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ABSTRACT

This study investigates the scheduling problem of multiple agile optical satellites with large-scale tasks. This problem
is difficult to solve owing to the time-dependent characteristic of agile optical satellites, complex constraints, and
considerable solution space. To solve the problem, we propose a scheduling method based on an improved sine
and cosine algorithm and a task merging approach. We first establish a scheduling model with task merging
constraints and observation action constraints to describe the problem. Then, an improved sine and cosine
algorithm is proposed to search for the optimal solution with the maximum profit ratio. An adaptive cosine factor
and an adaptive greedy factor are adopted to improve the algorithm. Besides, a task merging method with a task
reallocation mechanism is developed to improve the scheduling efficiency. Experimental results demonstrate the
superiority of the proposed algorithm over the comparison algorithms.
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1 Introduction

Agile optical satellites (AOSs) are a new generation of imaging platforms that can take pictures
of ground targets through optical payloads. A ground target means an observation task. Over the
past decades, the Agile Earth Observation Satellite (AEOS), represented by the AOS, has played
a significant role in many fields, such as resource exploration, environmental monitoring, disaster
control, city planning, and military reconnaissance [1,2]. With the rapid growth in observation requests
and the number of in-orbit AOSs, the scheduling of multiple AOSs for large-scale tasks has become
an important issue.

Compared with traditional satellites, the AOSs have three degrees of freedom, which can adjust the
attitude by rolling, pitching, and yawing. In this study, the AOSs adopt the push-broom observation
mode, so only two ways of attitude adjustment, rolling and pitching, are taken into consideration.
The visible time window (VTW) is the period during which the ground target is visible to the
satellite. The observation window (OW) is the period during which the satellite continuously observes
the target. The multi-AOS scheduling problem has proven to be an NP-hard combinatorial optimiza-
tion problem [3]. The scheduling of satellites does not only involve the selection of appropriate VTWs
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for targets but also the determination of OWs and observation angles. Therefore, the complexity of this
problem comprises two main aspects. First, several VTWs exist in different orbits for a target, and it is
difficult to select the appropriate VTWs for all targets. As the problem scale expands, the solution space
exhibits the characteristics of a combinatorial explosion. Second, it is difficult to determine the OWs
of the targets. As shown in Fig. 1, the AOS has a relatively longer VTW than the traditional satellite
because of its agility. The OW can start at any time within the VTW. Thus, a longer VTW indicates
more possibilities for determining the OW. In addition, the observation start time is determined by
the pitch angle and can further impact the transition time between a current target and a previous
one, whereas the transition time is needed for a satellite to adjust its attitude. This characteristic is a
time-dependent characteristic [4], which makes the OW more difficult to be determined. Because of
these features, the multi-AOS scheduling problem is complex and difficult to solve.

Figure 1: Observation process of a traditional satellite and an AOS

Exact algorithms and heuristic algorithms have been widely applied to solve this problem.
Because of the NP-hard characteristic, exact algorithms are only adopted for small-scale single-
orbit scheduling or single-satellite scheduling. Heuristic algorithms are the better choice to solve
the scheduling problem of multiple AOSs. Several constructive heuristic algorithms [5–8] have been
designed according to the characteristics of the problem and have achieved relatively good results.
Meta-heuristic algorithms have also been widely used to solve this problem. In particular, evolutionary
algorithms have been extensively applied owing to their simplicity and efficiency [9]. Li et al. [10]
proposed a combination of genetic algorithm (GA) and simulated annealing (SA) algorithm for
the single-orbit scheduling of an agile satellite. Yuan et al. [11] attempted to adopt GA to obtain a
high-quality solution by improving the initialization. Chatterjee et al. [12] proposed an elitist mixed
coded genetic algorithm (EMCGA) for satellite scheduling, and further improved the algorithm by
combining it with a hill-climber mechanism to obtain better initialization. Zhi et al. [13] presented
a variable observation duration scheduling method based on the quantum genetic algorithm for the
scheduling of multiple agile satellites. Zhang et al. [14] developed a hybrid discrete particle swarm
optimization (PSO) algorithm for the daily scheduling problem of the SPOT5 satellite. Yan et al. [15]
presented a combination of PSO and the multiplicative MOORA (Multi Objective Optimization on
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the basis of Ratio Analysis) method for the emergency scheduling of multiple satellites. He et al. [16]
proposed a hierarchical scheduling method based on ant colony algorithm for the real-time scheduling
of agile satellites. Luo [17] proposed a hybrid binary artificial bee colony (BABC) algorithm for
the satellite scheduling problem. The algorithm integrated the operators of crossover and mutation
and a two-phase repair operator into the framework of an artificial bee colony. In addition to these
evolutionary algorithms, other heuristic algorithms have been proposed. Wei et al. [18] considered
the failure rate and the load balance degree as the two optimization objectives and proposed a
multi-objective memetic approach. Besides, Wang et al. [19] introduced the complex network theory
into the agile satellite scheduling problem and obtained effective scheduling results. Most of the
abovementioned studies focus on the single-satellite scheduling or the scheduling of multiple satellites
for dozens of tasks. With a further increase in the problem scale, these algorithms, including the
abovementioned evolutionary algorithms, can hardly search for the optimal solution from a large
solution space. Therefore, an effective scheduling method is required to obtain a good solution with
the maximum given objective function.

In order to improve the satellite observation efficiency, task merging or task clustering is an
effective way to process tasks. When a satellite moves in an orbit, an observation strip can be formed
on the ground, and different observation angles lead to different strips. If two adjacent targets can
be covered by the same observation strip, they can be merged. By merging multiple tasks into a
whole task, a satellite can observe more targets with fewer observation times. In fact, ground targets
tend to be concentrated in hot areas, and large-scale targets are usually densely distributed. In
conventional methods without task merging, targets can only be observed individually, which results
in conflicts among adjacent targets and inefficiency. As shown in Fig. 2a, adjacent targets compete for
an observation opportunity, and only one of them can be observed. However, more adjacent targets
can be observed through one observation action via task merging, as shown in Fig. 2b. In this way,
the observation strips can cover two or more targets simultaneously. Many task merging methods have
been proposed to address the traditional satellite scheduling problem [20–24]. Task merging of agile
satellites is difficult to realize because of the time-dependent characteristic. A few researchers have
achieved preliminary achievements. Zhao et al. [25] clustered target points according to the distance
condition in the preprocessing stage. Chang et al. [26] developed a task clustering method that clustered
two adjacent targets according to the maximum interval time and the true interval time between them.
Long et al. [27] introduced a task merging mechanism to the stage of single-orbit scheduling. They
proposed four kinds of task clustering constraints, including roll angle constraint, time-window related
constraint, free time constraint of imaging, and transitive constraint, built a task clustering graph
model, and realized the clustering of dozens of tasks with two satellites. However, the abovementioned
merging methods have three deficiencies: first, the time-dependent characteristic is not sufficiently
considered; second, these methods only apply to the small-scale scheduling of dozens of tasks; and
finally, these methods may result in redundant observations which lead to a waste of memory and
energy.

In this study, we focus on the multi-AOS scheduling problem with large-scale tasks and propose
a scheduling method with task merging. The main contributions are fourfold: (i) We take the
time-dependent characteristic into full consideration and build the multi-AOS scheduling model
with task merging constraints and observation action constraints; (ii) An improved sine and cosine
algorithm (ISCA) is proposed for searching the optimal solution; (iii) A task merging method with a
task reallocation mechanism (MR) is presented to improve the preliminary solution; (iv) Extensive
experimental results prove the effectiveness of the proposed algorithm and test the effect of its
parameters.
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Figure 2: Illustration of two observation ways

The remainder of this paper is organized as follows. In Section 2, we describe the multi-AOS
scheduling problem in detail and model it. Section 3 presents a multi-AOS scheduling method based on
an improved sine and cosine algorithm and a task merging method with a task reallocation mechanism.
Section 4 presents the experimental results, and Section 5 presents the conclusions of the study with a
summary and directions for future work.

2 Problem Description and Modeling

The process of multi-AOS scheduling through task merging is to select appropriate VTWs for
tasks, merge multiple tasks into a whole task, and determine the corresponding observation actions
of AOSs, satisfying all constraints. The whole task is called the merged task. For the tasks, sets of
candidate VTWs are acquired according to the orbit parameters of the AOSs, their location, and the
imaging requirements, which are the inputs of the problem. The VTWs in the solar shadow period are
eliminated in consideration of the characteristics of the optical sensors. Furthermore, the outputs of
the problem are the observation actions of the AOSs, including observation start time, observation
end time, roll angle, and pitch angle.

2.1 Assumptions
The practical scheduling of AOSs is a complicated process, and many complex constraints must

be satisfied. To simplify this problem, the following assumptions are made:

• The data transmission process is not considered;

• Every task is a point target or a small area that can be observed in one pass;

• Each AOS has only one optical sensor;

• For each AOS, the memory space is completely released and the energy is full at the initial
moment of each orbital cycle.

2.2 Notations and Variables
The orbits of different AOSs can be equally treated as resources of the same type. Thus, the multi-

AOS scheduling problem can be transformed into a multi-orbit scheduling problem. All orbits are put
together in an orbit set. The set of orbits is denoted as O = {

oj|j = 1, 2, . . . , |O|}, where |O| is the
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number of orbits. The set of tasks is denoted as T = {ti|i = 1, 2, . . . , |T |}, where |T | is the number of
tasks. The VTW set of the task ti is denoted by VTWi, and |VTWi| is the number of VTWs. MTj ={
mtk

j |k = 1, 2, . . . ,
∣∣MTj

∣∣} is the set of merged tasks in the orbit oj, and
∣∣MTj

∣∣ is the number of merged
tasks. In order to describe all tasks in a uniform way, the task executed without merging is also denoted
as mtk

j . Aj = {
ak

j |k = 1, 2, . . . ,
∣∣Aj

∣∣} is the observation action sequence in the orbit oj, where
∣∣Aj

∣∣ is the
number of observation actions, and

∣∣Aj

∣∣ = ∣∣MTj

∣∣. An observation action ak
j accomplishes a merged

task mtk
j .

In addition, some notions are defined as follows:

• vtwj
i = [

estj
i, lstj

i

]
is the selected VTW for the task ti in the orbit oj, where estj

i is the earliest start
time of the VTW and lstj

i is the latest start time; vtwj
i ∈ VTWi.

• Rj
i is the roll angle range of the AOS corresponding the VTW vtwj

i.

• di is the requested observation duration of ti.

• pi is the priority of ti, representing the task profit.

• owi = [sti, eti] is the observation window of ti. sti ∈ vtwj
i, eti = sti + di.

• ak
j = {

astk
j , aetk

j , ark
j , apk

j

}
is an observation action, where astk

j is the observation start time, aetk
j

is the observation end time, ark
j is the observation roll angle, and apk

j is the observation pitch
angle.

• M is the maximum memory capacity in every orbit.

• m is the memory consumption rate when the AOS observes.

• E is the maximum energy in every orbit.

• eo is the energy consumption rate when the AOS observes.

• ea is the energy consumption rate when the AOS adjusts its attitude angle. ω is the angular
velocity when the AOS adjusts its attitude angle.

• pa is the pitch angle of the AOS. pa ∈ [pl, pu].

• ra is the roll angle of the AOS. ra ∈ [rl, ru].

The 2-tuple (xi, yi) is used as the decision variable. xi is the serial number of the VTW selected for
the task ti, and xi ∈ {0, 1, 2, |VTWi|}. xi = 0 indicates that no VTWs are selected for ti. yi indicates
whether the task ti can be successfully completed. If ti is successfully arranged in the selected VTW, yn =
1; otherwise, yn = 0. The two decision variables ensure that each task can be executed at most once.

2.3 Optimization Objective
The optimization objective of the multi-AOS scheduling problem is to maximize the profit ratio

of the accomplished tasks. The objective function is expressed as below:

Maximize f =

|T |∑
n=1

(pn · yn)

|T |∑
n=1

pn

(1)
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2.4 Constraints
Practical multi-AOS scheduling is a complicated process, and a few complex constraints must be

satisfied. Two types of constraints must be considered. First, the task merging constraints should be
examined before merging multiple tasks. Second, the observation action constraints should be checked
to determine whether the observation action can be executed.

2.4.1 Task Merging Constraints

If two or more tasks can be observed through one observation action, they can be merged into
one merged task. The observation action is determined through the roll angle, the pitch angle, the
observation start time, and the observation end time. On account of the time-dependent characteristic,
the observation start time is determined through the pitch angle. Hence, the task merging constraints
contain the roll angle constraint and the pitch angle constraint.

Assuming that (1) tasks t1, t2, . . . , tn are sorted by the earliest start time of their VTWs, (2) they
are merged into the merged task mtk

j , and (3) the observation action is ak
j , the task merging constraints

are described as follows.

(1) Roll angle constraint

These tasks should satisfy the roll angle constraint.

R1 ∩ R2 ∩ · · · ∩ Rn �= ∅ (2)

If the roll constraint is satisfied, the lower bound of the roll angle range will be denoted as lrk
j , and

the upper bound will be denoted as urk
j .

(2) Pitch angle constraint

The pitch angle is related to the observation start time because of the time-dependent characteristic
of the AOS. Liu et al. [4] adopted a linear function to describe the relationship between the pitch angle
and the observation start time. For ti, the functional relationship between the pitch angle pa and the
start time of its observation window sti is described as below:

pa = α
j
i · sti + β

j
i , estj

i ≤ sti ≤ lstj
i⎧⎪⎪⎨

⎪⎪⎩
α

j
i= pu−pl

estj
i−lstj

i

β
j
i =pu · estj

i−pl · lstj
i

estj
i−lstj

i

(3)

The pitch constraint must be sequentially examined in pairs. Tasks tu and tv are taken for examples.
The linear relationship function curves of vtwj

u and vtwj
v are shown in Fig. 3. Using Eq. (3), the

relationship among pa, stu and stv is described in Eq. (4). In order to observe the two tasks with a
nonredundant observation, the conditions should be satisfied in Eq. (5).

pa = αj
u · stu + β j

u = αj
v · stv + β j

v (4)

stu + du ≥ stv (5)
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Figure 3: Linear relation function curves of two VTWs

The pitch angle range is denoted as P(tu, tv). Substituting Eq. (4) into Eq. (5), P(tu, tv) can be
obtained. When tu and tv are merged, the pitch constraint is described by Eq. (6). The tasks t1, t2, . . . ,
tn should satisfy the constraint in Eq. (7), if they succeed in merging. The upper bound of the pitch
angle range is denoted as upk

j .

P(tu, tv) �= ∅ (6)

P (t1, t2) ∩ P (t2, t3) ∩ · · · ∩ P (tn−1, tn) �= ∅ (7)

After both the roll angle constraint and the pitch angle constraint are met, the observation action
ak

j can be obtained. The intermediate value of R1 ∩ R2 ∩ · · · ∩ Rn is taken as the roll angle on account
of the observation quality, as expressed in Eq. (8). upk

j is taken as the pitch angle to accomplish the
merged task as early as possible, as shown in Eq. (9). Once the pitch angle is obtained, the start time of
the OWs of these tasks can be calculated according to Eq. (3). Then, the duration of the observation
action ak

j is obtained through Eq. (10). Thus, the observation action of the merged task is determined.

ark
j = lrk

j + urk
j

2
(8)

apk
j = upk

j (9)

[astk
j , aetk

j ] = ow1 ∪ ow2 ∪ · · · ∪ own (10)

2.4.2 Observation Action Constraints

Several observation action constraints must be satisfied to ensure that the observation action is
executed successfully.

(1) Transition time constraint

Sufficient transition time is required for the adjustment from the previous attitude to the
succeeding one. The attitude adjustment includes the adjustment of the pitch and roll angles. The
transition time constraint is expressed as follows:

∀k ∈ {
0, 1, . . . ,

∣∣Aj

∣∣ − 1
}

,

∣∣apk+1
j − apk

j

∣∣ + ∣∣ark+1
j − ark

j

∣∣
ω

≤ astk+1
j − aetk

j (11)

where k = 0 indicates the initial state of the AOS in the orbit oj.

Any two adjacent observation actions must satisfy this constraint. If the constraint cannot be
satisfied, the succeeding observation action cannot be executed, and the corresponding merged task
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will be given up. In addition, the succeeding observation action is influenced by the previous action.
Therefore, the observation actions can only be determined individually.

(2) Memory capacity constraint

The observation data cannot exceed the maximum memory capacity:

|Aj|∑
k=1

[
m · (

aetk
j − astk

j

)] ≤ M (12)

(3) Energy constraint

The energy consumed for observation and attitude adjustment cannot exceed the maximum value:

|Aj|∑
k=1

[
eo · (

aetk
j − astk

j

)] +
|Aj|−1∑

k=0

[
ea · (∣∣apk+1

j − apk
j

∣∣ + ∣∣ark+1
j − ark

j

∣∣)] ≤ E (13)

3 Multi-AOS Scheduling Method

In this section, an improved sine and cosine algorithm (ISCA) is proposed to allocate tasks to
different orbits. An adaptive factor and an adaptive greedy degree are adopted to improve the search
ability of the algorithm. Furthermore, a task merging method is developed to complete the scheduling
of each orbit and a reallocation mechanism is adopted to improve the scheduling result. Eventually,
the entire framework of the multi-AOS scheduling algorithm is introduced and the pseudocode is
provided.

3.1 Improved Sine and Cosine Algorithm
Sine and cosine algorithm (SCA) [28] is a novel population-based heuristic algorithm. It was

proposed by Mirjalili in 2016. The algorithm utilizes the mathematical properties of sine and cosine
functions to search for an optimal solution. It can balance the global exploitation capacity and the
local exploration capacity by changing the amplitude of sine and cosine functions. SCA has the
advantages of few parameters and fast convergence.

Its core formulae for population update are described as below:

xiter+1
hi = xiter

hi + �x (14)

�x =
{

xiter
hi + r1 · sin r2 · ∣∣r3 · biter

i − xiter
hi

∣∣ , r4 < 0.5

xiter
hi + r1 · cos r2 · ∣∣r3 · biter

i − xiter
hi

∣∣ , r4 ≥ 0.5
(15)

where xiter
hi is the value in the ith dimension of the hth individual in the iterth iteration, biter

i is the target
value, r1 is a linear adaptive parameter, and r2, r3 and r4 are random numbers subject to a uniform
distribution (r2 ∈ [0, 2π ], r3 ∈ [0, 2], and r4 ∈ [0, 1]).

The multi-AOS scheduling problem is a discrete optimization problem, and thus, �x needs to be
rounded. Furthermore, the number of VTWs for each task is not large, and the range of xiter

hi is small.
To prevent xiter

hi from exceeding its range, we adopt a mapping function to map �x to a small range.
The improved formulae are described below:
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�x′ = round
(

2
1 + exp (−�x)

− 1
)

(16)

xiter+1
hi = xiter

hi + �x′ (17)

In the original SCA, r1 is a linear factor. In order to further improve the search and convergence
capability, a cosine factor is adopted as the adaptive parameter, as shown in Eq. (18).

r1 =
[

cos
(

π · iter
MaxIter

)
+ 1

]2

(18)

where MaxIter is the maximum number of iterations.

Besides, the original algorithm adopts the global optimal solution as the target value to guide the
evolution of the population. We propose an adaptive greedy factor δ to select the optimal solution or
the local optimal solution of the previous iteration, as shown in Eq. (19).

biter
i =

{
gbi, r5 ≤ δ

pbi, r5 > δ

δ = iter
MaxIter

(19)

where gbi is the value in the ith dimension of the global optimal solution, pbi is the value in the ith

dimension of the local optimal solution, and r5 is a random number (r5 ∈ [0, 1]).

Before the algorithm is used to solve the problem, appropriate encoding and decoding rules
should be made to clarify the corresponding relationship between the actual problem and the solution
obtained by the algorithm. An individual solution is merely a preliminary solution in encoding form.
The code xiter

hi corresponds to the series number of the VTW selected for the task ti. The decoding
process allocates tasks to different orbits according to the selected VTWs.

3.2 Task Merging Method
After tasks are allocated to different orbits, a directed acyclic graph model is proposed to describe

the merging relation among tasks in an orbit. As illustrated in Fig. 4a, Gj = (
Vj, Ej

)
denotes the task

merging model for the orbit oj, where Vj is a vertex set and Ej is an edge set. Vj is matched with the set
of tasks allocated to the orbit oj. A vertex v represents a task. The tasks in Vj are sorted by the earliest
start time of their selected VTWs. The numbers in the picture are the serial numbers of the vertices
after sorting. An edge represents the merging relation between two vertices. If the relation between two
vertices meets the task merging constraints, they will be linked by a directed edge which directs from
the previous vertex to the succeeding one. N(v) is the neighbor set of the vertex v. The neighbors are
the vertices which v points to. They are also the potential vertices that v can get merged with.

Figure 4: Directed acyclic graph model
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The process of task merging is similar to that of path searching. First Come First Service (FCFS)
strategy is adopted for rapid searching. As illustrated in Fig. 4b, the first vertex is selected as the
starting point of the merging path. Next, a vertex in its neighbor set is selected as the second point.
The third vertex is the neighbor of the second vertex. The merging path search does not stop until the
final selected vertex has no neighbors or its neighbors cannot merge with the previous vertices. In this
manner, a merged task can be obtained, and its observation action can be determined. The observation
path starts from the initial state. If the observation action satisfies the observation action constraints,
it will become the following point in the observation path. The removed vertices represent tasks that
cannot be executed. A reallocation mechanism is adopted to improve the preliminary allocation. The
reallocation process selects the next candidate VTW for every removed task. According to the selected
VTWs, the removed tasks are reallocated to the feasible orbits. The tasks without VTW candidates
are removed completely. The task merging method with the task reallocation mechanism (MR) is
described in Table 1.

Table 1: Pseudocode of MR algorithm

Algorithm 1: MR algorithm

1 for each oj ∈ O do
2 Sort vertices in Vj;
3 k ← 1;
4 B ← ∅, C ← ∅, D ← ∅;//B denotes the set of tasks ready for merging; C denotes the

set of successfully-scheduled tasks; D denotes the set of removed tasks
5 while Vj �= ∅ do //Searching for the observation path
6 Select the first vertex v from Vj;
7 Add v into B;
8 while N(v) �= ∅ do //Searching for the merging path
9 Select the first vertex η in N(v);
10 if the tasks in B can be merged with η, satisfying Eqs. (2) and (7) then
11 Add η into B;
12 Update v ← η, N (v) ← N (η);
13 else
14 Add η into D and remove η from N (v);
15 end if
16 end while
17 Merge the tasks in B into the merged task mtk

j ;
18 Calculate the observation action ak

j of mtk
j according to Eqs. (8)–(10);

19 if the observation actions in Ak
j and al satisfy Eqs. (11)–(13) then

20 Add ak
j into Aj;

21 Add mtk
j into MTj;

22 Add tasks of B into C;
23 Update k ← k + 1;
24 else
25 Add tasks of B into D;
26 end if
27 Remove tasks in B from Vj;

(Continued)
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Table 1 (continued)

Algorithm 1: MR algorithm

28 end while
29 Remove tasks in B from Vj;
30 Select next candidate VTW for every task in D and reallocate;
31 end for

3.3 Improved Sine and Cosine Algorithm with Merging and Reallocation
In this subsection, the improved sine and cosine algorithm with merging and reallocation (ISCA-

MR), which is a combination of ISCA and MR algorithm, is introduced. The main parts of ISCA-MR
include population initialization, termination criteria, and population update. A random population
is adopted as the initialization method. The algorithm terminates when the maximum number of
iterations is reached or the objective function of the best individual remains unchanged for subsequent
generations. In the process of the population update, every individual must follow four steps. Firstly,
an individual is updated according to Eqs. (15)–(17). Secondly, the individual is converted into an
allocation result by decoding. Thirdly, the MR algorithm is used to complete the scheduling of each
orbit. Through the second and third steps, an individual solution is converted into a scheduling
scheme, that contains the final allocation scheme and the observation action sequence of every AOS.
The transformation process is illustrated in Fig. 5. Finally, the objective function of the individual is
calculated according to Eq. (1). After updating the population, the local and global optimal solutions
are obtained through comparison. The flow chart of the ISCA-MR is shown in Fig. 6, and the
pseudocode is presented in Table 2.

Figure 5: (Continued)
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Figure 5: The transformation process of an individual solution

Figure 6: Flow chart of ISCA-MR

Table 2: Pseudocode of ISCA-MR algorithm

Algorithm 2: ISCA-MR algorithm

1 Initialize the population randomly;
2 Merge and reallocate according to Algorithm 1;

(Continued)
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Table 2 (continued)

Algorithm 2: ISCA-MR algorithm

3 Get the local optimal solution pb and its objective function pbf ;
4 Initialize the global optimal solution: gb ← pb, gbf ← pbf ;
5 while the stopping criterion is not satisfied do
6 Update r1 according to Eq. (18);
7 Update δ according to Eq. (19);
8 With probability δ update p ← gb;
9 Otherwise, p ← pb;
10 Update the population according to Eqs. (15)–(17);
11 Merge and reallocate according to Algorithm 1;
12 Update pbf , pb, gbf and gb;
13 end while
14 return gb, pbf

4 Computational Experiments

In this section, sufficient experiments are designed to verify the effectiveness of the proposed
algorithm. The main aspects of the validation include the effect of task merging, the solving ability of
the ISCA-MR in scenarios with large-scale tasks, and the influence of relevant parameters.

4.1 Scenario Design
The algorithm is coded by MATLAB R2016b, and the experiments are conducted on a laptop

computer with Intel (R) Core (TM) i7-8565U CPU @ 1.80 GHz.

The design of the scenarios refers to reference [4]. A large number of point targets, densely
distributed in the region, are set as tasks. The region is an area with the latitude from 0° N to 50° N
and the longitude from 70° E to 130° E. The tasks are randomly distributed in this region. The number
of tasks varies from 300 to 1000, with an increment step of 100, which generates eight scenarios. For
each task, the requested observation duration is a random integer between 15 and 30, and the priority
is a random integer between 1 and 10. Each scenario has six AOSs, and their orbital parameters are
listed in Table 3. All satellites have the same attribute parameters. The roll angle is within [−45°, 45°],
and the pitch angle is also within [−45°, 45°]. The other attribute parameters are listed in Table 4. The
scheduling time horizon is from January 01, 2022, 00:00:00, to January 01, 2022, 24:00:00.

Table 3: Orbital parameters

Satellites Semimajor
axis [km]

Eccentricity
[×10−4]

Inclination [°] Argument of
perigee [°]

RAAN [°] True anomaly
[°]

s1 7100 6.27 97.576 0 180.72 5.075
s2 7100 6.27 97.576 0 150.72 35.075
s3 7100 6.27 97.576 0 120.72 65.075
s4 7100 6.27 97.576 0 90.72 95.075

(Continued)
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Table 3 (continued)

Satellites Semimajor
axis [km]

Eccentricity
[×10−4]

Inclination [°] Argument of
perigee [°]

RAAN [°] True anomaly
[°]

s5 7100 6.27 97.576 0 60.72 125.075
s6 7100 6.27 97.576 0 30.72 155.075

Table 4: Attribute parameters

M E m [s−1] eo [s−1] ea [s−1] w [°/s]

1000 1500 1 1 0.5 1

4.2 Results of Task Merging
In order to better reflect the task merging effect, this subsection presents the partial scheduling

result in one orbit in the scenario with 1000 tasks. 48 tasks are allocated to this orbit. These tasks are
merged into 22 merged tasks. The first twelve tasks are selected to present the merging effect. Detailed
information on these tasks is provided in Table 5, and they are sorted by the earliest start time of the
VTWs. As shown in Table 6, the 12 tasks merge into 4 merged tasks, which can be completed through
four observation actions. The time presented in the two tables is the number of seconds from the start
of scheduling. Hence, the task merging result indicates that the proposed task merging method can
improve the efficiency of the satellite observation.

Table 5: Information of twelve tasks

Task ID VTW[s] Range of roll angle [°] Observation duration[s] Priority

663 [1963.342, 2212.308] [39.524, 49.524] 29 4
727 [1993.4808, 2231.984] [23.663, 33.663] 22 6
835 [2006.308, 2239.797] [11.259, 21.259] 16 2
554 [2022.940, 2258.666] [17.009, 27.009] 30 7
564 [2023.097, 2262.971] [30.219, 40.219] 18 7
925 [2029.824, 2263.336] [7.535, 17.535] 19 1
803 [2031.010, 2263.696] [5.792, 15.792] 29 5
372 [2031.144, 2263.96] [2.171, 12.171] 28 1
531 [2041.698, 2274.002] [0.069, 10.069] 21 1
818 [2044.657, 2285.541] [28.717, 38.717] 23 2
777 [2054.270, 2287.639] [12.462, 22.462] 29 1
622 [2058.220, 2290.412] [−5.046, 5.046] 28 9
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Table 6: Merging result and observation actions

Merged tasks Observation start
time [s]

Observation end
time [s]

Pitch angle [°] Roll angle [°]

{663, 727, 835} 1990.423 2047.705 35.210 30.391
{554, 915, 803, 531,
622}

2078.486 2140.930 23.793 11.027

{564, 372} 2194.021 2225.041 −19.130 21.195
{818, 777} 2237.270 2269.874 −26.965 25.590

4.3 Comparison with Other Meta-Heuristics
In this subsection, we compare the results of the proposed ISCA-MR algorithm with those of

other meta-heuristics, including the improved sine and cosine algorithm with only reallocation (ISCA-
R), the original sine and cosine algorithm (SCA), the aquila optimizer (AO) [29], the aquila optimizer
with merging (AO-M), the tunicate swarm algorithm (TSA) [30] and the tunicate swarm algorithm
with merging (TSA-M). For the sake of fairness, the ISCA-MR and the comparison meta-heuristics
are terminated when the number of iterations reaches 100, and their population size is 10. The other
parameters of AO and TSA are listed in Table 7. These algorithms are run once in the eight scenarios,
and their convergence curves are obtained.

Table 7: Parameter setting of algorithms

Algorithms Parameters Value

AO/AO-M α 0.1
δ 0.1

TSA/TSA-M Pmin 1
Pmax 4

Fig. 7 illustrates the objective function curves of these eight algorithms. The horizontal axis
represents the number of iterations, and the vertical axis represents the value of the objective function,
which is the profit ratio. The comparison results are presented as follows:

(1) In general, ISCA-MR outperforms all other algorithms in eight scenarios. In the first four
scenarios, the number of tasks is less than 600, and the ISCA-MR can obtain the optimal
solution. With an increase in the number of tasks, the curves of the other algorithms tend to
flatten more easily, indicating that these algorithms easily fall into local optimization. However,
ISCA-MR can still obtain a better solution, demonstrating that it is more applicable to the
multi-AOS scheduling problem with large-scale tasks.

(2) ISCA-MR performs best among the meta-heuristics with task merging, and similarly, ISCA-R
performs best among the meta-heuristics without task merging. It is difficult for SCA-M, SCA,
TSA-M, and TSA to optimize the population. Especially, TSA-M and TSA easily fall into
local optimization at the beginning. Although the exploitation mechanism helps the further
optimization of AO-M and AO at the end, they fail to obtain a high-quality solution. On
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the contrary, ISCA-MR and ISCA-R can obtain better solutions through iterative updates,
indicating that they have better exploitation and exploration capabilities.

(3) The meta-heuristic algorithms with task merging are apparently better than those without task
merging. Especially, when the number of tasks exceeds 600, all algorithms with task merging
obtain better solutions than those without task merging. Besides, the algorithms with task
reallocation perform better than those without task reallocation. These prove that task merging
and reallocation can effectively improve multi-AOS scheduling.

Figure 7: Objective function curves of different meta-heuristics

Therefore, we can draw two conclusions: (1) ISCA-MR is a competitive heuristic algorithm for
solving the multi-AOS scheduling problem with large-scale tasks; (2) The task merging algorithm and
the task reallocation mechanism can significantly improve scheduling efficiency.

4.4 Comparison with the State-of-the-Art Heuristics for Satellite Scheduling
To further verify the effect of ISCA-MR, we compare it with the state-of-the-art heuristics for

satellite scheduling. In the eight scenarios, an elitist mixed coded hybrid genetic algorithm with a hill-
climber mechanism (EMCHGA) [12] and a hybrid binary artificial bee colony algorithm (BABC) [17]
are compared with the proposed algorithm. The population size of ISCA-MR, EMCHGA, and BABC
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is 10. These algorithms terminate when the number of iterations reaches 1000 or the objective function
of the best individual remains unchanged for 100 consecutive iterations. These algorithms are run 10
times in every scenario, and the average profit ratio and the average CPU time are calculated, which
are listed in Table 8.

Table 8: Average performance of different algorithms

Task number Average profit ratio Average CPU time [s]

ISCA-MR EMCHGA BABC ISCA-MR EMCHGA BABC

300 1 0.972 0.757 30.9 114.0 126.0
400 1 0.934 0.653 44.3 456.5 170.4
500 1 0.877 0.575 72.1 712.3 289.6
600 0.998 0.814 0.508 169.4 808.8 268.2
700 0.983 0.754 0.457 220.6 1026.1 329.6
800 0.961 0.700 0.427 494.7 1247.3 614.5
900 0.928 0.652 0.386 780.1 1478.1 653.3
1000 0.886 0.616 0.359 655.9 1980.9 676.8

Table 8 reveals the performance of different algorithms for satellite scheduling, where the best
results are in bold. The comparison results are given as follows:

(1) Comparing the average profit ratio, ISCA-MR obtains the highest profit ratio among these
three algorithms. When the number of tasks is less than 400, EMCHGA is close to ISCA-MR.
Nevertheless, the gap between them is widening with the increase of the task number. BABC
performs worst, indicating that BABC can hardly deal with large-scale tasks.

(2) Comparing the average CPU time, ISCA-MR is far faster than the other two algorithms in
most scenarios. The CPU time of EMCHGA increases most rapidly, and it reaches a high level
when the number of tasks increases to 1000. The CPU time consumed by BABC is slightly less
than that of ISCA-MR only in the scenario with 900 tasks, whereas it is a little more than that
of ISCA-MR in the other scenarios.

(3) Comparing the comprehensive performance of these algorithms, we can find that ISCA-MR
can obtain the best solution with the minimum time cost. EMCHGA cannot get a good
solution, and it needs a long CPU time. BABC obtains the worst solution in a short time,
proving that it is easy to converge to a local optimum when the problem scale is large. The
comparison results further prove that ISCA-MR is a competitive and efficient heuristic for
satellite scheduling, and it is extremely applicable to the large-scale scheduling problem of
multiple AOSs.

4.5 Parameter Sensitivity Analysis
In this subsection, we take the scenario with 1000 tasks as an example to test the influence of the

size of population and the number of iterations on ISCA-MR. Two separate groups of experiments are
set up. In the first set of experiments, the size of the population varies from 10 to 100, with an increment
step of 10, and the number of iterations is still 100. In the second set, the number of iterations varies
from 100 to 1000, with an increment step of 100, and the size of the population is 10. All results are
obtained from the independent runs of the algorithm.
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As shown in Fig. 8, the difference in the solution quality remains small when the population size is
increased from 10 to 100. However, every time the population size increases by 10, the consumed CPU
time increases by approximately 320 s. This indicates that the population size has a slight influence on
the solution quality of ISCA-MR, and a small population size can lead to an acceptable solution within
a relatively short time. Therefore, it is appropriate to set the population size to 10. Fig. 9 illustrates
the effect of the number of iterations on the algorithm. As the number of iterations increases from
100 to 500, the solutions continue to improve. However, the change in the profit ratio is small when
the number of iterations exceeds 500. Unsurprisingly, the consumed CPU time increases quickly. It
increases to 1667 s when the number of iterations is 500. The results suggest that ISCA-MR can further
improve the solution when the number of iterations is more than 100, and it finally converges to a
satisfactory solution within 500 iterations.

Figure 8: Results of ISCA-MR with different population sizes

Figure 9: Results of ISCA-MR with different iteration numbers

5 Conclusion and Future Work

In this study, we investigate the multi-AOS scheduling problem with large-scale tasks and
provide a scheduling method based on an improved sine and cosine algorithm and a task merging
method. Firstly, we set up an optimization model for this problem with task merging constraints and
observation action constraints. The time-dependent characteristic and the nonredundant observation
are taken into consideration. Then, we propose the ISCA-MR heuristic algorithm to solve this
problem. In the algorithm, an adaptive factor and an adaptive greedy factor are adopted to enhance
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the searching ability, and a task merging algorithm with a reallocation mechanism is developed to
increase scheduling efficiency.

Furthermore, numerous experiments are designed to verify the effectiveness of the proposed
ISCA-MR algorithm. The partial task merging results verify the effectiveness of the task merging
method. Several algorithms are compared with the proposed algorithm. The influence of relevant
parameters is analyzed. The results show that the proposed algorithm considerably outperforms the
comparison algorithms, particularly for large-scale problems. Moreover, the task merging method and
the task reallocation mechanism dramatically improve scheduling efficiency.

Future work will focus on autonomous scheduling of multiple AOSs. The attitude planning model
of agile satellites should be considered. A multi-AOS coordination mechanism will be studied to
enhance the collaborative scheduling capability. In addition, data transmission should be considered
and an integrated scheduling model for observation and data transmission should be investigated.
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