3 with 7 × 7, 3 × 3 with 5 × 5 and finally our proposed kernels in
the order of 3 × 3 with 1 × 1. Table 4 clearly observes that our proposed ResNet block has a smaller
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number of parameters, so we reduce the computational burden on the model during the training and
avoid the vanishing gradient problem.

Table 4: Parameter comparison of our proposed block with a different kernel size of Branch 1 (B1) and
Branch 2 (B2). The bold is the first lowest computational cost and the underline is the second-lowest
computational cost

ResNet block
design

Patch size Structure in Branch 1 Structure in Branch 2 # Parameters (k)

01 32 × 32 [3 × 3, 64] [9 × 9, 64] [3 × 3, 64] [9 × 9, 64] 796
02 32 × 32 [3 × 3, 64] [7 × 7, 64] [3 × 3, 64] [7 × 7, 64] 533
03 32 × 32 [3 × 3, 64] [5 × 5, 64] [3 × 3, 64] [5 × 5, 64] 337
04 32 × 32 [3 × 3, 64] [3 × 3, 64] [3 × 3, 64] [3 × 3, 64] 206
05 (our) 32 × 32 [3 × 3, 64] [1 × 1, 64] [3 × 3, 64] [1 × 1, 64] 140

5 Conclusion

In this paper, we have proposed a novel Inception-ResNet-based Network for MRI Image Super-
Resolution. The model architecture of our proposed method is primarily composed of two ResNet
and Inception blocks with end-to-end connections followed by the PReLU non-linear activation
operation. These blocks use many skip/short connections to resolve the vanishing gradient problem.
Our proposed method firstly reduces the computational cost in terms of several parameters by an
efficient ResNet with the Inception block technique. A low-quality or LR image is an input into
the model via the proposed ResNet and Inception block. The reconstructed MRI image is upscaled
through a deconvolution layer to generate the high-resolution MRI image. The suggested model was
evaluated against current state-of-the-art methodologies such as Bicubic, VDSR, DRCN, FSRCNN,
SRCNN, LapSRN, DRRN, and IDN methods. Extensive quantitative and qualitative results on public
datasets support the superiority and effectiveness of our proposed IRMRIS in terms of various quality
metrics. In future work, we will develop a fast and more robust model to generate the MRI image SR
and increase computational efficiency.
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