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ABSTRACT

To understand the current application and development of 3D modeling in Digital Twins (DTs), abundant

literatures on DTs and 3D modeling are investigated by means of literature review. The transition process from

3Dmodeling to DTs modeling is analyzed, as well as the current application of DTs modeling in various industries.

The application of 3DDTsmodeling in the �elds of smart manufacturing, smart ecology, smart transportation, and

smart buildings in smart cities is analyzed in detail, and the current limitations are summarized. It is found that the

3Dmodeling technology in DTs has broad prospects for development and has a huge impact on all walks of life and

even human lifestyles. At the same time, the development of DTs modeling relies on the development and support

capabilities of mature technologies such as Big Data, Internet of Things, Cloud Computing, Arti�cial Intelligence,

and game technology. Therefore, although some results have been achieved, there are still limitations. This work

aims to provide a good theoretical support for the further development of 3D DTs modeling.
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1 Introduction

With the perfection of infrastructure applications, including Big Data (BD) and cloud computing,
many advanced technologies continue to advance, such as Artificial Intelligence (AI), Internet of
Things (IoT), and Digital Twins (DTs) and the maturity of deep learning and general algorithm, the
development of DTs architecture has ushered in an excellent opportunity [1–3]. However, the current
3D modeling objects for real scenes focus on natural entities and man-made entities, and provide
very limited information. However, production practice requires more information, especially the
semantic correlation between key elements such as landscapes, forests, and fields [4–6]. TheDTsmodel
is becomingmore andmore popular in the infrastructure industry [7–9]. It can drive changes in ourway
of life, and not just the technological advantages that people talk about, the DTs model will also drive
the development of the entire infrastructure industry [10–12]. DTs model will transform the design,
delivery, and management of infrastructure, enabling more resilient and sustainable infrastructure.
The more accessible the information of the modeling platform and the more open the platform is, the
greater the opportunity for data to be repurposed and value created.
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In the field of smart buildings, BIM technology is a perfect information model. It completely
stores the data resources and processes data of different stages of the project in each family unit, com-
prehensively describes the information of building objects, and realizes automatic queries, splitting,
and combining to extract real-time information [13–15]. Applying BIM in the construction industry
for DTs modeling is of significant practical value, but it takes a long time to realize. For such a
standardized product, DTs have many difficulties, not to mention every complex building. Building
a DTs body covering the life cycle of a product helps to establish a closed-loop system from R&D,
simulation, and manufacturing to use, which accelerates product development and iterative upgrades.
At the same time, the DTs body can become an innovative experimental sandbox. Once due to security
issues and physical conditions, many operations could not be completed on real physical entities. Now
DTs make it possible to test and refine products through techniques such as performance simulation,
virtual assembly, and fault rehearsal [16–18]. The construction of DTs body of the whole industry
chain from customers, market demand, supply chain and logistics system, maintenance, and security,
etc., and the integration of systems engineering based on models in various fields will help to promote
the transformation of traditional industries to customized production models and realize an agile
and flexible business model. DTs include seven aspects of information modeling, synchronization,
enhancement, analysis, intelligent decision-making, access interface, and security. Although many
achievements have been made so far, it is still undergoing rapid evolution [19–21]. With the common
development of a series of emerging technologies, such as a new generation of information technology,
advanced manufacturing technology, and new material technology, the above elements will continue
to be optimized, and the development of DTs will be optimized and perfected while exploring and
trying.

The adoption status of DTs 3D modeling in various industries is analyzed by means of literature
review, especially the adoption of DTs modeling in smart manufacturing and smart city construction.
The conclusions drawn can provide new ideas, theoretical basis, and new research directions for the
future research and development of DTs 3D modeling.

2 From Realistic 3D Modeling to DTs Modeling

Real-world 3D modeling is not projecting the world completely to the computer and modeling
all the geographical scene elements in detail [22–24]. The purpose of modeling is to make computers
help with analysis and computation, which means making choices and trade-offs from the real world
[25]. Even DTs do not require the original copy of the original, but to eliminate some factors that
interfere with computer analysis and calculation while retaining the core elements. These models
should reflect the essential characteristics of things, while isolating details and mechanisms that do
not play an active role in analytical calculations. Therefore, real scene 3D should provide models
with different granularities, different modes, and different scales regarding the needs of different
management levels and different professions. At the same time, it is only possible to achieve large-
scale promotion through standardization. A DTs model is a digital physical asset, process, or system
and engineering information. Continuous updates of DTs models are realized via multiple sources
such as sensors to reflect the status and operating conditions in near real-time. Using the DTs model,
users can visualize assets, perform analytics, and generate deep insights to predict and optimize asset
performance.

There are currently two typical 3D models of real scenes. One is in rural areas. Since people live
in a scattered way, the buildings do not have complex rooms, floors, etc., and there are no staggered
pipeline facilities in the underground. Therefore, its monolithic, semantic, and structuring is logically
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simple. The other is urban areas, where there are many public spaces above ground and basements, and
the physical boundaries need to be clearly sorted out [26–28]. Therefore, in these two typical different
scenarios, the 3D modeling accuracy of the real scene is different, the level of detail is different, and
the situation is even more different. Faced with how to manage all natural resource elements as a
whole and systematically and fabricate a new 3D representation model of the real scene, it is necessary
to express not only the visible representation data, but also the mechanism model. For example, for
water bodies, it is not only about the area, but also about the water quality. For buildings, it is not only
about the number of floors and building area, but also about its structure, materials, functions, etc.
The entity constructed in this way has real meaning. Otherwise, it is just a physical unit and a virtual
space. By carrying professional information, it supports the most important prediction, examination,
and decision-making for modeling. Otherwise, it is a reference on themap, and its value is very limited.
Taking the integrated solution of real 3D modeling as an example, the modeling process is shown in
Fig. 1.
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Figure 1: Example of an integrated solution for 3D modeling of reality

From Fig. 1, the technology of real 3D modeling is still under research, and the development of
DTs technology puts forward new requirements for 3D modeling. The biggest difference between it
and real 3D is that it not only aims at natural entities and artificial entities, but also aims at other
elements of human-machine ternary space to model and reflect their behaviors, namely real-time
dynamics. From real-scene 3D modeling to DTs modeling, the upgrade of digital requirements has
realized the transformation from data to information to knowledge and then to wisdom. For example,
the “urban brain” proposed by Alibaba (Fig. 2) was originally aimed at controlling urban traffic
congestion. It was later found that even if the efficiency of urban traffic congestion was improved by
10% or so, it could not be further improved, because the treatment and solution of traffic congestion
were comprehensive factors.
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Figure 2: Alibaba AI industry layout

Urban brain construction requires preconditions and foundations (Fig. 3), and only on the
premise of establishing these infrastructures can the urban brain be truly realized. Therefore, Alibaba
changed its main aim from “deal with traffic jams” to “deal with cities”. If the city is well managed,
traffic congestionwill naturally be solved. This comprehensive holistic view is the greatest value ofDTs.

Figs. 2 and 3 show that the establishment of the urban brain is inseparable from the support of
DTs technology. There are two types of models in the virtual DTs body. One is the static environment
model, which makes the DTs system have a better visual performance so that people produce enough
immersion. The other is the dynamicmotionmodel, whichmaintains the dynamic consistency between
the physical space and the virtual DTs body, which is dynamic. Taking the construction of a 3D
model of the campus environment as an example, the real-scene modeling technology of tilted image
is selected. The tilted photography-based real-scene modeling flow chart is shown in Fig. 4.
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Figure 3: The foundation on which the urban brain is built

Fig. 4 shows that the tilt photography-based real scene modeling process is divided into two parts.
One part is the data acquisition of oblique photography in the field. The other part is the processing
of tilted photographic data. The change brought by DTs promotes the continuous upgrading of the
urban brain, from local optimal to global optimal, from partial cognition to overall cognition, and
from dominant characteristics to hidden rule discovery. The DTs modeling process is shown in Fig. 5.
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Figure 4: Oblique photography real scene modeling process

Fig. 5 shows that the DTs model is compared with various existing digital representations, such
as Computer Aided Design (CAD), BIM, and Geographic Information System (GIS). The most
prominent feature is that it integrates the real-time data of the life cycle of the human-machine-object
ternary space, and continuously iteratively optimizes with the changes of physical entities. In addition
to accurately mapping the perception of IoT sensors and the physical entity characteristics reflected
by the obtained characterization data, the DTs model also accurately maps its behavioral laws and the
mechanism of mutual feedback.Moreover, in many cases, the representation data that can be obtained
due to the limitations of the perceptionmeans are not complete, refined, accurate, and timely, and only
model knowledge can be taken for inference. The DTsmodel reflects an iterative process. For example,
in tunnel construction, it is necessary to extract all elements and analyze the relationship between
them. In this way, it is possible to know what data is needed, what technology to use, and how to deal
with emergencies, thereby effectively controlling quality, construction progress, and future economic
benefits. Therefore, for the city, the DTs model is a system of continuous iterative interpretation of
the virtual and the real, and the interpretation of the planning and construction itself, while the 3D
modeling of the real scene is completely different.

DTs models are surpassing BIM, and engineering, operations, and information technologies
of asset-centric organizations are jointed for immersive visualization and analytical visibility. Lv
et al. [29] fabricated a cognitive computing system model combining cognitive computing and DBN
algorithms with collaborative robots for the control system of collaborative robots. These capabilities
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are made possible by the fusion of capabilities or technologies in 3D visualization, reality modeling,
mixed reality, and geotechnical engineering, which helps teams gain an immersive holistic view
of infrastructure assets. DTs is the virtual forms of physical assets through data and simulators
for real-time prediction, monitoring, control, and improvement of decision-making. Computational
pipelines, multi-physics solvers, AI, and BD cybernetics bring the prospect of DTs closer to reality.
DTs is computational mega-models, device shadows, mirror systems, avatars, or synchronized virtual
prototypes. Undoubtedly, DTs decides how to design and operate cyber-physical intelligent systems, as
well as how to advance the modularization of multidisciplinary systems to address current unresolved
obstacles [30].
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Figure 5: DTs modeling process

Manufacturing of high-performance aerospace components requires rigorous process geometry
and performance-based quality control. Real-time observation, understanding, and control of the
process are an integral part of optimizing the manufacturing strategy for aerospace parts. Taking the
intelligent information management platform as an example, the content needed is shown in Fig. 6.
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Figure 6: Aerospace intelligent information management platform

Fig. 6 shows that DTs can be used to model, monitor, and control the machining process by
integrating multi-dimensional context machining process data, such as changes in geometry, material
properties, and machining parameters. However, a systematic modeling scheme which can adaptively
develop high-fidelity multi-scale andmulti-dimensional DTs is required. Liu et al. [31] proposed aDTs
modeling method according to the principle of bionics to construct the multi-physics DTs volume
of machining. Thus, multiple sub-models of DTs, such as geometrical, behavioral, and procedural
models, are developed. They interact with each other and constitute a true representation of the
physicalmachining process. Cyber-Physical Production System (CPPS)may pave theway for exploring
novel intelligent manufacturing solutions. DTs are the core of CPPS establishment in Industry 4.0, so
an easy-to-deploy and easy-to-use DTs-based CPPS is a key stage. Shangguan et al. [32] proposed a
triple human-digital twin architecture for Cyber-Physical Systems. Liu et al. [33] proposed a system
framework that integrates Cyber-Physical System (CPS), DTs 3D modeling technology, event-driven
distributed collaboration mechanism, andWeb technology, which provides guidance for quick system
configuration and easy operation of DTs-based CPPS.

DTs represent the convergence of information and physical domains to bridge materials and
virtual worlds. Existing DTs modeling approaches are mainly based onmodular representation, which
limits the guidance of the modeling process. These approaches do not consider the components or
operational rules of DTs in detail, preventing designers from applying them in their domain. With
the increasing application of DTs bodies in various engineering fields (Fig. 7), an effective method of
modeling multidimensional DTs bodies at the conceptual level is needed.

Fig. 7 shows that the new and old infrastructures have different technological standards due to
different construction time and procedures. After visualization of the interior of the building through
DTs, the connection between the new and old infrastructures can be easily and intuitively carried
out. Thus, Wu et al. [34] proposed a conceptual modeling method for DTs based on a 5D DTs
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framework that can illustrate relationships that are complex between DTs objects and their attributes.
It worked well in modeling the DTs volume of intelligent vehicles at the conceptual level. A virtual
representation of the product lifecycle is provided, enabling the prediction and optimization of the
production systems and their components. Schroeder et al. [35] proposed a flexible and universal
method using model-driven engineering. This method has two levels. First, DTs are modeled as a
combination of components providing basic functions, such as identification, storage, communication,
and simulation. Second, aggregated DT is a hierarchical combination of other DTs. AutomationML
was used to propose a general reference architecture and specific implementation methods based on
these concepts.
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Figure 7: DTs connects old and new infrastructure

Although the ambiguity of the traditional document-based approach is enhanced byModel-Based
Systems Engineering (MBSE), there is certain management complexity. The core concern is how to
effectively assess, predict, and manage it during the designing. Due to inconsistencies between the
physical actual design process and virtual theoretical simulations, the contemporary complexity mea-
surement method is not accurate. DTs offer an approach to address this problem by bridging physical
and virtual. To combine DTs with MBSE for complexity analysis and prediction, Wang et al. [36]
introduced an integrated framework named 5DDTs systemdesign froma knowledge perspective based
on previous work, which provides design complexity measurement, effort estimation, and change
propagation prediction.

Building a DTs platform network means that a comprehensive perspective on products, man-
ufacturing, supply chain, profitability, etc., is provided, which is conducive to sustainable model
fabrication. Li et al. [37] explored how enterprises apply the DTs platform to generate benefits,



994 CMES, 2023, vol.136, no.2

as well as their coupling relationships in various aspects. A 5D framework of sustainable business
models was constructed, and the coupling relationship was analyzed. Taking Haier as an example,
the mechanism of the Haier DTs platform is explored, an integration framework under coupling
perspective is constructed. The results showed that through DTs platform networks, companies can
address the issue of focusing on a single product life cycle and form a comprehensive network that
promotes overall sustainable upgrades.

In summary, the DTs model can span the entire life cycle of various industries. For capital
expenditure projects, DTs models provide a risk-free way to simulate construction, testing, logistics,
and manufacturing sequences with the supply chain. It can also optimize the system design, so that
project participants can clearly understand the ability to adapt and recover when extreme situations
occur. For operating expenditure projects, the DTs model will truly become a 3D operating system
for the control center, capable of tracking project progress in real time regarding the changes in time.
In addition, the adoption of AI, IoT, and machine learning enables immersive digital operations in
various industries. DTs models will facilitate analytical visibility and help designers generate deeper
insights, which increase the productivity of modeling system operators, helping them predict and avoid
problems and respond quickly.

3 Adoption Status of DTs Modeling

With the increasing popularity of IoT in smart city applications, DTs is constantly evolving as
a complement to its physical counterpart. Lv et al. [38] pointed out that an intelligent industrial
environment developed under a new generation network CPS can achieve a high concentration of
information. DTs refer to the use of digital, networked, and sensor technologies to create a DTs body
for physical equipment. The operating data and status of physical devices in the physical world can
be fed back to the DTs body. The operation of physical equipment can be monitored, optimized, and
predicted throughDTs. The dynamic simulation function of theDTs system can simulate the feasibility,
efficiency, and possiblemanufacturing problems of the designmodel in themanufacturing process, and
feed it back to the design for modification. In this link, such as the design of car sludge models and
DTs, 3D scanning can improve the conversion efficiency of physical and digital entities. DTs can be
used in 3D IoT smart factories, new smart city construction, smart medical care, digital energy, digital
archives, warehousing, and logistics visualization. It can provide digital data for business optimization
in all walks of life to help understand, predict, and optimize performance, and improve business results.
The specific application is shown in Fig. 8.

Fig. 8 shows that the DTs-based modeling method has gradually been applied in various indus-
tries. The DTs management system puts forward higher requirements for cognitive technology. To
better build a full-time IoT cognitive management system in the industrial ecosystem and complete the
multi-level development trend of physical target operations, the multi-directional accurate detection
and cognitive technology not only require more accurate and reliable accurate measurement technol-
ogy physically, but also need to take into account the collaborative interaction between cognitive data
and information, so that the spatial location and unique identification of objects in the industrial
ecosystem can be determined, ensuring the reliability and control of machinery and equipment. The
creation of the DTs entity model is aimed at completing the role of the business process. For different
model technologies, the most important competencies are dedicated tools and 3D model libraries.
The component standard of the data-breeding 3D model library can provide the target component
3D model library with important content such as staff, machinery and equipment, raw materials, raw
materials, and natural environment of the place. As the foundation and key of DTs, the basic theories,
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models, and related products of solid model construction and the development trend of the 3D model
library are the key technologies of DTs, all of which are reasonable support points for key technologies
of DTs.
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Figure 8: Adoption fields of DTs modeling

3.1 DTs Modeling Contributes to Intelligent Manufacturing

DT is one of the most promising enabling technologies for intelligent manufacturing and Industry
4.0 [39–41]. DT is characterized by seamless integration between cyberspace and physical space. To
understand the development and application of DTs in industry, Taos et al. [42] comprehensively
reviewed the latest progress of DTs related research, including the key components of DTs, the
current development of DTs, and the main application of DTs in industry. Rabah et al. [43] described
part of the collaboration between industry and research fields to develop DTs and virtual reality
industrial solutions as part of the Predictive maintenance framework. In this context, the proof-of-
concept developed in specific industrial applications is carefully designed.With the progress of the new
generation of information technology, especially BD andDTs technology, intelligent manufacturing is
becoming the focus of global manufacturing transformation and upgrading. Comprehensive analysis
ofmanufacturing BD is beneficial to all aspects of themanufacturing industry [44–46]. The application
example is shown in Fig. 9.

From Fig. 9, the manufacturing industry combined with BD can make the operation status of
equipment and personnel in the factory clear as crystal, and provide security guarantee for hidden
dangers that have not occurred. In addition, DTs pave the way for the physical convergence of
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the manufacturing industry, which is an important bottleneck to achieve intelligent manufacturing.
Qi et al. [47] reviewed BD andDTs bodies in manufacturing, including their concepts and applications
in product design, production planning, manufacturing, and predictive maintenance. On this basis, the
similarities and differences between BD and DTs are compared from general and data perspectives.
Since BD and DTs can be complementary, how they can be integrated together to facilitate intelligent
manufacturing is discussed.
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Figure 9: Intelligent manufacturing data intelligent integration planning scheme

With the application of a new generation of information technology in industry and manufac-
turing, the era of manufacturing driven by BD is coming [48–50]. However, while BD is available
across the entire product lifecycle, from product design to manufacturing to services, it is found
that the current research on product life cycle data is mainly focused on physical products rather
than virtual models. Tao et al. [51] proposed a new method of product design, manufacturing, and
service driven by DTs. The detailed application method and framework of DTs driven product design,
manufacturing, and service are analyzed. In addition, three cases are given to illustrate the future
application of DTs body in three stages of the product. More than ever before, manufacturers today
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need to adapt to changing customer needs, rising resource costs, and increasing uncertainty [52–54].
One promising approach to these problems is the digitization of manufacturing systems. The key
elements of digitization are network physical system and network physical production system. In the
past few years, DTs have become synonymous with network physical systems and the network portion
of network physical production systems. Kunath et al. [55] discussed the conceptual framework of DTs
based on manufacturing system and the potential application of order management process decision
support system.

Lohtander et al. [56] used micro manufacturing units, intended to apply it in the DTs research
environment to explore how to build the DTs body from scratch and what information was needed to
describe the realistic behavior of the digital model of the micromanufacturing units. DTs are based on
actual machines and simulated digital models [57–59]. The basic model of the micro manufacturing
unit DTs body will be built using production and part simulation software (FlexSim), allowing the
machine to be integrated immediately into an industrial environment and to control all parameters
of the production system later. Malik et al. [60] proposed a DTs framework to support the design,
construction, and control of human-machine collaboration. In our work, computer simulations are
used to develop digital equivalents of human-machine collaborative work environments for assembly
work. Digital counterparts are kept up to date throughout the life cycle of the production system,
enabling rapid and secure embedding by constantly mirroring the physical system for continuous
improvement. The case of a manufacturing company with an HMI team to develop and validate the
DTs framework is presented.

Intelligent manufacturing is regarded as the next generation of manufacturing mode, which is
empowered by the new generation of information technologies such as the IoT, BD analysis, edge
computing, and AI, with strong learning and cognitive abilities. The structural composition is shown
in Fig. 10.

From Fig. 10, only with DTs can the factory truly realize intelligence and visualization. To
further explore intelligent manufacturing and take autonomousmanufacturing units as the realization
scenario, Zhang et al. [61] proposed a data- and knowledge-drivenDTsmanufacturing unit framework
to support autonomous manufacturing through intelligent perception, simulation, understanding,
prediction, optimization, and control strategies. With the development of sensor and data processing
technology, network physical system-based intelligent manufacturing is the development trend in the
manufacturing industry. DTs has always been regarded as the implementation method of network
physical system [62–64]. Given the complexity and uncertainty of discrete manufacturing plants,
carbon emission data integration and automatic low-carbon control of manufacturing systems are
two major challenges. To achieve carbon emission reduction in intelligent manufacturing workshops,
Zhang et al. [65] proposed a DTs-driven carbon emission prediction and low-carbon control of
intelligent manufacturing workshops. It includes the DTs model for low-carbon manufacturing shop,
DTs data interaction and fusion for low-carbonmanufacturing, as well as DTs-driven carbon emission
prediction and low-carbon control.

With the rapid development of virtual technology and data acquisition technology, DTs tech-
nology has been proposed and gradually become one of the key research directions of intelligent
manufacturing [66–68]. However, the research of DTs for product life cycle management is still in
the theoretical stage, the application framework and application methods are not clear, and the lack
of reference application cases is also a problem. Zheng et al. [69] systematically reviewed the related
research and application of DTs technology. Then, they explained the concept and characteristics of
DTs in broad and narrow sense. On this basis, an application framework of DT in product life cycle
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management was proposed. In the new digital era, all kinds of things and even the whole world can be
digitized as models [70–72]. Simulations were conducted for a variety of purposes, and the results can
provide intelligent support for various decisions. DT is an important form of modeling and simulation
application in the new digital era. It has been widely used in intelligent manufacturing, factories,
buildings, smart cities, and many other fields, showing strong vitality. The next step in its development
direction is comprehensive digital engineering. Zhang et al. [73] reviewed the development history of
DTs technology, analyzed its current situation and development prospects, and introduced the latest
digital engineering strategy of the US Department of Defense. The opportunities and challenges of
modeling and simulation in the new digital era were presented in the results.
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Figure 10: DTs provides a technical support framework for intelligent manufacturing

The current lack of effective methods to develop products, processes, and operational models
based on virtual and physical fusion in production has resulted in poor performance of production
management in terms of intelligence, real-time capabilities, and predictability [74–76]. Bao et al. [77]
proposed amethod formodeling and operatingDTs bodies in themanufacturing environment. Firstly,
the concept and extension of DTs body in the manufacturing environment were described, and the
realization methods of virtual physical fusion and information integration were provided for factories.
Secondly, the modeling methods of product DTs, process DTs, and operation DTs were proposed,
and the interoperation modes among these DTs bodies were explained. Third, AutomationML was
used to model structural part processing units in order to specify how operations were performed
among products, processes, and resources. DTs bodies, along with the IoT, data mining, and machine
learning technologies, offer great potential for the transition from today’s manufacturing paradigm
to intelligent manufacturing. Production control in the petrochemical industry involves complex
environment and high demand for timeliness. Therefore, agility and intelligent control are important
components of intelligent manufacturing in the petrochemical industry. Min et al. [78] proposed
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a framework and method for constructing DTs body based on IoT in the petrochemical industry,
machine learning, and practice cycle of information exchange between physical factory and virtual
DTs model, so as to realize production control optimization. Unlike traditional production control
methods, this novel approach integrated machine learning and real-time industrial BD to train and
optimize DTs models.

With the deepening of the application of information technology in the manufacturing industry,
the informatization of manufacturing system has developed from unit digital manufacturing to
integrated network manufacturing, and then to comprehensive digital, network, and intelligent
manufacturing. Modeling and simulation technology, as a comprehensive information technology
integrating computer, model theory, and scientific calculation, plays an irreplaceable role in the
development of manufacturing informatization and is widely used in every stage of product life
cycle, including design, production, testing, maintenance, procurement, and sales. Zhang et al. [79]
reviewed the research and application of modeling and simulation technology in manufacturing
industry, and analyzed typical simulation technology in manufacturing industry from the aspects of
manufacturing unit simulation, manufacturing integration simulation, andmanufacturing intelligence
simulation. With significant advances in information technology, DTs are gaining attention because
it provides a support tool to enable digitally-driven and cloud-enabled manufacturing. Given the
nonlinear dynamics and uncertainties involved in mechanical degradation, the correct design and
adaptability of DTs models remain a challenge. Wang et al. [80] proposed a DTs reference model for
rotatingmachinery fault diagnosis. The requirements of DTsmodel construction were discussed, and a
parameter sensitivity analysis-basedmodel updating scheme was proposed to improve the adaptability
of the model. Experimental data were collected from rotor systems simulating unbalance faults and
their progression. The data was then fed into a DTs model of the rotor system to investigate its ability
to quantify and locate unbalances for fault diagnosis. The results showed that the constructed DTs
rotor model can realize an accurate diagnosis and adaptive degradation analysis.

TheDTs system integrates data sources such as enterprise securitymonitoring, Global Positioning
System (GPS), GIS, equipment, energy consumption, and assets by building a 3D virtual simulation
scene. Simulating factory operating status and real-time changes in the digital world can provide
effective means for enterprise collaborative management and production scheduling [81,82]. DTs are
built on the product’s entire life cycle, so when the product is delivered to customers for use, the DTs
system still plays a role in performance monitoring. The digitization of manufacturing has a history of
nearly 60 years, accumulating many digital models. Based on these digital models, every device, every
part, and every sensor in the factory of the future will have a digital replica. Through the DTs body, the
operation mode of these physical devices can be precisely understood. Through the seamless matching
of the digital model and the physical equipment, the data of the equipment monitoring system can
be obtained in real time, then realizing fault prediction and maintenance. Industry 4.0 intelligent
manufacturing system is composed of human-network-physical system, which integrates human,
network, and physical system. DTs visualization architecture realizes human-computer interaction
in manufacturing, which involves the modeling of DTs on both the physical side of the network and
the human-network side. However, there is a lack of attention on full-lifecycle functional services and
lightweight architectures.

The digitalization of manufacturing has greatly promoted the continuous improvement of pro-
ductivity. Cutting tools powered by DTs give solutions to digital demands. Xie et al. [83] proposed a
DTs-driven data flow structure for each state of the cutting tool’s life cycle to ensure the possibility of
continuous process and tool improvement. Manufacturers have two service models to meet customer
needs. In addition, the physical and virtuous tool wear data were jointed, providing guidance for the
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future progression of smart manufacturing. DTs have attracted increasing attention in the past few
years.Modeling is the foundation to putDTs into practice. In this context,modeling ofDTsworkshops
regarded as the basic units for intelligent manufacturing is explored. However, current exploration has
rarely focused on the multi-scale features of workshops, which hinders the effective adoption of DTs
workshops. In response to the problem of how to implement model building regarding time scale and
spatial scale, Zhang et al. [84] proposed a multi-layer modeling method to support the transition from
the unit layer to the system layer to the system layer model building. In addition, the mechanism by
which the model changes over time was also discussed. Then, the model assembly, model fusion, and
model update were analyzed. Finally, a satellite workshop was selected as a case to verify the model’s
correctness and feasibility.

Production systems are imperative in smart manufacturing. Processing data is becoming a
key technical component to enhance the intelligent manufacturing industry. Many manufacturing
resources are developed using virtual resources associated with physical resources throughout their
life cycle [85]. DTs workshop is the main component of intelligent manufacturing, and an example of
the structure is shown in Fig. 11.
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Figure 11: DTs workshop practical example

Fig. 11 shows that theDTsworkshop, as themain body of twinmanufacturing, directly determines
the improvement of industrial production efficiency and energy consumption. With the emergence of
IoT, BD, virtual reality, AI, and 5G, physical and virtual resource interconnection has become possible.
DTs has potential to achieve cyber-physical production systems in Industry 4.0. Zhang et al. [86]
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introduced the vision of integrating physical resources into CPPS via DTs and AutomationML. To
illustrate the adoption of ICT, the general architecture of DTs-based CPPS was discussed. Using the
proposed information fusion, a case of expert fault diagnosis of aircraft engine was given. Secondly,
an AutomationML-based CPPS information modeling method was proposed.

The concept of DTs, as an idea for new generation digital manufacturing research, is crucial in
Industry 4.0. As the premise of digital manufacturing, the collection, modeling, and utilization of
historical data of machining process and part inspection are of great significance to provide data
support. However, due to the structural heterogeneity of the data, the modeling method of the part
DTs body is not comprehensive, which hinders the real-time adjustment during the assembly. To this
end, Bao et al. [87] proposed assembly-oriented modeling for part DTs. The model-based definition
method obtains the design information of the part from the 3D model, and predefines and identifies
the machining features. In addition, the assembly constraint relationship in the assembly unit in
which parts participate is obtained, so as to complete the deviation transfer analysis, and filter the
assembly key features as the carrier of processing and inspection data. Fan et al. [88] developed a
component-oriented part DTs framework to show the major components and data flows used to
create DTs principals with information filtering and subsequent management. The architecture of
DTs visualization for flexible manufacturing was introduced, and it was illustrated how to explore the
relationship between 3D visualized human-computer interaction and DTs scene information in the
proposed architecture. In addition, visualization methods for high-value information related to life
cycle planning, design, commissioning, and service phases were explored in depth.

One of the key enabling technologies of DTs is data modeling of physical products in order to
closely integrate the physical world with cyberspace [89]. Therefore, it becomes critical to manage
physical products as a modeling method for manufacturing data that faithfully reflects the physical
state of the product. Dai et al. [90] addressed the problem of modeling formed parts during machining
which hinders long-term development. Furthermore, an ontology-based data modeling method for
manufacturing parts was proposed as a suggestion to create DTs for manufacturing parts. Thus,
standardized process was given for creating DTs, classifications, what to model, and how to model
manufactured parts by specifying information. Process planning is critical to realize intelligent product
manufacturing. DTs are adopted to guide the process planning to realize the monitoring, simulation,
prediction, and control of the physical space. Zhao et al. [91] introduced DTs Process Model
(DTPM) for manufacturing. The real-time acquisition of data and the management of simulation
data were discussed. Regarding the data fusion of physical and virtual space, a hierarchical model and
mapping strategy of multi-source heterogeneous data were proposed to generate DTs data. Then, the
visualization functions in DTPM process planning were analyzed. The effectiveness was verified by
selecting the design process of the key components of the marine diesel engine.

As sharing economy becomes a mutually beneficial economic model, shared manufacturing
is proposed supported by advanced information and manufacturing under the concept of sharing
economy. Manufacturing resource allocation coordinates cross-organizational resources to provide
on-demand services for individualized needs. However, several challenges still hinder the resource
allocation. The traditional centralized optimization method has a limited decision-making model,
and the autonomous decision-making power of resource providers is hard to maintain. Therefore,
they are difficult to adapt to cross-organizational resource coordination. Furthermore, in the resource
allocation, the credit of resource providers is rarely considered, which is not conducive to promoting
reliable trade. Thus, Wang et al. [92] proposed an integrated architecture to facilitate resource alloca-
tion. DTs-driven service models were fabricated for seamless monitoring and shared manufacturing
resource controlling. Numerical control machine tools are the mother machines of the industry. If
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the troubleshooting is not timely, numerical control machine failure can lead to loss of accuracy and
affect production. Therefore, the reliability of numerical control machine tools is crucial. Predictive
maintenance can avoid breakdowns and loss of life. Due to less concern on state diversity and
consistency of numerical control machine tools, it is hard to harvest accurate, timely, and intelligent
results. To achieve reliable predictive maintenance of numerical control, Luo et al. [93] investigated a
DTs-driven hybrid approach. This approach was based on a hybrid approach driven by the DTs model
and Siamese data. Then, a DTs-based hybrid predictive maintenance model was developed.

For physical devices and network models, DTs can implement hardware-in-the-loop simulation.
Manufacturing system reconfiguration cost can be reduced if design flaws are discovered during the
deployment of traditional irreversible design methods [94,95]. Liu et al. [96] proposed a DTs-based
four-fold function for the design of process-based intelligent manufacturing systems in Industry 4.0,
namely configuration design-motion planning-control development-optimization decoupling. The
accuracy of workshop scheduling is remarkably affected by uncertain factors. DTs combine planning
and scheduling. The concept ofDTs is effectively used to comprehensively control the uncertain factors
in production activities, so that the actual production can be accurately guided. Wang et al. [97]
first established the management and control of the DTs-based planning and scheduling system.
Finally, the key technologies of the planning process were expounded. To verify the effectiveness,
in combination with the frame workshop design, a planning and scheduling system suitable for
enterprises was developed. The rapid development of new-generation information technologies such
as BD analysis, IoT, edge computing, and AI has driven manufacturing from traditional to intelligent
manufacturing with autonomy and self-optimization, and new requirements such as learning and
cognitive ability are put forward for the manufacturing unit, which is called the minimum realization
unit of intelligent manufacturing. Therefore, Zhou et al. [98] proposed a framework for knowledge-
driven DTs intelligent manufacturing cells. The framework can support autonomous manufacturing
through intellisense, simulation, prediction, optimization, and control strategies. In addition, DTs
model, dynamic knowledge base, and knowledge-based intelligent skills that support the above
strategies are adopted. Thus, the framework is capable of self-thinking, self-decision, self-execution,
and self-improvement.

To achieve defect-free production, Gaikwad et al. [99] combined predictions from physical models
with in-situ sensor features and meanwhile detect the additive defects in manufactured parts. The
instantaneous spatiotemporal distribution of temperature in thin-walled titanium alloy parts was
predicted using a graph theory-based computational heat transfer model. Subsequently, the above
physically derived thermal trends were combined with in-situ temperature measurements obtained
from pyrometers in a supervised machine learning framework (SVM). DTs provide feasible imple-
mentation paths for the realization of smart manufacturing and CPSs. DTs are applied in the design,
production, and service. Workshop DTs is digitally mapped models of the corresponding physical
workshop. Applying digital micro-distortion at the production stage is a challenge. In response to
the existing problems, Zhuang et al. [100] first reviewed the evolution of DTs, such as the adoption
status in the production stage. Then, an implementation framework for the construction of workshop
DTs was proposed. The new generation of machines is supposed to be digital, efficient, networked,
and intelligent. Intelligent machine tools powered by DTs provide excellent solutions for intelligent
manufacturing. Tong et al. [101] proposed an intelligent machine tool DTs-based real-time machining
data service.Multi-sensor fusion was adopted for real-time data acquisition. Data transfer and storage
were achieved via MTConnect protocol. Various applications were developed for data visualization in
the body of DTs, including processing trajectories, processing status, and energy consumption.
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In smart manufacturing, several challenges have arisen in production management, including the
utilization of information and the elimination of dynamic disturbances. The DTs-Driven Production
Management System (DTPMS) can dynamically simulate and optimize the production, and realize
real-time synchronization, high fidelity, and real-virtual integration in cyber-physical production.
Ma et al. [102] focused on how to build a DTPMS for production lifecycle management. First, it
was demonstrated how to integrate DTs and simulation platforms. Secondly, the DTPMS framework
can support the CPS of the production workshop. Finally, DTPMS was utilized in the production
of heavy-duty vehicle gearboxes. The processing plan as the guidance can ensure the quality of
product processing. Existing methods are inefficient and cannot quickly handle machining plan
changes caused by unpredictable production events in a real-time manner, inevitably causing time
and financial loss to the business. To demonstrate the evolution characteristics of product processing,
Liu et al. [103] proposed a method for constructing a DTs process model regarding the knowledge
evolution processing characteristics. Three key technologies, including the related structure of process
knowledge, the expression of evolutionary geometric features, and the correlation mechanism between
them, were solved. Then, DTs process model construction was explained. The organization and
management of multi-source heterogeneous data were analyzed. Finally, a case study of complex
machined parts showed that machining time was reduced by 7% andmachining stability was improved
by 40%. Costantini et al. [104] found that the EU-funded IoTwins project aims to build a solid platform
that manufacturers can use to develop hybrid DTs of their assets, deploying them as close as possible
to data sources. Location (on IoT gateways or edge nodes) and leverage cloud-based resources to
offload computationally intensive tasks such as big data analysis andMLmodel training. The authors
introduced the main research goals of the IoTwins project and discussed its reference architecture,
platform capabilities, and building components. Finally, they used case to prove how manufacturers
can exploit the potential of the IoTwins platform to develop and execute distributed DTs for the
purpose of predictive maintenance.

To sumup, in thewave of intelligentmanufacturing, traditional 2D scene application can no longer
meet the information requirements of multi-equipment, multi-process process, and process simulation.
The specific research results are summarized in Table 1.

Table 1: Several DTs applications in traditional 2D scene

Authors+ year Model construction and methods Outcomes

Qi et al. [47] The authors outlined the application
of BD and DTs in product design,
production planning, manufacturing,
and predictive maintenance in
manufacturing.

BD and DTs can complement each
other, and their integration can
facilitate smart manufacturing.

Tao et al. [51] The authors proposed a new approach
to product design, manufacturing,
and service driven by DTs.

They illustrated the application
prospects of DTs in three stages of
production.

(Continued)
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Table 1 (continued)

Authors+ year Model construction and methods Outcomes

Malik et al. [60] The authors developed a DTs
framework for the design,
construction, and control of
human-robot collaboration.

During the life cycle of the
production system, the digital copy
is kept updated by continuously
mirroring the physical system for
fast and secure embedding for
continuous improvement.

Zhang et al. [61] The authors propose a data- and
knowledge-driven framework for the
digital twin manufacturing cell
(DTMC).

They use data and knowledge to
support the automatic operation of
DTMC and summarize the
advantages of DTMC in smart
product service systems and the
current challenges it faces.

Zhang et al. [65] The authors presented a carbon
emission prediction and low-carbon
control method for smart
manufacturing workshops driven by
DTs.

They combined the latest
information and computing
technology with low-carbon
manufacturing and validated and
optimized control schemes through
virtual workshops.

Zheng et al. [69] The authors proposed a DTs
application framework for product life
cycle management.

They described in detail the
implementation, application
process and effect of DTs cases in
welding production lines to provide
reference for enterprises.

Bao et al. [77] The authors put forward a method to
model and run DTs in a
manufacturing environment.

The DTs scheme has an obvious
effect on the improvement of
production efficiency.

Min et al. [78] The authors proposed a DTs
framework and method based on the
practice cycle of IoT, machine
learning, physical plant, and virtual
DTs model information exchange in
the petrochemical industry.

They demonstrated the
effectiveness of DTs in the
petrochemical industry.

Zhou et al. [98] The authors proposed an overall
framework of knowledge-driven
digital twin manufacturing cell
(KDTMC) for smart manufacturing.

The feasibility of KDTMC is
verified through three application
examples of intelligent process
planning, intelligent production
scheduling, and production process
analysis and dynamic adjustment,
providing a practical perspective
for the intelligent manufacturing
paradigm.

(Continued)
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Table 1 (continued)

Authors+ year Model construction and methods Outcomes

Tong et al. [101] The authors provided a real-time
machining data application and
service based on the intelligent
machine tool DTs.

They demonstrated that the
development method of the digital
twin of intelligent machine tools is
effective and feasible.

Ma et al. [102] The authors introduced how to build
a DTs-driven production management
system for product life cycle
management.

The product defect rate and
work-in-process inventory were
reduced by 34% and 89%,
respectively, verifying the feasibility
and effectiveness of the method.

Wang et al. [97] The authors established the control
mechanism of the DTs scheduling
system.

They verified the feasibility of the
control mechanism of the DTs
scheduling system.

Luo et al. [93] The authors analyzed a hybrid
approach driven by DTs.

This method is feasible and more
accurate than a single method.

Fan et al. [88] The authors built a
component-oriented component DTs
framework.

The method is effective in all
aspects of the flexible
manufacturing system life cycle.

Wang et al. [92] The authors proposed an integrated
architecture to facilitate resource
allocation methods in shared
manufacturing.

The effectiveness and efficiency of
the method in the allocation of
shared manufacturing resources
are verified by an example.

Liu et al. [96] The authors proposed a four-fold
functional framework of
configuration design-motion
planning-control
development-optimization decoupling
design.

They finally proved that the design
method was feasible and effective.

Xie et al. [83] The authors proposed a DTs-driven
data flow framework for each stage of
the tool life cycle.

They discussed the prospects and
challenges of data analysis, fusion,
mining, and services.

Liu et al. [103] The authors proposed the
construction method of DTs process
model.

In a case study, they found a
reduction in processing time of
about 7% and a 40% increase in
processing stability.

Zhang et al. [84] The authors established a multi-layer
modeling framework, which supports
modeling from the unit layer to the
system layer to the system layer.

They took a satellite assembly test
workshop as an example to verify
the correctness and feasibility of
the proposed framework, process,
and method.

(Continued)
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Table 1 (continued)

Authors+ year Model construction and methods Outcomes

Bao et al. [87] The authors proposed an
assembly-oriented DTs modeling
method for parts.

They demonstrate the entire
process of part digital twin
modeling with examples and
validate the practicability and
effectiveness of the method.

Costantini et al. [104] The authors presented the main
research goals of the IoTwins project
and discussed its reference
architecture, platform capabilities,
and building components.

They demonstrate how
manufacturers can leverage the
potential of the IoTwins platform
to develop and execute distributed
DTs for predictive maintenance
purposes through use cases.

Real-time data of factory operation can be received through 3D DTs model. In addition to
presenting real and real-time data information, it can conduct real-time comparison and monitoring
of equipment operation process, find abnormal situations in advance, and automatically execute
relevant plans to realize early warning and predictable maintenance, thus avoiding accidents and
ensuring continuity and stability of production process. It can also reflect the real operation logic
through machine learning and other technologies to realize data analysis and intelligent decision
analysis in various production scenarios. To realize intelligent manufacturing industry, it is necessary
to realize the interconnection of all elements, the whole industrial chain, and the whole value chain.
The consistency of information flow and physical flow can be realized through state perception
and data fusion, and dynamic scheduling and optimization of factories can be realized by means
of industrial intelligence and autonomous control, thereby realizing collaborative lean management
between multiple workshops and organizations.

3.2 DTs Modeling in Smart City Construction

Insight-driven real-time traffic management is becoming an important part of building and
sustaining smarter cities globally. Many automated traffic management solutions have been proposed
by information technology solutions and services organizations, and their main problem is that they
are passive and therefore, an inefficient solution for an increasingly connected and dynamic urban
environment [105,106]. Digitisation makes infrastructure and cities smarter. The use of physical space
and energy, the transfer of information, the management of users, assets and processes, and the
operation of businesses and companies have been progressively digitized. Themain challenges of smart
cities are their definition, scope, and interconnectedness. There are different approaches to smart
city implementation, from collaborative multidisciplinary environments, adding information and
communication technology to their physical structures, to higher abstract decisions using BD. Serrano
[107] proposed the concept of digitalization as a service, in which any complete digitalization can be
realized independently of the relevant physical infrastructure in the cloud environment. Digitisation
as a service will enable interoperable virtual digital infrastructure. In addition, they reviewed current
digital systems, transmission networks, servers, and management systems.
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With the emergence of a new generation of information technology in industry and product design,
the era of product design driven by BD has come [108]. Fig. 12 shows the example of smart park
constructed by combining industrial park and DTs.

Brain 

Decision

d Deep Network

Information 

Interaction
Data 

Collection

Spatiotemporal 

Correlation

Smart Park

Figure 12: Smart park DTs application platform

As can be seen from Fig. 12, during the initial construction of the smart park, various new
technologies, such as cloud computing, IoT, big data, and AI, are surging, each acting independently.
These technologies applied in various fields have no unified standard for the information system
constructed by them and are incompatible with each other. Besides, the access is blocked, leading to the
isolated island of information. With the help of DTs technology, every link of the smart park is very
transparent. From government decision-making and services, to people’s lifestyles, to the industrial
layout and planning of the city, to the operation and management of the city, DTs technology can
accelerate the smart development process of the industry and even the city. Thus, DTs play a critical
role in the management of smart parks. However, BD-driven product design mainly emphasizes the
analysis of physical data rather than virtualmodels, in other words, the fusion between the physical and
virtual space of the product usually does not exist. DTs is a new and rapidly evolving technology that
connects the physical and virtual worlds, and has recently attracted a lot of attention around the world.
Tao et al. [109] proposed a new DTs-based product design method. Smart cities aim to solve their
inherent problems while reducing costs and improving quality of life. Through the fourth industrial
revolution technology, the advantages of smart cities are estimated to overcome the cost of cities
through urban platformization. Although cities have traditionally been the subject of creation rather
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than consumption, smart cities are now key industries that create value accounting for more than 60%
of their GNP from the perspective of production [110–112]. Zhao et al. [113] proposed a context-aware
autonomous control method for micro-point press by establishing a DTs-driven network physical
system. The key enabling technology of network space and physical device pairing was discussed, and a
high-precision on-line detection and control system-based dynamic adjustment model of micro-point
punching piezoelectric ceramics was proposed.

DTs in big cities are changing from static to dynamic, from static data to dynamic, and from
current analysis to predictive analysis. Its logic is the same as the development trend of AI technology.
That is, Internet BD can identify the present, and AI can predict the future. Similarly, if AI technology
is “bred” by data information, the key to large DTs cities is also data information. Under the current
general trend of digital transformation, the DTs building, which is an effective integration of DTs
and the construction industry, has become the core engine for the upgrading of the construction
industry, and is also the necessary foundation for the construction of DTs cities. DTs building
employs BIM and cloud computing, BD, IoT, AI, virtual simulation, and other DTs body enabling
technologies. Combining advanced lean construction project management theories and methods, a
business development strategy driven by DTs is formed. It integrates various aspects and manages
life cycle of buildings. It realizes the whole-process, all-factor, all-participation, and people-oriented
development of living environment and the intelligent adoption of better life experience. In this way,
a new ecosystem of enterprise, industry, and DTs urban applications will be established. An example
of the DTs building ecosystem platform is shown in Fig. 13.

With the continuous progress and mature adoption of new technologies of DTs and additive
manufacturing, it empowers the digital transformation of the construction industry. Utilizing DTs
virtual buildings and energy modeling technology can transform the design, management, and
maintenance of buildings. For example, real-time energy consumption data of physical buildings
can be collected through the adoption of various sensors and intelligent sensing technologies. With
reference to building design, HVAC, lighting, power supply, and weather data, building owners are
provided with the best solutions for the various equipment usage through calculation, thus reducing
energy consumption. At present, the operation mode in building operation in China is still carried
out by combining traditional manpower with some building intelligent subsystems. This operation
and maintenance method is relatively timely to deal with the faults of construction equipment,
but the ability of early warning and analysis of construction equipment faults is still inadequate.
Ideal building operation and maintenance service should be “prevention first, maintenance second”.
Therefore, DTs provide efficient technical support for intelligent building operation and maintenance
and predictive maintenance of building facilities through its comprehensive analysis and prediction
capabilities. Digital architecture will have an unignorable impact on the industry as core engine for
the transformation and upgrading of it. Nevertheless, the promotion of digital architecture is by no
means something that one company can accomplish. Construction industry can be digitized, online,
and intelligent on digital building platform, eventually realizing the form of fully intelligent future
buildings.

The construction industry faces many challenges including low productivity and poor technolog-
ical progress. Advances in DTs have been exploited tremendously in digitally advanced industries.
DTs have the potential to transform the construction industry and solve challenges, so they have
attracted a lot of attention and are growing rapidly. To analyze theDTs applications in the construction
industry, Opoku et al. [114] adopted systematic review combined with scientific mapping methods to
comprehensively review and analyze DTs concepts, techniques, and applications in the construction
industry. After a comprehensive search and careful selection of multiple databases according to the
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proposed criteria, 22 academic publications on the adoption of DTs were identified and categorized.
Angjeliu et al. [115] investigated the structural system integrity of historic masonry buildings, aiming
to develop a program that creates a model that integrates experimental physical reality to analyze
the structural response of the system. The key elements of the inspection were the construction of an
accurate 3D model, the selection of materials, and the construction stages. Relationships to structural
investigations, field observations, and measurements were explored. An ideal approximation of the
real geometry was achieved, with efficient discretization in the finite element model.
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Figure 13: Example of DTs building ecosystem platform

High-precision Products (HPP) with multi-disciplinary coupling are applied in aerospace, marine,
and chemical fields. Due to the complex and compact structure of HPP, the assembly process requires
high precision. The traditional assembly is of low assembly efficiency and poor quality-consistency. In
response to these deficiencies, Sun et al. [116] proposed a DTs-driven assembly and debugging method
for HPP. First, the theoretical framework of DTs-driven assembly and debugging was introduced,
whose effectiveness and feasibility were verified. Virtual DTs bodies can be employed to optimize
the assembly process online without stopping the assembly process involved in the production
line [117–119]. Al-Ali et al. [120] proposed an end-to-end conceptual model of DTs representing
their complementary physical objects. The multi-layered nature of the proposed DTs model is also
introduced. The hardware and software techniques utilized to construct such models were explained.

In the future, based on security and building DTs, the integration of fire emergency data
and information resources can realize the unified management and control of urban firefighting
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capabilities and information, thereby creating an intelligent urban firefighting emergency command
system. It can assist on-site staff in choosing the best rescue route and fire rescue work, and improve
disaster prevention, disposal, and emergency rescue capabilities. At the same time, it can also formulate
a DTs-based fire drill plan, conduct business training for firefighters, and improve the emergency
response capabilities of firefighters. When an emergency occurs during the operation of a real physical
city and crowd evacuation and emergency rescue are required, relevant simulation software can be
used to quickly conduct simulation analysis in combination with building DTs to find the optimal
crowd evacuation path and emergency rescue plan. For example, in the prevention and control of the
new crown epidemic, the community DTs building model can be used to realize the combination of
health information and home isolation status of residents in community buildings and realize dynamic
alarm and normal management. In this way, it can provide important technical and data resource
guarantees for community-level anti-epidemic staff to reduce stress and community network-based
smart management.

DTs city is expected to reflect and influence city functions and processes to enhance their
realization, operability, and management. Advances in DTs are growing rapidly and make viable
contributions to the progression of smart cities. The benefits of DTs cities are assessed regarding the
real-time data from pre-installed IoT sensors such as traffic, energy usage, air pollution, and water
quality, used to manage complex urban systems. However, sensor-based real-world information may
not be sufficient to provide dynamic spatiotemporal information about physical vulnerabilities. An
example of the implementation path for DTs cities is shown in Fig. 14.

From Fig. 14, understanding the current state of physical vulnerability in cities can support urban
decision makers in analyzing the potential risks associated with urban areas, enabling data-driven
infrastructuremanagement during extreme weather events. Shahat et al. [121] proposed to guide future
research on urbanDTswith the aim of reaching the highest level of comprehensive and complete urban
DTs body. Data processing, inclusion of urban socio-economic components, and mutual integration
between the two counterparts of DTs are the future research directions for realizing and utilizing fully
mirrored urban DTs. Advances in remote sensing technology have resulted in inexpensive city-scale
light detection and ranging point clouds that can be used to model urban objects to create DTs cities.
Xue et al. [122] proposed a new unsupervised method called object symmetric cross-section clustering,
to process city-scale light detection and ranging point clouds as object hierarchies according to their
characteristic cross-sections.

In an era of rapid urban growth and expansion, planning is critical for cities to improve their
competitiveness while supporting the well-being of their citizens, and this is where DTs comes in
handy [123–125]. As a step towards creating DTs cities for effective risk-informed decision-making,
Ham et al. [126] proposed a new framework to bring the reality information of visual data into 3D
virtual cities for model updating with interactive and immersive visualization. Unstructured visual
data was collected and analyzed from participatory sensing to estimate geospatial information on
distant vulnerable objects representing the physical vulnerability of cities. DTs bodies were originally
designed to improve manufacturing processes using simulations with high-accuracy individual com-
ponent models. However, it is now possible to create DTs smart cities. 3Dmodel of a city can be posted
online, and this open and public model allows for additional virtual feedback loops where citizens can
interact and report feedback on changes to the city’s plan.White et al. [127] presented a body of public
and open DTs in Dublin Docklands, Ireland. The model was also demonstrated for the planning of
urban skylines and green Spaces, allowing users to interact and report feedback on plan changes.
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Figure 14: Example of DTs urban modeling implementation path

Various research has focused on ICT and AI solutions to enhance disaster management, frag-
mented without a common vision of a convergent paradigm. Fan et al. [128] proposed a vision for the
DTs model of disaster cities. This paradigm enables an interdisciplinary fusion of crisis informatics
and ICT in disaster management, enabling the integration of AI algorithms, to improve assessment,
decision-making, and coordination. Moreover, it can increase visibility into the cyber dynamics of
complex disaster management and humanitarian operations. Disaster city DTs are used as a unified
paradigm. The mentioned DTs include multi-data sensing for data collection, data integration and
analysis, multi-player game-theoretic decision making, and dynamic network analysis [129]. From an
architectural and engineering/construction perspective, activities related to avoiding double taxation
are still in their early stages regarding buildings and other infrastructure assets. Less attention is paid
to the operations and maintenance phases, which are the longest time spans in an asset’s life cycle. A
systematic and clear architecture, validated by building practical use cases for DTs, will be the most
important step in the efficient operation andmaintenance of buildings and cities. Regarding the current
research onmulti-layer architectures, Lu et al. [130] proposed a system architecture forDTs specifically
designed for building and urban levels.
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COVID-19 has sparked a crisis affecting all populations, and a response plan is considered an
effective way to control the spread of the virus. Research suggested that urban DTs can be beneficial
in addressing this crisis because it can build a virtual replica to simulate climate conditions, response
policies, and people’s trajectories to help plan efficient and inclusive decision-making. However, urban
DTs systems decide things relying on long-term data collection, limiting their advantages in the face of
emergency crises. Pang et al. [131] proposed a framework that fuses urban DTs with federated learning
for a novel collaborative paradigm that allows data sharing among multiple urban DTs. DT is a key
enabler for the implementation of Industry 4.0 in smart cities, which connects disparate objects by
leveraging advanced IoT. However, DTs should provide more than just numerical representations.

Two-way data exchange and real-time self-management distinguish DTs from other information
modeling. Digital transportation is increasingly required as it becomes a core technology in many
industrial sectors post-COVID-19. Sepasgozar [132] clarified the concept of DTs and differentiated
them from other 3D modeling techniques and digital information systems, and examined the current
state ofDTs and provided directions for future investigations. Architecture based onDTsmodeling can
provide data such as building height, roof surface, and insolation, which allows city planners to analyze
which buildings have high solar energy production potential and are suitable for installing building
energy storage materials such as solar panels. Further analysis allows city smart grid managers to
estimate how much solar energy each community generates in a day, as well as the savings in electrical
energy and costs. At the same time, the correctness of the above analysis can also be verified by cross-
referencing with the historical data of adjacent buildings. Seasonal adjustments can be implemented
to reflect more accurate and refined forecasts of community electricity transmission and distribution
needs. In addition, the usage data of the lighting system and HVAC system in each building can be
obtained in real time by adopting the intelligent sensor system, to accurately understand the specific
power consumption and peak data of buildings and urban communities, thereby providing the basis
for the implementation of intelligent transmission and distribution of urban power grids.

Most research about DTs focuses only on the manufacture and proposed explicit frameworks
and architectures that face the challenge of supporting different levels of integration through agile
processes [133–135]. Furthermore, no empirical work focused on exploring the relationship between
DTs and large-scale personalization. Aheleroff et al. [136] developed a reference architecture for DTs
and applied it in industrial cases. DT is of smart planned maintenance, real-time monitoring, remote
control, and predictive capabilities [137–139]. The results showed a significant relationship between
the ability of DTs as a service and large-scale personalization.

To sum up, according to the various adoption scenarios of DTs cities, there are many smart appli-
cations under DTs buildings, such as smart community management, smart hospital management,
and smart parking management. In smart cities, DTs buildings can transform traditional buildings
from inanimate reinforced concrete structures into self-adaptive and evolvable “living bodies” with
comprehensive perception and AI through swarm intelligence and DTs. Thus, an open smart building
ecosystem with deep integration of human, machine, and material can be formed to provide efficient
technical support for smart city construction. The futureDTs building should be an intelligent building
that learns and thinks, which can communicate and interact with people naturally, and can adapt to
various scenarios. As part of a DTs city, it can be highly interconnected at a high structural level.

4 DTs Modeling Research Limitations and Future Prospects

Overall, DTs are still in the early stage. DTs need to conduct global perception, execute mon-
itoring, integrate historical accumulated data for calculation, and output information quickly and
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timely. The first is a high reliance on the data and information collected by sensors. In terms of data
perception, accurate global perception of machines in factories is still difficult at the current level
of technology, let alone other fields. Physical entity data is not detailed, leading to missing digital
copy and errors in the predictions and judgments made by the digital copy. To solve which, chips,
sensors, and IoT are required. As for software, algorithms and the integration of various software are
required. The current bottleneck of DTs comes from various aspects. Nevertheless, it can bring infinite
possibilities for industrial manufacturing and future life.

According to the applications ofDTsmodeling in various industriesmentioned above, the business
value of DTs is increasing. However, it relies on mature technical capabilities such as BD, IoT, cloud
computing, AI, and game technology. Comprehensive technology providers that can provide these
technologies in a package can therefore provide better products, better iterative capabilities, and
natural competitive advantages. Then, in the future, maybe every commodity and everyone can have
their own DTs body, which will completely change our future production and living conditions. The
development prospect of DTs is bright. DTs can help companies improve customer experience and
even help drive new business innovation by understanding customer needs and improving existing
products, operations, and services. DTs has been widely used in various scenarios, mainly in design and
monitoring scenarios. Smart cities, Industry 4.0, and the intelligent driving industry are all industries
that apply advanced DTs, and are also the focus of the layout of many technology giants. DTs are
widely adopted in an increasing number of enterprises, especially those that move from product sales
to bundled sales of products and services, or those that sell as services. As enterprise capabilities and
maturity increase, more enterprises will adopt DTs to optimize processes, make data-driven decisions,
and revise new products, services, and business models in the future. To play the full potential of DTs
in a long term, data must be integrated with the entire ecosystem.

As the development trend of DTs has accelerated in recent years, more and more companies have
begun to adopt DTs to optimize processes and make database decisions in real-time, becoming a
pioneer in the adoption of DTs in capital-intensive industries such as manufacturing, utilities, and
energy [140–142]. If early practitioners showed a first-mover advantage in many industry sectors,
others followed. DTs’ full-potential adoption may require integrating systems and data across the
ecosystem. A complete customer lifecycle or supply chain digital simulation will be established,
which provides an insightful macro view of operations. However, integrating external entities into
the internal digital ecosystem is also needed. Today, companies are still unpleased with external
integration beyond point-to-point connections. Enterprises hope to use blockchain to break down
silos of information, validate information, and enter DTs, which will free up previously inaccessible
data, making simulations detailed and dynamic, and generating greater potential.

5 Conclusion

From real 3D modeling to DTs modeling, only high technology is not enough to achieve nation-
wide widespread popularization and standardized application. More targeted and multi-disciplinary
integration of intelligence, automation, and especially low-cost technology is needed. However,
obtaining data is not the purpose. To realize the value of data, it needs the efficient use of real-life 3D
model data with multiple levels of detail and real-time sensing data of the IoT sensor network. Data-
model-knowledge integration processing technology is required to form a general intelligent system,
which integrates many mechanism models with people’s knowledge and experience. The technical
realization of DTs relies on integration of novel technologies and interdisciplinary knowledge. The key
methods involved are modeling, BD analysis, machine learning, and simulation. At present, a series of
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problems such as different statistical calibers of data in various departments within the enterprise, low
self-collection efficiency, and low real-time performance of data are common, affecting the accuracy of
enterprise DTs characterization. In the future, through the introduction of emerging machine learning
technologies, deep feature extraction of multi-dimensional heterogeneous data can be realized, which
will greatly improve the efficiency of data analysis and make it gradually possible to build complex
DTs for enterprises.
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