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ABSTRACT

In this paper, based on the concept of the NFL theorem, that there is no unique algorithm that has the best
performance for all optimization problems, a new human-based metaheuristic algorithm called Language Edu-
cation Optimization (LEO) is introduced, which is used to solve optimization problems. LEO is inspired by the
foreign language education process in which a language teacher trains the students of language schools in the
desired language skills and rules. LEO is mathematically modeled in three phases: (i) students selecting their
teacher, (ii) students learning from each other, and (iii) individual practice, considering exploration in local search
and exploitation in local search. The performance of LEO in optimization tasks has been challenged against
fifty-two benchmark functions of a variety of unimodal, multimodal types and the CEC 2017 test suite. The
optimization results show that LEO, with its acceptable ability in exploration, exploitation, and maintaining a
balance between them, has efficient performance in optimization applications and solution presentation. LEO
efficiency in optimization tasks is compared with ten well-known metaheuristic algorithms. Analyses of the
simulation results show that LEO has effective performance in dealing with optimization tasks and is significantly
superior and more competitive in combating the compared algorithms. The implementation results of the proposed
approach to four engineering design problems show the effectiveness of LEO in solving real-world optimization
applications.
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1 Introduction

Numerous challenges in various sciences face several possible solutions. Such challenges are
known as optimization issues. Hence, the operation of finding the best solution to such problems is
called optimization [1]. In order to deal with optimization problems, these problems must be modeled
mathematically. This modeling defines the optimization challenge based on the three main parts of
decision variables, constraints, and objective function [2].

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2023.025908
https://www.techscience.com/doi/10.32604/cmes.2023.025908
mailto:pavel.trojovsky@uhk.cz


1528 CMES, 2023, vol.136, no.2

Optimization techniques fall into two groups: deterministic and stochastic methods. Deterministic
methods are efficient on optimization topics that have a linear, convex, continuous, differentiable
objective function, and a continuous search space. However, as optimization problems become more
complex, deterministic approaches lose their ability in real-world applications that have features, such
as non-convex, discrete, nonlinear, non-differentiable objective functions, discrete search space, and
high-dimensions [3]. Such difficulties in deterministic approaches have led scientists to efforts to
introduce random methods that have effective performance in solving complex optimization problems.
Metaheuristic algorithms, as a sub-group of stochastic methods, are efficient tools that rely on random
search in the problem-solving space [4]. Metaheuristic algorithms have become very popular thanks
to the following advantages: easy implementation, simple concepts, efficiency in discrete search spaces
and efficiency in nonlinear, non-convex, and NP-hard problems [5].

The two most important factors influencing the performance of metaheuristic algorithms are
exploration and exploitation. Exploration represents the power of the algorithm in the global search,
and exploitation represents the power of the algorithm in the local search [6]. Due to the nature
of random search in metaheuristic algorithms, the solutions obtained from these methods are not
guaranteed to be the best solution to the problem. However, because these solutions are close to the
global optimal, they can be accepted as searched solutions to optimization problems. In fact, what has
prompted researchers to develop numerous metaheuristic algorithms has been the pursuit of solutions
closer to the global optimal.

Natural phenomena, the behaviors of living things in nature, the laws of physics, the concepts
of biology, and other evolutionary processes have been the sources of inspiration for the design of
metaheuristic algorithms. The Genetic Algorithm (GA) [7], which is inspired by concepts of biology,
the Particle Swarm Optimization (PSO) [8], which is inspired by bird life, the Artificial Bee Colony
(ABC) [9], which is inspired by bee colony behaviors, and the Ant Colony Optimization (ACO)
[10], which is inspired by ant swarm activities, are the widely used and most famous metaheuristic
algorithms.

The main research question is: Despite the numerous metaheuristic algorithms introduced till now,
is there still any necessity for designing newer metaheuristic algorithms? The No-Free-Lunch Theorem
(NFL) [11] answers the question because it says that there is no guarantee that an algorithm with good
results in solving some optimization problems will work well in solving other optimization problems.
The NFL theorem is the main incentive for researchers to introduce new metaheuristic algorithms to
be able to provide better solutions for optimization tasks.

The aspects of novelty and innovation of this study are in the introduction of a new human-
based metaheuristic algorithm called Language Education Optimization (LEO) that is efficient in
optimization tasks. The key contributions of this paper are as follows:

• LEO is introduced based on the simulation of the foreign language education process.

• The fundamental inspiration of LEO is to train students in language schools in language skills
and rules.

• The LEO theory is described and then mathematically modeled in three phases.

• The performance of LEO in optimization tasks is assessed in dealing with fifty-two standard
benchmark functions.

• The results of LEO are compared with the performance of ten well-known metaheuristic
algorithms.
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• The effectiveness of LEO in handling real-world applications is evaluated in the optimization
of four engineering design problems.

The paper consists of the following sections: a literature review is provided in the section
“Literature Review.’’ The proposed Language Education Optimization (LEO) approach is introduced
and modeled in the section “Language Education Optimization.’’ LEO simulation and evaluation
studies on the handling of optimization tasks are presented in the section “Simulation Studies and
Results’’. A discussion of the results is provided in the section “Discussion.’’ The study evaluating the
ability of the proposed LEO approach in CEC 2017 test suite optimization is presented in the section
“Evaluation CEC 2017 Test Suite.” The analysis of LEO capabilities in real-world applications is
presented in the section “LEO for Real-World Applications.” Conclusions and suggestions for further
studies are expressed in the section “Conclusions and Future Researches.’’

2 Literature Review

Metaheuristic algorithms have been developed based on mathematical simulations of various
phenomena, such as genetics and biology, swarm intelligences in the life of living organisms, physical
phenomena, rules of games, human activities, etc. According to the main source of inspiration resulting
in the design, metaheuristic algorithms fall into the following five groups: (i) swarm-based, (ii)
evolutionary-based, (iii) physics-based, (iv) human-based, and (v) game-based methods.

Modeling the swarming behaviors and social and individual lives of living organisms (birds,
aquatic animals, insects, animals, etc.) has led to the development of swarm-based metaheuristic
algorithms. The major algorithms belonging to this group are PSO, ABC, and ACO. PSO is based
on modeling the behavior of swarm movement of groups of fish and birds in which two factors,
individuals’ experience and group experience, affect the population displacement of the algorithm.
ABC is based on simulating the social life of bees seeking food sources and extracting nectar from
these food sources. ACO is based on the behavior of the ant colony searching the optimal path between
the nest and the food sources. Artificial Hummingbird Algorithm (AHA) is a swarm-based method
based on the simulation of intelligent foraging strategies and special flight skills of hummingbirds
in nature [12]. Beluga Whale Optimization (BWO) is a swarm-based metaheuristic algorithm based
on beluga whales’ behaviors, including pair swim, prey, and whale fall [13]. Starling Murmuration
Optimizer (SMO) is a bio-inspired metaheuristic algorithm that is based on starlings’ behaviors
during their stunning murmuration [14]. Rat Swarm Optimizer (RSO) is a bio-inspired optimizer
that is proposed based on the chasing and attacking behaviors of rats in nature [15]. Sooty Tern
Optimization Algorithm (STOA) is a bio-inspired metaheuristic algorithm that is introduced based
on the simulation of attacking and migration behaviors of sea bird sooty tern in nature [16]. Emperor
Penguin Optimizer (EPO) is proposed based on huddling behavior of emperor penguins in nature [17].
Orca Predation Algorithm (OPA) is introduced based on the hunting behavior of orcas, including
driving, encircling, and attacking prey [18]. The activities of living organisms in nature, such as a
search for food resources, foraging, and feeding through hunting effectively, have inspired the design
of well-known metaheuristic algorithms, such as Whale Optimization Algorithm (WOA) [19], African
Vultures Optimization Algorithm (AVOA) [20], Marine Predator Algorithm (MPA) [21], Golden
Jackal Optimization (GJO) [22], Gray Wolf Optimizer (GWO) [23], Reptile Search Algorithm (RSA)
[24], Honey Badger Algorithm (HBA) [25], Spotted Hyena Optimizer (SHO) [26], and Tunicate Swarm
Algorithm (TSA) [27].

Modeling of genetics and biology concepts has been the main source for evolutionary-based
metaheuristic algorithms development. The reproduction process simulation, based on the concepts
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of Darwin’s theory of evolution and natural selection, has been the main source in the design of
Differential Evolution (DE) [28] and GA.

Modeling of the physical laws and phenomena has been used in the physics-based metaheuristic
algorithms development. Material engineers use the annealing method to achieve a state in which
the solid is well organized, and its energy is minimized. This method involves placing the material
in a high-temperature environment and following a gradual lowering of the temperature. The Simu-
lated Annealing (SA) method simulates this solid-state annealing process to solve the optimization
problem [29]. Lichtenberg Algorithm (LA) is a physics-based optimization algorithm inspired by
the Lichtenberg figures patterns and the physical phenomenon of radial intra-cloud lightning [30].
Henry Gas Solubility Optimization (HGSO) is a physics-based metaheuristic algorithm that is based
on imitation of the behavior governed by Henry’s law [31]. Mathematical modeling of gravitational
force and Newton’s laws of motion [32] is used in the Gravitational Search Algorithm (GSA) design.
The development of Water Cycle Algorithm (WCA) [33] is based on the natural water cycle physical
phenomenon. Archimedes Optimization Algorithm (AOA) [34], Spring Search Algorithm (SSA)
[35], Multi-Verse Optimizer (MVO) [36], Equilibrium Optimizer (EO) [37], and Momentum Search
Algorithm (MSA) [38] are other physics-based metaheuristic algorithms.

Modeling of human activities and interactions existing in society and individuals’ life has led to the
emergence of human-based metaheuristic algorithms. The educational environment of the classroom
and the exchange of knowledge between the teacher and the students and also among students, have
been a good inspiration source for Teaching-Learning Based Optimization (TLBO) [39]. Collaboration
between members of a team and presenting teamwork applied with the aim to achieve the assigned
goal set to the team is the main idea of the Teamwork Optimization Algorithm (TOA) [40]. Election
Based Optimization Algorithm (EBOA) is developed based on the simulation of the election and voting
process in society [41]. The War Strategy Optimization (WSO) [42] is based on the strategic movement
of army troops during the war. Following Optimization Algorithm (FOA) is a human-based approach
based on the simulation of the impressionability of the people of the society from the most successful
person in the society who is known as the leader [43]. Human Mental Search (HMS) is a human-based
method that is inspired by exploration strategies of the bid space in online auctions [44]. Examples of
well-established and recently developed human-based metaheuristic algorithms are: Driving Training-
Based Optimization (DTBO) [45], Chef-based Optimization Algorithm (CBOA) [46], and Poor and
Rich Optimization (PRO) [47].

Modeling the game rules and behavior of players, referees, and coaches brings tremendous
inspiration to game-based metaheuristic algorithms development. Football League simulations and
club performances resulted in the Football Game Based Optimization (FGBO) [48], and the simulation
of volleyball league matches is utilized in the Volleyball Premier League Algorithm (VPL) [49]. The
Tug of war game inspired the Tug of War Optimization (TWO) [50]. Archer’s strategy in shooting
inspired the Archery Algorithm (AA) [51], the players’ attempt to solve the puzzle inspired the Puzzle
Optimization Algorithm (POA) [52], and the players’ skill in throwing darts inspired the Darts Game
Optimizer (DGO) [53]. Some other game-based metaheuristic algorithms are Ring Toss Game-Based
Optimization (RTGBO) [54], Dice Game Optimizer (DGO) [55], and Orientation Search Algorithm
(OSA) [56].

We have not found any metaheuristic algorithms simulating a foreign language education process
in language schools. However, the process of teaching language skills decided by the teacher and
applied to the learners is an intelligent structure with remarkable potential to be used in designing
a new optimizer. In order to complete this research gap, a new human-based metaheuristic algorithm
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based on a simulation of the foreign language teaching process and the interactions of the people
involved in it is designed and presented in this paper.

3 Language Education Optimization

In this section, the metaheuristic algorithm LEO and its mathematical model based on the
simulation of human activity in foreign language education is presented.

3.1 Inspiration of LEO
One of the most important ways human beings communicate with each other is by using their

ability to speak. First, human beings acquire and empirically learn the official language of their society
and country. With the advancement of societies and technology, communication between different
nations has increased. This reality has led to the increasing importance of learning not only the
native language if people are to be able to communicate with people living in other countries. As a
consequence, foreign language schools have been established.

When a person decides to learn other languages, she/he has several options for choosing a school
or language teacher. Choosing the appropriate school and teacher is one of the essential steps which has
a great impact on the person’s success in the language learning process. After the learner chooses the
language teacher, she/he also communicates with other students in the classroom environment. These
learners make efforts to learn language skills from the teacher training them in the given classroom
environment. Additionally, to improve their skills, the students talk and practice with each other.
These interactions between students improve their level of language learning. In addition, each student
improves foreign language skills by doing homework and individual practice.

There are three important phases in this intelligent process, which represent the basic specifics of
human activity in foreign language teaching, which must be considered into account in the new design
of the metaheuristic algorithm. These three phases are (see Figs. 1 to 3): (i) students selecting their
teacher, (ii) students learning from each other, and (iii) individual practice. Mathematical modeling of
foreign language education based on these three phases is utilized in the design of LEO.

3.2 Algorithm Initialization
LEO is a population-based approach that is able to provide the problem-solving process for an

optimization task in an iteration-based procedure. Each member of LEO is a candidate solution of
the optimization problem that proposes values for decision variables. From a mathematical point of
view, each LEO member can be modeled using a vector, and the population of LEO members using a
matrix according to the Eq. (1).

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

→
X 1

...
→
X i

...
→
X N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

N×m

=

⎡
⎢⎢⎢⎢⎢⎣

x1,1 · · · x1,j · · · x1,m

...
. . .

...
. . .

...
xi,1 · · · xi,j · · · xi,m

...
. . .

...
. . .

...
xN,1 · · · xN,j · · · xN,m

⎤
⎥⎥⎥⎥⎥⎦

N×m

(1)

where X refers to the population matrix of LEO, the vector
→
X i = (xi,1, . . . , xi,j, . . . , xi,m

)
, i = 1, 2, . . . , N,

is the ith member of LEO (the ith candidate solution), xi,j denotes its jth component (the value of the
jth problem variable), N is the size of the population matrix, m is the number of problem variables.
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The initial positions of all LEO members in the search space are randomly set-up by the Eq. (2).

xi,j = lbj + r · (ubj − lbj

)
, for i = 1, 2, . . . , N, j = 1, 2, . . . , m, (2)

where r is a random number from the interval [0, 1], lbj and ubj are the lower and upper bounds of
the jth problem variable, respectively. For each member Xi of LEO, i = 1, 2, . . . , N, we compute the
value of the objective function and we according Eq. (3) create the following vector of values of the
objective function for all members of LEO:

→
F =

⎡
⎢⎢⎢⎢⎢⎣

F1

...
Fi

...
FN

⎤
⎥⎥⎥⎥⎥⎦

N×1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F
(→

X 1

)
...

F
(→

X i

)
...

F
(→

X N

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×1

, (3)

where Fi refers to the value of the objective function for the ith member of LEO.

As the value of the objective function is the main criterion for measuring the goodness of a can-

didate solution, the minimal value in the set of values of objective function
{

F
(→

X i

)
|i = 1, 2, . . . , N

}
corresponds to the best candidate solution (the best LEO member), we will call it

→
X best everywhere in

the following text. By the reason that in each iteration the value of all members of LEO (candidate

solutions) is updated, we have to be updated in each iteration the value of the best LEO member
→
X best.

3.3 Mathematical Modelling of LEO
By initializing the algorithm, candidate solutions are generated and evaluated. These candidate

solutions in LEO are updated in three different phases to improve their quality.

3.3.1 Teacher Selection and Training

Each person can choose one of the available teachers in order to learn a foreign language. In LEO,
for each member of the population, members who have a better objective function value than that
member are considered as suggested teachers. One of these suggested teachers is randomly selected
for language teaching whose schematic is shown in Fig. 1.

This strategy leads LEO members to move to different areas of the search space, which demon-
strates the global search power of LEO in exploration. In order to mathematically model this phase, the
set of suggested teachers for each member of LEO, thus, for the ith member of LEO, i = 1, 2, . . . , N,
is at first identified the set of suggested teachers STi using the Eq. (4).

STi =
{→

X k| k ∈ {1, 2, . . . , N} ∧ Fk < Fi

}
∪
{→

X best

}
. (4)

where STi is the set of suggested teachers for the ith student (member),
→
X k is a population member

that has a better objective function value than
→
X i, Fk is its objective function value, k is its row number

in the population matrix, and
→
X best is the best member of the population.
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Figure 1: The first phase: Selection of a teacher

Similar to the decision of the student in language school, who chooses a teacher from among the
teachers who teach in the school, in the design of LEO, this concept has also been selected for choosing
a teacher. Therefore, one teacher is randomly selected among the members who have been identified
as possible teachers to teach the ith student in the set STi.

In language school, the teacher tries to make positive changes in the student’s foreign language
skill level by teaching the student. Inspired by this process, in the design of LEO, the number of changes
in the position of the population members has been calculated based on the subtraction of the position
of the teacher and the student to improve the position of the population members in the search space.
According to this, new components of each LEO member are generated for i = 1, 2, . . . , N and
j = 1, 2, . . . , m using Eq. (5).

xP1
i,j = xi,j + r · (STS

i,j − I · xi,j

)
, (5)

where
→

STi
S is the selected teacher to teach the ith LEO member, STS

i,j is its jth component,
→
X P1

i is a new
position of the ith member in the search space based on the first phase of LEO, xP1

i,j is its jth component,
r is a random real number from the interval [0, 1], I is a number randomly selected from the set {1, 2} .
If the value of the objective function is improved for this new position, then this new position replaces
the previous position of that member based on the Eq. (6).

→
X i =

{→
X P1

i , FP1
i < Fi;

→
X i, else,

(6)

where FP1
i is the value of the objective function of the new position of the ith member

→
X P1

i .
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3.3.2 Students Learning from Each Other

In the second phase of LEO, population members of LEO are updated based on modeling skills
exchange between students. Students try to improve their skills based on their interactions with each
other whose schematic is shown in Fig. 2.

Figure 2: The second phase: Students learning in pairs

This affects the ability of LEO exploration to scan the search space. In language schools, students
usually practice with each other and improve their skills. In this exercise, the student who has more
skills tries to increase the scientific level of that student by teaching another student. Inspired by this
interaction in language school, in LEO design, another member of the population is randomly selected
for each member of the population. Then, based on the subtraction of the difference in the position
of the two members, the changes in the displacement of the corresponding member are calculated. To
mathematically model these interactions, for each LEO member another member of the population
is randomly selected, and it is used for recomputing of its components. Thus, the new components of
each member of LEO are calculated for i = 1, 2, . . . , N and j = 1, 2, . . . , m using the Eq. (7) and
eventually updated based on the Eq. (8).

xP2
i,j =

{
xi,j + r · (x�i ,j − I · xi,j

)
, Fli < Fi;

xi,j + r · (xi,j − I · x�i ,j

)
, else

(7)

→
X i =

{→
X P2

i , FP2
i < Fi;

→
X i, else,

(8)

where
→
X P2

i is the new position of the ith member in the search space based on the second phase of LEO,

xP2
i,j is its jth component, FP2

i is its objective function value,
→
X �i is the selected student to practice and

exchange language skills with the ith member of LEO, x�i ,j is its jth component, and F�i is its value of
the objective function, where �i is randomly selected from the set {1, 2, . . . , i − 1, i + 1, . . . , N}.

3.3.3 Individual Practice

The third phase of LEO is motivated by learning approaches that are commonly called self-
learning. This is how the students make efforts to identify their own learning needs. Set learning goals,
find the additional study literature and self-study online platforms. In this phase of LEO, members of
LEO are updated based on simulations of individual students’ practices to improve the skills they have
acquired from the teacher in the first phase whose schematic is shown in Fig. 3.



CMES, 2023, vol.136, no.2 1535

Figure 3: The third phase: Individual practice

In fact, LEO scans the search space around members based on local search, seeking better
solutions. A student who goes to a language school, after participating in the class and practicing
with her/his classmates, tries to improve his skills as much as possible with individual practice, which
leads to small but useful changes in the student’s language skills. Inspired by this student’s behavior
in the language learning process, in the design of LEO, the students’ individual practice is modeled by
making small changes in their position. To model the concepts of this LEO phase mathematically, a
random position near each member is first generated using Eq. (9).

xP3
i,j = xi,j + lbj + r · (ubj − lbj

)
t

, i = 1, 2, . . . , N, j = 1, 2, . . . , m, t = 1, 2, . . . , T , (9)

where xP3
i,j is the jth component of the new position of the ith member

→
X P3

i based on the third phase of
LEO, t is the iteration counter of the algorithm and T is total number of iterations.

Subsequently, a decision is made whether to update each LEO member
→
X i based on newly

calculated values of
→
X P3

i according Eq. (10).

→
X i =

{→
X P3

i , FP3
i < Fi;

→
X i, else,

(10)

where FP3
i is the value of the objective function of

→
X P3

i .

3.3.4 Repetition Process, Pseudocode, and Flowchart of LEO

After updating all members of LEO based on all three phases, an iteration of the algorithm is
completed. At the end of each iteration, the best candidate solution is updated. The iterative process
of the algorithm based on Eqs. (4) to (10) continues until the end of the LEO implementation. After
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the LEO implementation is completed, the best candidate solution obtained during the iteration of
the algorithm for the given problem is presented. The LEO pseudocode is presented in Algorithm 1
and the flowchart of its implementation is presented in Fig. 4.

Algorithm 1: Pseudocode of LEO
Start LEO.

Input problem information: variables, objective function, and constraints.
Set LEO population size (N) and the total number of iterations (T).
Generate randomly the initial population (all members of the population matrix X).

Compute the vector of the values of the objective function for the initial population
→
F and find the

best member of the initial population
→
X best.

For t = 1 to T
For i = 1 to N
Phase 1: Teacher selection and training

Update suggested teachers for the ith LEO member using Eq. (4).

STi ←
{→

X k| k ∈ {1, 2, . . . , N} ∧ Fk < Fi

}
∪
{→

X best

}
Calculate a new position of the ith LEO member based on the first phase using Eq. (5).
xP1

i,j ← xi,j + r · (STS
i,j − I · xi,j

)
Update the ith LEO member using Eq. (6).

→
X i ←

{→
X P1

i , FP1
i < Fi;

→
X i, else.

Phase 2: Students learning from each other
Calculate new position of the ith LEO member based on the second phase using Eq. (7).

xP2
i,j ←

{
xi,j + r · (x�i ,j − I · xi,j

)
, Fl < Fi;

xi,j + r · (xi,j − I · x�i ,j

)
, else.

Update the ith LEO member using Eq. (8).
→
X i ←

⎧⎨
⎩

→
X

P2

i , FP2
i < Fi;

→
X i, else.

Phase 3: Simulations of students’ individual practices to improve their skills
Calculate a new position of the ith LEO member based on the third phase using Eq. (9).
xP3

i,j ← xi,j +
(
lbj + r · (ubj − lbj

))
/t

Update the ith member of LEO using Eq. (10).
→
X i ←

{→
X P3

i , FP3
i < Fi;

→
X i, else.

End
Update

→
X best.

End
Output: The best quasi-optimal solution

→
X best obtained with the LEO.

End LEO.
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Figure 4: Flowchart of LEO
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3.4 Computational Complexity of LEO
The computational complexity of LEO is analyzed in this subsection. LEO initialization has a

computational complexity equal to O (Nm) where N is the population size of LEO and m is the
number of problem variables. In each iteration, the process of updating LEO members is carried out in
three phases. Therefore, the computational complexity of the LEO population update process is equal
to O (3NmT), where T is the total number of iterations of the algorithm. As a result, the computational
complexity of LEO is equal to O (Nm (1 + 3T)).

3.5 LEO vs. TLBO
The TLBO algorithm updates the population members of the algorithm in two phases, teacher

and student. On the other hand, the proposed LEO approach updates the population members in
three stages: teacher selection and training, students learning from each other, and individual practice.

In the teacher’s phase of the TLBO algorithm, the best member is considered a teacher for the
entire population, and the other members are considered students. But in LEO, for each member of
the population, all the members with better fitness compared to that member are considered candidate
teachers for the corresponding member. Among them, the teacher is randomly selected to train the
corresponding member. Also, in the population update equation in TLBO, subtracting the teacher’s
position from the average of the entire population is used. But in the population update equation in
LEO, the difference between the selected teacher’s position and the corresponding member’s position.
In the student phase of the TLBO algorithm, the update equation is modeled based on the subtraction
of the position of two students. But in the design of LEO, the subtraction of the member with better
fitness than the other member multiplied by the I index is used.

Also, compared to TLBO, which only has two phases of population update, in LEO design, to
increase the exploitation ability in local search, the third phase of an update called individual exercise
is used.

4 Simulation Studies and Results

In this section, the capability of the proposed LEO algorithm in optimization applications is
studied. A set of twenty-three objective functions including seven unimodal functions, six multimodal
functions, and ten fixed-dimensional multimodal functions have been utilized to analyze LEO per-
formance. Details and full description of these benchmark functions are provided in [57]. The reasons
for selecting these benchmark functions are explained below. Unimodal functions, including F1 to F7,
have only one extremum in their search space and, therefore, lack local optimal solutions. The purpose
of optimizing these types of functions is to test the exploitation power of the metaheuristic algorithm
in the local search and to get as close to the global optimal as possible. multimodal functions, including
F8 to F13, have a number of extremums, of which only one is the main extremum and the rest are local
extremums. The main purpose of optimizing this type of functions is to test the exploration power of
the metaheuristic algorithm in the global search to achieve the main extremum and not get stuck in
other local extremums. Multimodal functions including F14 to F23 have smaller dimensions, as well as
fewer local extremums, compared to multimodal functions F8 to F13. The purpose of optimizing these
functions is to simultaneously test the exploration and exploitation of the metaheuristic algorithm in
local and global searches. In fact, the purpose of selecting these functions is to benchmark the ability
of the metaheuristic algorithm to strike a balance between exploitation and exploration. Details of
these functions are provided in Tables 1–3 [57].
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Table 1: Information on unimodal objective functions

Objective function Range Dimensions (m) Fmin

1. F1 (x) =∑m

i=1x
2
i [−100, 100]m 30 0

2. F2 (x) =∑m

i=1 |xi| + ∏m

i=1 |xi| [−10, 10]m 30 0

3. F3 (x) =∑m

i=1

(∑i

j=1xi

)2
[−100, 100]m 30 0

4. F4 (x) = max {|xi| , 1 ≤ i ≤ m } [−100, 100]m 30 0

5. F5(x) =∑m−1

i=1 (100(xi+1 − x2
i )

2 + (xi − 1)2)) [−30, 30]m 30 0

6. F6 (x) =∑m

i=1�xi + 0.5	2 [−100, 100]m 30 0

7. F7 (x) =∑m

i=1ix
4
i + random (0, 1] [−1.28, 1.28]m 30 0

Table 2: Information on multimodal objective functions

Objective function Range Dimensions (m) Fmin

8. F8 (x) =∑m
i=1 − xi sin

(√|xi|
)

[−500, 500]m 30 −418.98 m

9. F9 (x) =∑m
i=1

(
x2

i − 10 cos (2πxi) + 10
)

[−5.12, 5.12]m 30 0

10. F10 (x) = −20 exp

(
−0.2

√
1
m

∑m
i=1x2

i

)

− exp
(

1
m

∑m
i=1cos (2πxi)

)
+ 20 + e

[−32, 32]m 30 0

11. F11 (x) = 1
4000

∑m
i=1x2

i − ∏m
i=1 cos

(
xi√

i

)
+ 1 [−600, 600]m 30 0

12. F12 (x) = π

m

{
10 sin (πy1) +∑m−1

i=1 (yi − 1)
2(

1 + 10 sin2
(πyi+1)

)
+ (ym − 1)

2
}

+∑m
i=1u (xi, 10, 100, 4) ,

where yi = 1 + 1 + xi

4
,

u (xi, a, i, n) =

⎧⎪⎨
⎪⎩

k (xi − a)n , xi > −a;
0, −a ≤ xi ≤ a;

k (−xi − a)n , xi < −a.

[−50, 50]m 30 0

13. F13 (x) = 0.1
{

sin2
(3πx1) + ∑m

i=1 (xi − 1)
2[

1 + sin2
(3πxi + 1)

]
+ (xn − 1)

2

[
1 + sin2

(2πxm)
]}

+∑m
i=1u (xi, 5, 100, 4)

[−50, 50]m 30 0
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Table 3: Information on fixed-dimensional multimodal objective functions

Objective function Range Dimensions (m) Fmin

14. F14 (x) =
(

1
500

+∑25
j=1

1

j +∑2
i=1
(
xi − aij

)6
)−1

[−65.53, 65.53]2 2 0.998

15. F15 (x) =∑11
i=1

[
ai − x1

(
b2

i + bix2
)

b2
i + bix3 + x4

]2

[−5, 5]4 4 0.00030

16. F16 (x) = 4x2
1 − 2.1x4

1 + 1
3

x6
1 + x1x2 − 4x2

2 + 4x4
2 [−5, 5]2 2 −1.0316

17. F17 (x) =
(

x2 − 5.1
4π2

x2
1 + 5

π
x1 − 6

)2

+10
(

1 − 1
8π

)
cos x1 + 10 [−5, 10] × [0, 15] 2 0.398

18. F18 (x) =
[
1 + (x1 + x2 + 1)2 (19 − 14 (x1 − x2) + (x1 + x2)

2)]
·
[
30 + (2x1 − 3x2)

2 · (18 − 32x1 + 12x2
1

+ 48x2 − 36x1x2 + 27x2
2

)]
[−5, 5]2 2 3

19. F19 (x) = −∑4
i=1ci exp

(
−∑3

j=1aij
(
xj − Pij

)2) [0, 1]3 3 −3.86

20. F20 (x) = −∑4
i=1ci exp

(
−∑6

j=1aij
(
xj − Pij

)2) [0, 1]6 6 −3.32

21. F21 (x) = −∑5
i=1
[
(X − ai) · (X − ai)

T + 6ci
]−1

[0, 10]4 4 −10.1532

22. F22 (x) = −∑7
i=1
[
(X − ai) · (X − ai)

T + 6ci
]−1

[0, 10]4 4 −10.4029

23. F23 (x) = −∑10
i=1
[
(X − ai) · (X − ai)

T + 6ci
]−1

[0, 10]4 4 −10.5364

LEO’s ability in optimization applications is compared with the performance of ten well-known
metaheuristic algorithms. The reasons for choosing these competitor algorithms are explained below.
The first group includes the widely used and well-known GA and PSO algorithms. The second
group includes highly cited algorithms TLBO, MVO, GSA, GWO, and WOA, which have been
employed by researchers in many optimization applications. The third group includes MPA, RSA, and
TSA algorithms that have recently been published and have received a lot of attention. The control
parameters of the competitor algorithms are set according to Table 4.

Table 4: Control parameters values

Algorithm Parameter Value

GA
Type Real coded
Selection Roulette wheel (Proportionate)
Crossover Whole arithmetic (Probability = 0.8,

α ∈ [−0.5, 1.5])
Mutation Gaussian (Probability = 0.05)
Population size 50

(Continued)



CMES, 2023, vol.136, no.2 1541

Table 4 (continued)

Algorithm Parameter Value

PSO
Topology Fully connected
Cognitive and social constant (C1, C2) = (2, 2).
Inertia weight Linear reduction from 0.9 to 0.1
Velocity limit 10% of dimension range
Population size 50

GSA
Alpha, G0, Rnorm, Rpower 20, 100, 2, 1
Population size 50

TLBO
TF : teaching factor TF = round [(1 + rand)] ,
random number where rand is a random number from

[0, 1] .
Population size 50

GWO
Convergence parameter (a) a: Linear reduction from 2 to 0.
Population size 50

MVO
Wormhole existence probability (WEP) min (WEP) = 0.2 and max (WEP) = 1.
Exploitation accuracy over the iterations
(p)

p = 6.

Population size 50
WOA

Convergence parameter (a) a: Linear reduction from 2 to 0.
r is a random vector from [0, 1] .
l is a random number in [−1, 1] .
Population size 50

TSA
Pmin and Pmax 1, 4
c1, c2, c3 random numbers from the interval [0, 1] .
Population size 50

MPA
Constant number P = 0.5
Random vector R is a vector of uniform random numbers

from [0, 1] .
Fish Aggregating Devices (FADs) FADs = 0.2
Binary vector U = 0 or 1
Population size 50

RSA
Sensitive parameter β = 0.01
Sensitive parameter α = 0.1

(Continued)
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Table 4 (continued)

Algorithm Parameter Value

Evolutionary Sense (ES) ES: randomly decreasing values between 2
and −2

Population size 50
LEO

Population size 30

The LEO method and ten competing algorithms are each employed in twenty independent
executions, while each execution contains 1000 iterations to optimize the objective functions. The
results of these simulations are reported using indicators: best, mean, median, standard deviation (std),
execution time (ET), and rank.

4.1 Evaluation Unimodal Objective Function
The results of recruiting LEO and competitor algorithms to handle the benchmark functions F1

to F7 are reported in Table 5. Based on the optimization results, it is inferred that LEO with a high
local search capability has been able to converge to the global optimal in handling the functions of F1,
F2, F3, F4, F5, and F6. Additionally, in handling F7, the proposed LEO approach ranks first as the
best optimizer for this function compared to competitor algorithms. What can be deduced from the
analysis of the simulation results is that LEO has a superior performance in handling the unimodal
functions of F1 to F7 compared to ten competitor algorithms, by presenting much better and more
competitive results.

Table 5: Optimization results on unimodal functions
LEO RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

F1 Mean 0 0 2.91E-49 1.19E-46 3.10E-149 0.148926 6.92E-59 7.88E-75 1.42E-16 0.076198 32.8966
best 0 0 7.27E-52 2.48E-51 7.40E-175 0.085859 5.81E-62 1.06E-77 5.40E-17 1.80E-05 21.06668
std 0 0 6.05E-49 4.64E-46 1.40E-148 0.040488 1.22E-58 1.35E-74 9.22E-17 0.162114 11.34771
median 0 0 4.82E-50 1.22E-48 7.30E-158 0.1438 1.34E-59 1.32E-75 1.06E-16 0.00377 28.87703
ET 2.8937191 15.362978 4.0495352 1.1430597 0.5090984 3.0899855 1.3499048 1.7468798 4.0656678 0.5208846 0.7732775
rank 1 1 5 6 2 9 4 3 7 8 10

F2 mean 0 0 9.36E-28 2.73E-28 1.80E-105 0.237577 1.29E-34 7.37E-39 5.70E-08 0.748007 2.952664
best 0 0 7.18E-32 2.63E-30 4.40E-111 0.132067 4.73E-36 2.95E-41 3.45E-08 0.034689 1.88159
std 0 0 1.40E-27 7.71E-28 4.50E-105 0.065336 1.81E-34 7.01E-39 2.75E-08 0.491811 0.710477
median 0 0 1.88E-28 2.57E-29 2.30E-107 0.244521 8.18E-35 4.99E-39 4.94E-08 0.738133 2.883687
ET 2.9539787 15.467449 2.4832809 1.1412211 0.5172495 2.61118 1.3202898 1.880538 3.8135901 0.5116 0.8022538
rank 1 1 6 5 2 8 4 3 7 9 10

F3 mean 0 0 3.59E-12 2.33E-10 16661.72 13.9069 4.85E-16 2.62E-25 424.2214 1330.795 2369.284
best 0 0 7.75E-18 2.28E-20 1815.858 3.460768 9.76E-20 4.02E-28 204.953 39.58518 1050.732
std 0 0 1.18E-11 8.32E-10 9734.605 5.176504 7.98E-16 6.12E-25 179.0495 2194.333 786.8941
median 0 0 9.15E-14 7.97E-14 16053.15 13.61052 1.62E-16 1.28E-26 379.9541 252.6239 2356.537
ET 8.016984 17.348643 5.80953 2.8731348 2.2469567 6.2164555 3.0022204 7.1115726 5.5055033 2.2323942 2.7865939
rank 1 1 4 5 10 6 3 2 7 8 9

F4 mean 0 0 2.02E-19 0.008548 40.69107 0.548397 7.80E-14 2.23E-30 1.848961 5.795349 3.327428
best 0 0 2.18E-20 7.87E-05 0.015711 0.308784 1.01E-15 1.06E-31 0.115681 3.024605 2.1599
std 0 0 1.39E-19 0.012793 30.82539 0.128869 3.06E-13 4.42E-30 1.561592 1.597663 0.551305
median 0 0 1.68E-19 0.005147 38.12119 0.518 4.49E-15 9.56E-31 1.708118 5.705651 3.446797

(Continued)
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Table 5 (continued)
LEO RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

ET 2.8576027 15.674336 2.278244 1.113035 0.4876719 2.6937605 1.2761624 1.9604716 3.7837563 0.5207023 0.7268312
rank 1 1 3 5 10 6 4 2 7 9 8

F5 mean 14.96979 15.775355 23.61681 28.30852 27.35899 455.0556 26.7365 26.74216 29.41177 244.4892 413.4251
best 0 7.33E-29 22.93308 26.24623 26.5709 26.22482 26.09765 25.67999 24.60701 11.84862 196.9711
std 12.17512 11.85089 0.446521 0.765354 0.682608 797.5517 0.720383 0.919737 13.49202 660.584 131.1147
median 24.92267 1.03E-28 23.55474 28.64422 27.11864 34.62966 26.3345 26.37507 26.37678 81.73046 386.2732
ET 3.5164898 15.768983 2.792387 1.3642896 0.8270417 3.1662504 1.528469 2.5528939 3.9652233 0.7641116 1.0784773
rank 1 2 3 7 6 11 4 5 8 9 10

F6 mean 0 6.730564 1.86E-09 3.633548 0.054408 0.152641 0.734942 1.118305 1.29E-16 0.968726 32.57338
best 0 3.580407 7.14E-10 2.818033 0.010794 0.096246 0.251521 0.3022 6.39E-17 3.58E-05 15.90207
std 0 0.941189 1.01E-09 0.448715 0.067093 0.03576 0.237898 0.428271 6.03E-17 3.76892 12.48423
median 0 7.077314 1.58E-09 3.558282 0.020215 0.161175 0.751677 1.16301 1.20E-16 0.006687 29.24295
ET 2.7485223 15.385006 2.2584292 1.1126183 0.4742653 2.7653587 1.2809443 1.9332615 3.7752441 0.5209432 0.7771004
rank 1 10 3 9 4 5 6 8 2 7 11

F7 mean 1.82E-05 4.91E-05 0.000687 0.005114 0.001269 0.010608 0.000741 0.001977 0.070721 0.171905 0.009377
best 4.48E-07 5.84E-07 0.000194 0.000959 3.88E-05 0.005372 0.000129 0.000503 0.032415 0.082012 0.003451
std 1.53E-05 5.97E-05 0.000331 0.003311 0.001309 0.003574 0.000458 0.001321 0.048188 0.07817 0.003122
median 1.30E-05 3.46E-05 0.000668 0.004969 0.00118 0.011065 0.000684 0.001384 0.055562 0.168856 0.009215
ET 4.8368757 16.256141 3.7829544 1.8270088 1.1957864 4.4459639 2.0153875 3.9675918 4.4816348 1.1786659 2.0212563
rank 1 2 3 7 5 9 4 6 10 11 8

Sum rank 7 16 27 44 39 54 29 29 48 61 66

Mean rank 1 2.2857 3.857143 6.285714 5.571429 7.714286 4.142857 4.142857 6.857143 8.714286 9.428571

Total rank 1 2 3 6 5 8 4 4 7 9 10

4.2 Evaluation Multimodal Objective Function
The optimization results for the multimodal functions F8 to F13 using LEO and competitor

algorithms are released in Table 6. The simulation results show the high global search power of LEO
in identifying the main optimal area in the search space and providing the global optima for functions
F9 and F11. In tackling the functions F10, F12, and F13, the LEO approach ranks first as the best
optimizer against ten competitor algorithms. In handling F8, the proposed LEO approach is the
second-best optimizer for this function after GA. Analysis of simulation results shows that LEO has an
effective capability in global search and has outperformed competitor algorithms in handling functions
F8 to F13.

Table 6: Optimization results of multimodal functions
LEO RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

F8 mean −12036.5 −5492.29 −9682.86 −6071.81 −11575 −8125.01 −5789.44 −5205.39 −2699.69 −6733.77 −8780.06
best −12569.5 −5680.5 −10592.5 −7029.82 −12569.4 −9232.93 −7112.15 −5843.69 −3817.06 −9667.69 −9669.95
std 1301.688 174.523 398.4401 535.9141 1490.39 743.772 1053.789 345.395 481.9165 1106.838 534.6354
median −12569.5 −5532.59 −9609.38 −6133.59 −12345.4 −8199.62 −6053.67 −5126.91 −2711.14 −6652.61 −8830.14
ET 3.3654446 15.793495 2.7434296 1.3305275 0.7168849 2.5087217 1.5015152 2.918874 4.015091 0.8559844 1.4428962
rank 1 9 3 7 2 5 8 10 11 6 4

F9 mean 0 0 0 161.7428 0 114.4433 8.53E-15 0 28.40606 67.1125 61.93813
best 0 0 0 91.14753 0 79.67151 0 0 17.90926 34.825 28.30534
std 0 0 0 46.30094 0 21.49045 2.08E-14 0 7.07584 22.56296 18.83339
median 0 0 0 151.9278 0 110.5188 0 0 27.85884 62.19637 58.77781
ET 2.8669459 17.212279 2.376211 1.2647991 0.5323911 3.0123371 1.3347335 2.1450715 3.8513696 0.6159458 1.0649503
rank 1 1 1 7 1 6 2 1 3 5 4

(Continued)
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Table 6 (continued)
LEO RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

F10 mean 8.88E-16 8.88E-16 4.09E-15 1.195842 4.09E-15 0.670089 1.58E-14 4.26E-15 8.17E-09 3.030108 3.637002
best 8.88E-16 8.88E-16 8.88E-16 7.99E-15 8.88E-16 0.082962 7.99E-15 8.88E-16 5.73E-09 1.963289 2.996306
std 0 0 1.09E-15 1.525827 2.28E-15 0.570127 3.75E-15 7.94E-16 1.85E-09 0.869371 0.374535
median 8.88E-16 8.88E-16 4.44E-15 2.22E-14 4.44E-15 0.627017 1.51E-14 4.44E-15 7.89E-09 2.836942 3.589696
ET 3.0094849 17.125813 2.4113186 1.2760752 0.5678977 3.1039018 1.3526236 2.1633398 3.8715898 0.6312308 1.0342777
rank 1 1 2 7 2 6 4 3 5 8 9

F11 mean 0 0 0 0.005483 0 0.367801 0.000419 0 6.910967 0.085506 1.51316
best 0 0 0 0 0 0.198274 0 0 2.816413 0.000312 1.254768
std 0 0 0 0.006307 0 0.097641 0.001874 0 2.991608 0.112577 0.136013
median 0 0 0 0 0 0.351523 0 0 6.936742 0.038802 1.545753
ET 3.5200459 16.768273 2.9110024 1.4053481 0.7795856 3.6463012 1.5800646 3.6000582 4.2177367 0.8763135 1.1001583
rank 1 1 1 3 1 5 2 1 7 4 6

F12 mean 1.57E-32 1.285311 2.01E-10 6.893611 0.006199 0.796597 0.034746 0.071769 0.453499 1.072484 0.171397
best 1.57E-32 0.894772 5.04E-11 2.099116 0.000818 0.00085 0.013112 0.028785 4.45E-19 0.1061 0.06194
std 2.81E-48 0.270639 1.64E-10 3.433371 0.004561 0.816088 0.015606 0.018791 0.763806 0.957253 0.149226
median 1.57E-32 1.111042 1.63E-10 7.188082 0.005082 0.535963 0.033764 0.071666 0.103669 0.920981 0.117873
ET 9.6997483 20.339866 7.1015617 3.5621885 2.8451768 8.1251023 3.6690062 9.844877 6.0840876 2.7898242 2.9549824
rank 1 10 2 11 3 8 4 5 7 9 6

F13 mean 1.35E-32 5.86E-28 0.004674 3.170441 0.180748 0.03488 0.476456 1.0485 0.013185 5.6271 2.497715
best 1.35E-32 6.28E-32 1.06E-09 2.163469 0.010754 0.012523 0.198365 0.60571 6.08E-18 0.169616 1.233345
std 2.81E-48 2.62E-27 0.011071 0.54377 0.136257 0.019653 0.18628 0.230574 0.025606 5.095354 0.874627
median 1.35E-32 5.15E-31 2.93E-09 3.19416 0.141566 0.030787 0.436048 1.081058 1.46E-17 4.537058 2.204447
ET 9.5685345 20.25093 7.1125807 12.459267 2.8430157 7.3899077 3.6610298 8.8516304 6.1925442 2.7882383 3.1005814
rank 1 2 3 10 6 5 7 8 4 11 9

Sum rank 6 24 12 45 15 35 27 28 37 43 38

Mean rank 1 4 2 7.5 2.5 5.833333 4.5 4.666667 6.166667 7.166667 6.333333

Total rank 1 4 2 11 3 7 5 6 8 10 9

4.3 Evaluation Fixed-Dimensional Multimodal Objective Function
The results of recruiting LEO and ten competitor algorithms to tackle fixed-dimensional multi-

modal functions F14 to F23 are reported in Table 7. The optimization results show that LEO is the best
optimizer in handling functions F14, F19, and F20 against ten competitor algorithms. In functions
where LEO has a performance similar to some of the competitor algorithms in presenting the “mean”
index, it can be seen that the proposed algorithm has provided more efficient performance in handling
the relevant functions by providing better values for the ‘‘std’’ index. What can be deduced from the
analysis of the simulation results is that LEO has a superior performance compared to competitor
algorithms by having the suitable ability to search globally and locally, as well as maintaining a balance
between exploration and exploitation.

Table 7: Optimization results for fixed-dimensional multimodal function
LEO RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

F14 Mean 0.998004 4.717972 0.998004 9.568298 1.34532 0.998004 4.91193 0.998004 2.75256 2.622134 0.998599
Best 0.998004 1.002247 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 1.135726 0.998004 0.998004
Std 0 3.552871 0 4.734825 0.739327 2.16E-12 4.46652 5.07E-07 1.072373 2.683317 0.002326
Median 0.998004 2.982105 0.998004 10.76318 0.998004 0.998004 2.982105 0.998004 2.916217 0.998004 0.998004
ET 17.7462491 8.0923956 11.635424 5.4224719 5.4019958 11.709339 5.3290457 17.22723 6.2926096 5.2216184 5.5117843
Rank 1 8 1 10 5 2 9 3 7 6 4

F15 Mean 0.000307 0.001291 0.000307 0.008292 0.000622 0.004623 0.00637 0.003568 0.002911 0.003688 0.005315
Best 0.000307 0.000682 0.000307 0.000308 0.000316 0.000308 0.000307 0.000308 0.001046 0.000307 0.000716
std 1.07E-30 8.10E-15 2.15E-30 1.44E-13 2.93E-15 8.08E-14 9.40E-14 7.25E-14 1.72E-14 7.20E-14 6.55E-14
median 0.000307 0.000977 0.000307 0.000481 0.000579 0.000721 0.000308 0.000372 0.002269 0.000672 0.002452
ET 2.77643102 3.1187178 1.6154843 0.4930209 0.4477875 1.2104194 0.5224414 1.8548539 1.619234 0.3907623 0.6492235

(Continued)
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Table 7 (continued)
LEO RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

rank 1 4 2 11 3 8 10 6 5 7 9

F16 mean −1.03163 −1.02994 −1.03163 −1.02847 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163
best −1.03163 −1.03161 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163
std 2.28E-27 2.65E-14 2.22E-27 9.74E-14 8.93E-22 2.62E-19 3.80E-20 1.74E-17 1.44E-27 1.44E-27 4.35E-17
median −1.03163 −1.03092 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163
ET 2.48395666 1.8550119 1.5035697 0.4205441 0.4086445 1.0698828 0.4390887 1.6525417 1.4601808 0.2923966 0.5743327
rank 1 7 1 8 2 4 3 5 1 1 6

F17 mean 0.397887 0.424048 0.397887 0.397917 0.397888 0.397887 0.397888 0.397975 0.397887 0.727026 0.43026
best 0.397887 0.398061 0.397887 0.397888 0.397887 0.397887 0.397887 0.397888 0.397887 0.397887 0.397887
std 0 6.52E-13 0 3.52E-16 5.45E-18 1.20E-18 7.38E-18 1.17E-15 0 6.97E-12 1.43E-12
median 0.397887 0.405146 0.397887 0.397902 0.397887 0.397887 0.397888 0.397934 0.397887 0.397887 0.397904
ET 2.27247994 1.9477333 1.5244566 0.3927561 0.3839855 1.0321453 0.4026287 1.5180712 1.4767552 0.2382841 0.5140409
rank 1 7 1 5 3 2 4 6 1 9 8

F18 mean 3 3.000035 3 4.35002 3.000008 3.000001 3.000007 3.000001 3 3 4.384222
best 3 3 3 3.000001 3 3 3 3 3 3 3
std 3.06E-27 6.45E-16 9.50E-27 6.04E-11 1.41E-16 5.94E-18 7.51E-17 1.30E-17 3.94E-26 2.83E-26 6.13E-11
median 3 3.000017 3 3.000005 3.000002 3 3.000005 3.000001 3 3 3.000653
ET 2.32502184 1.6320922 1.3984629 0.3793201 0.3472154 0.9753871 0.369263 1.4492838 1.3355731 0.2360337 0.4987929
rank 1 8 1 9 7 4 6 5 3 2 10

F19 mean −3.86278 −3.83729 −3.86278 −3.86274 −3.85965 −3.86278 −3.8625 −3.86168 −3.86278 −3.86278 −3.86233
best −3.86278 −3.86107 −3.86278 −3.86278 −3.86278 −3.86278 −3.86278 −3.86269 −3.86278 −3.86278 −3.86278
std 2.28E-26 2.45E-13 2.28E-26 2.90E-16 3.95E-14 6.19E-19 8.28E-15 2.35E-14 1.97E-26 1.99E-26 1.64E-14
median −3.86278 −3.84502 −3.86278 −3.86275 −3.86192 −3.86278 −3.86276 −3.86243 −3.86278 −3.86278 −3.86277
ET 6.82789298 2.4637427 1.6723552 0.5636936 0.5091525 1.3600367 0.5640221 2.1025086 1.6371261 0.4054243 0.7175955
rank 1 8 1 3 7 2 4 6 1 1 5

F20 mean −3.322 −2.68989 −3.322 −3.23413 −3.2744 −3.25053 −3.21956 −3.26134 −3.322 −3.25512 −3.20621
best −3.322 −3.08344 −3.322 −3.32134 −3.32193 −3.322 −3.32199 −3.31429 −3.322 −3.322 −3.31857
std 4.56E-27 3.95E-12 4.20E-27 2.00E-12 8.27E-13 5.99E-13 7.69E-13 5.76E-13 4.08E-27 7.90E-13 1.00E-12
median −3.322 −2.84683 −3.322 −3.32021 −3.32126 −3.20308 −3.20286 −3.30078 −3.322 −3.322 −3.20919
ET 3.2087629 4.3023587 1.7909341 0.6611978 0.5274411 1.3858897 0.644364 2.2403645 1.8011172 0.4276574 0.702935
rank 1 9 1 6 2 5 7 3 1 4 8

F21 mean −10.1532 −5.0552 −10.1532 −4.87294 −8.6648 −8.26233 −9.90012 −7.0017 −5.43537 −5.02652 −4.87562
best −10.1532 −5.0552 −10.1532 −10.0977 −10.153 −10.1532 −10.1531 −9.34076 −10.1532 −10.1532 −8.95019
std 3.58E-26 3.06E-18 2.31E-26 2.83E-11 2.77E-11 3.04E-11 1.13E-11 1.65E-11 3.41E-11 3.49E-11 2.35E-11
median −10.1532 −5.0552 −10.1532 −4.39643 −10.1511 −10.1531 −10.1528 −7.33007 −3.37362 −2.68286 −4.62892
ET 3.18573257 3.0584338 2.0165565 0.7852542 0.6399693 1.6992735 0.7098701 2.4809084 1.7481269 0.5359069 0.8200472
rank 1 7 1 10 3 4 2 5 6 8 9

F22 mean −10.4029 −5.08767 −10.4029 −7.5522 −7.72926 −8.58232 −10.4025 −7.294 −10.2257 −6.86804 −7.26614
best −10.4029 −5.08767 −10.4029 −10.3694 −10.4027 −10.4029 −10.4028 −10.239 −10.4029 −10.4029 −10.1895
std 2.97E-26 7.73E-18 3.65E-26 3.41E-11 3.11E-11 2.92E-11 2.96E-15 1.70E-11 7.93E-12 3.70E-11 2.20E-11
median −10.4029 −5.08767 −10.4029 −10.0003 −10.3963 −10.4029 −10.4025 −7.67937 −10.4029 −7.76588 −7.7724
ET 3.49341681 3.4076357 2.1893865 0.8162337 0.7114147 1.6880477 0.8373461 2.7606977 1.8845902 0.6828267 0.9331872
rank 1 10 1 6 5 4 2 7 3 9 8

F23 mean −10.5364 −5.12847 −10.5364 −5.74677 −8.85422 −8.95456 −10.5359 −7.90185 −10.5364 −5.99368 −7.44674
best −10.5364 −5.12848 −10.5364 −10.4859 −10.5363 −10.5364 −10.5363 −9.55081 −10.5364 −10.5364 −10.219
std 1.82E-26 1.71E-17 2.61E-26 3.61E-11 3.01E-11 2.87E-11 1.86E-15 1.60E-11 1.63E-26 3.87E-11 1.94E-11
median −10.5364 −5.12847 −10.5364 −4.34441 −10.5325 −10.5363 −10.5359 −8.31455 −10.5364 −3.83543 −8.09458
ET 3.85466265 3.4715726 2.4489502 0.9250013 0.833995 1.9249851 0.9267729 3.3723531 1.9306753 0.7938576 1.0732158
rank 1 10 2 9 5 4 3 6 2 8 7

Sum rank 10 78 12 77 42 39 50 52 30 55 74

Mean rank 1 7.8 1.2 7.7 4.2 3.9 5 5.2 3 5.5 7.4

Total rank 1 11 2 10 5 4 6 7 3 8 9

Boxplot diagrams of the proposed LEO and competitor algorithms to handle the functions F1 to
F23 are shown in Fig. 5.
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Figure 5: (Continued)
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Figure 5: Boxplot diagrams of LEO and competitor algorithms performances on F1 to F23
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4.4 Statistical Analysis
This subsection is devoted to statistical analysis to determine whether LEO has a statistically

significant superiority over competitor algorithms. To this end, the non-parametric Wilcoxon rank
sum test is utilized to determine this issue [58]. As usual, a “p-value” was used in this test to detect a
significant difference between the mean of two data samples (specifically, p equal to 5% was chosen).

The results obtained from the statistical analysis using the Wilcoxon rank sum test of the
performance of the LEO and competitor algorithms are presented in Table 8. What can be deduced
from the results of statistical analysis is that in cases where the p-value is less than 0.05, LEO has a
significant statistical superiority over the compared algorithm. Consequently, it is observed that LEO
has a statistically significant advantage over all competitor algorithms.

Table 8: Results of Wilcoxon rank sum test

Compared algorithm Objective function type

Unimodal multimodal Fixed-dimensional multimodal

LEO vs. RSA 0.054684 1.63E-11 1.44E-34
LEO vs. MPA 1.56E-13 1.15E-11 0.014404
LEO vs. TSA 1.01E-24 1.28E-19 1.44E-34
LEO vs. WOA 1.01E-24 1.26E-11 1.44E-34
LEO vs. MVO 1.01E-24 1.97E-21 1.44E-34
LEO vs. GWO 1.01E-24 1.66E-15 1.44E-34
LEO vs. TLBO 8.73E-24 1.04E-14 1.44E-34
LEO vs. GSA 6.63E-24 1.97E-21 6.79E-14
LEO vs. PSO 2.6E-23 1.97E-21 4.13E-17
LEO vs. GA 1.01E-24 2.48E-20 1.44E-34

4.5 Sensitivity Analysis
The LEO method performs the optimization process using a random search of its population

members in the problem-solving space in an iteration-based procedure. As a result, the LEO popula-
tion size (N) and the total number of iterations (T) are expected to influence the optimization process
of the proposed approach. In this regard, this subsection is dedicated to the analysis of the sensitivity
of the LEO to the parameters N and T .

In the first analysis, the sensitivity of the LEO to the parameter N is evaluated. For this purpose,
LEO is used for different values of the parameter N equal to 20, 30, 50, and 100 to handle the
benchmark functions F1 to F23. The results of this simulation are published in Table 9 and the
LEO convergence curves under this study are plotted in Fig. 6. What can be deduced from the LEO
sensitivity analysis to the parameter N is that increasing the set values for the parameter N increases
the algorithm’s search power to achieve better solutions, and as a result, the objective function values
decrease.
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Table 9: Results of LEO sensitivity analysis to the parameter N

Objective functions Number of population members

20 30 50 100

F1 0 0 0 0
F2 0 0 0 0
F3 0 0 0 0
F4 0 0 0 0
F5 18.81451 14.96979 14.11042 5.062263
F6 0 0 0 0
F7 1.83E-05 1.82E-05 1.02E-05 6.54E-06
F8 −10200.7 −12036.5 −12391.8 −12569.5
F9 0 0 0 0
F10 8.88E-16 8.88E-16 8.88E-16 8.88E-16
F11 0 0 0 0
F12 1.57E-32 1.57E-32 1.57E-32 1.57E-32
F13 0.002243 1.35E-32 1.35E-32 1.35E-32
F14 1.14691 0.998 0.998 0.998004
F15 0.000307 0.000307 0.000307 0.000307
F16 −1.03163 −1.03163 −1.03163 −1.03163
F17 0.3978 0.3978 0.3978 0.397887
F18 4.35 3 3 3
F19 −3.86278 −3.86278 −3.86278 −3.86278
F20 −3.32141 −3.322 −3.322 −3.322
F21 −10.1532 −10.1532 −10.1532 −10.1532
F22 −10.1372 −10.4029 −10.4029 −10.4029
F23 −10.5364 −10.5364 −10.5364 −10.5364

Figure 6: (Continued)
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Figure 6: LEO convergence curves in the study of sensitivity analysis to the parameter N

In the analysis, the sensitivity of LEO to the T parameter is evaluated. For this purpose, LEO is
utilized for different values of the T parameter equal to 200, 500, 800, and 1000 to tackle the F1 to F23
benchmark functions. The results of this simulation are released in Table 10 and the LEO convergence
curves of this study are plotted in Fig. 7. Based on the simulation results obtained from the LEO
sensitivity analysis to the parameter T , it is observed that by increasing the values of the parameter
T , the proposed approach has converged to better results, and as a result the values of the objective
function have decreased.
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Table 10: Results of LEO sensitivity analysis to the parameter T

Objective functions Maximum number of iterations
200 500 800 1000

F1 2.1E-171 0 0 0
F2 5.54E-85 5.2E-219 0 0
F3 2.6E-108 5.8E-307 0 0
F4 2.89E-85 4.4E-215 0 0
F5 20.87501 18.88817 17.25557 14.96979
F6 0 0 0 0
F7 9.39E-05 3.92E-05 2.67E-05 1.82E-05
F8 −10970.6 −11378.9 −11858.9 −12036.5
F9 0 0 0 0
F10 8.88E-16 8.88E-16 8.88E-16 8.88E-16
F11 0 0 0 0
F12 1.57E-32 1.57E-32 1.57E-32 1.57E-32
F13 1.35E-32 1.35E-32 1.35E-32 1.35E-32
F14 0.998 0.998 0.998 0.998
F15 0.000308 0.000307 0.000307 0.000307
F16 −1.03163 −1.03163 −1.03163 −1.03163
F17 0.3978 0.3978 0.3978 0.3978
F18 3 3 3 3
F19 −3.86278 −3.86278 −3.86278 −3.86278
F20 −3.32199 −3.322 −3.322 −3.322
F21 −9.8983 −10.1532 −10.1532 −10.1532
F22 −10.1372 −10.4029 −10.4029 −10.4029
F23 −10.3518 −10.5364 −10.5364 −10.5364

Figure 7: (Continued)
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Figure 7: LEO convergence curves in the study of sensitivity analysis to the parameter T

5 Discussion

Metaheuristic algorithms provide an optimization process based on a random search in the
problem-solving space. The optimization operation will be successful when, first, the problem-solving
space is scanned well at the global level, and second, it is scanned around the solutions discovered at
the local level.
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Metaheuristic algorithms based on local search, which indicates the exploitation ability of an
algorithm, scan around existing solutions to achieve a better possible solution. Exploitation gives
this capability to the metaheuristic algorithm to be able to converge towards the global optimal. The
exploitation power of a metaheuristic algorithm in local search is well measured in unimodal problems.
These types of issues have only one optimal solution, and the goal of optimizing them is to get as close
as possible to the global optimal based on the power of exploitation. The results obtained from LEO
on the unimodal functions of F1 to F7 indicate the exploitation capability of the proposed method in
converging towards global optimal. This ability is especially evident in handling the functions F1, F2,
F3, F4, F5, and F6, as LEO is converged precisely to the global optimum. Therefore, the simulation
finding of unimodal functions is the high exploitation capability of LEO in local search.

Metaheuristic algorithms based on global search, which indicates the exploration ability of the
algorithm, scan different parts of the problem-solving space with the aim of identifying the main
optimal area without getting caught up in local solutions. In fact, exploration gives this metaheuristic
algorithm the ability to break out of local optimal solutions. The exploitation power of a metaheuristic
algorithm in global search is well measured in multimodal problems. In addition to the main solution,
these types of problem have several local solutions, and the purpose of optimizing them is to identify
the area related to the main optimal solution based on the power of exploration. The results obtained
from the use of LEO in the multimodal functions of F8 to F13 indicate the exploration ability of the
proposed method in identifying the main optimal region and not getting caught in local solutions. This
ability is especially evident in the handling of the functions F9 and F11, as LEO has been able to both
discover the local optimal region well and converge precisely to the global optimal of these functions.
Thus, the finding that simulates multimodal functions is the high exploration capability of LEO in the
global search.

Although exploration and exploitation capabilities are crucial to the performance of metaheuristic
algorithms, a more successful algorithm can balance these two capabilities during the optimization
process. Creating this balance will lead to: first, the algorithm being able to discover the main
optimal region based on exploration, and second, to converge towards the global optimal based on
exploitation. The ability of a metaheuristic algorithm to strike a balance between exploration and
exploitation is well measured in fixed-dimensional multimodal problems. The results obtained from
the implementation of LEO on fixed-dimensional multimodal functions from F14 to F23 indicate
the ability of the proposed method to strike a balance between exploration and exploitation. In
addition, LEO showed the capability to explore the main optimal region and converge towards the
global optimal. Therefore, the simulation finding of fixed-dimensional multimodal functions is a high
capability of LEO in balancing exploration and exploitation.

6 Evaluation the CEC 2017 Test Suite

In this section, the performance of the proposed LEO approach in optimization tasks is evaluated
on the CEC 2017 test suite. This set has thirty standard benchmark functions, including three unimodal
functions C17-F1 to C17-F3, seven multimodal functions C17-F4 to C17-F10, ten hybrid functions
C17-F11 to C17-F20, and ten composition functions C17-F21 to C17-F30. Full details of the CEC
2017 test suite are explained in [59].
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The proposed LEO approach and competitor algorithms are employed in handling the CEC 2017
test suite. The simulation results are reported in Table 11. The resulting boxplots of the performance
of the proposed LEO and competitor algorithms in the optimization of the CEC 2017 test suite are
drawn in Fig. 8. The results show that LEO is the best optimizer for C17-F1, C17-F4 to C17-F6, C17-
F8, C17-F10 to C17-F21, C17-F23 to C17-F25, and C17-F28 to C17-F30 functions. In optimizing
C17-F2 and C17-F26, the proposed LEO approach is the second best optimizer for these functions
after PSO. The proposed LEO approach is the second best optimizer after GSA for the functions
C17-F7, C17-F9, and C17-F22. The analysis of the simulation results shows that the proposed LEO
approach has provided better results in most of the benchmark functions and superior performance
in the optimization of the CEC 2017 test suite compared to the competitor algorithms. Also, referring
to the values obtained for the “p-value” index from the Wilcoxon rank sum statistical test shows that
the superiority of LEO against competitor algorithms is significant from a statistical point of view.

Table 11: Optimization results for CEC 2017 test suite
LEO RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

C17-
F1

mean 100.00002 1.32E + 10 113895.2 2.872E + 09 8690927.8 9430.0349 230476.22 76686529 245.4564 3328.3076 16493242
best 100.00001 9.16E + 09 175.65384 393204569 2039380.1 4426.4772 19273.455 53825370 100.19451 703.20384 10463278
std 9.97E−06 3.87E + 09 2.25E + 05 2.17E + 09 1.04E + 07 4.38E + 03 3.12E + 05 2.98E + 07 1.99E + 02 2.67E + 03 6.26E + 06
median 100.00001 1.269E + 10 1824.5957 2.867E + 09 4222785 9232.082 110843.31 66917665 176.41254 3489.0256 15334932
ET 0.3172958 1.8727244 0.8779954 0.3733181 0.2978872 0.4491082 0.3701036 1.1978118 0.8354247 0.3481572 0.3980948
rank 1 11 5 10 7 4 6 9 2 3 8

C17-
F3

mean 300 10123.783 338.60644 12744.19 3540.6629 300.0554 4659.2923 763.2455 8808.339 300 24812.862
best 300 6884.7583 300.16743 9428.5035 1237.6601 300.01055 2582.6579 586.05927 4051.73 300 18042.268
std 1.54E−10 4.88E + 03 4.40E + 01 2.98E + 03 2.60E + 03 5.76E−02 2.71E + 03 1.76E + 02 4.56E + 03 2.44E−12 1.02E + 04
median 300 8109.7558 329.75584 13075.684 2913.1907 300.03781 3796.1123 769.47312 8108.2321 300 20617.655
ET 0.2993556 1.8736643 0.8212701 0.3644942 0.2867802 0.4102439 0.3556395 1.2062873 0.8082796 0.3183468 0.4028248
rank 2 9 4 10 6 3 7 5 8 1 11

C17-
F4

mean 400 1089.4244 403.84745 637.73782 423.53626 404.77441 417.73193 412.94333 406.64192 407.30478 416.29336
best 400 681.4032 400.05471 408.20739 408.00923 403.92719 407.25852 409.57264 406.52228 401.28055 412.93487
std 6.944E−09 5.66E + 02 2.722759 3.19E + 02 1.80E + 01 9.76E−01 1.49E + 01 5.02E + 00 0.1756922 4.26E + 00 5.30E + 00
median 400 876.77377 404.72508 526.19315 422.4949 404.64257 412.30938 410.93454 406.57131 408.30336 414.07128
ET 0.3043906 1.8715125 0.828421 0.3301639 0.2831765 0.4272641 0.3519701 1.1745109 0.7738175 0.312928 0.3816822
rank 1 11 2 10 9 3 8 6 4 5 7

C17-
F5

mean 509.4521 570.97852 520.39673 555.36156 557.14932 516.91702 514.92238 539.19304 548.00649 539.22352 532.43573
best 507.95967 560.71035 511.9395 525.77926 530.35745 510.94663 508.56508 531.29651 536.81332 523.57033 527.03431
std 1.28E + 00 1.31E + 01 5.66E + 00 3.13E + 01 2.88E + 01 5.14E + 00 4.69E + 00 7.62E + 00 1.08E + 01 2.19E + 01 4.61E + 00
median 509.45211 566.65115 522.88405 552.43704 551.16319 516.91766 515.72158 537.9668 546.76286 530.84366 532.23219
ET 0.3023736 1.8887621 0.8763099 0.3562381 0.291399 0.4501801 0.3750951 1.2508191 0.8026902 0.3304977 0.4101859
rank 1 11 4 9 10 3 2 6 8 7 5

C17-
F6

mean 600.00055 649.12886 600.43167 628.19803 632.02369 601.00316 601.3355 605.4803 624.93122 603.25733 607.67247
best 600.00022 642.83648 600.03648 613.46525 616.78611 600.48046 600.11559 604.02203 613.54637 601.12871 604.66041
std 3.03E−04 5.31E + 00 6.69E−01 1.58E + 01 1.49E + 01 7.54E−01 2.28E + 00 1.30E + 00 1.05E + 01 2.28E + 00 3.34E + 00
median 600.00051 649.00457 600.12907 625.7324 631.1373 600.70446 600.23533 605.37232 623.64711 602.96419 607.60822
ET 0.3619768 1.9709199 0.9639959 0.409375 0.3515911 0.5038948 0.4302542 1.4059159 0.8681172 0.4037424 0.4727251
rank 1 11 2 9 10 3 4 6 8 5 7

C17-
F7

mean 721.53846 806.79054 725.52924 792.43089 792.82487 727.82661 740.81091 758.78859 717.50492 746.01076 736.89383
best 718.98051 796.93456 714.18747 768.65568 766.28166 723.10768 731.66864 755.46415 714.398 730.73613 728.78023
std 1.97E + 00 7.11E + 00 1.19E + 01 2.37E + 01 2.14E + 01 6.05E + 00 7.39E + 00 4.64E + 00 3.12E + 00 2.10E + 01 5.42E + 00
median 721.69834 808.92042 722.87693 789.0756 796.38176 725.76904 741.21091 757.01329 716.90536 738.54308 739.42632
ET 0.3230003 1.9364146 0.8928027 0.3756039 0.3177452 0.4635729 0.3910292 1.2818439 0.7851255 0.3475454 0.4267207
rank 2 11 3 9 10 4 6 8 1 7 5

(Continued)
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Table 11 (continued)
LEO RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

C17-
F8

mean 808.20841 858.60323 809.70134 849.07577 832.91949 831.03479 816.08247 833.47787 819.15294 824.87392 823.20364
best 804.9748 855.82927 806.9649 843.52729 814.19138 819.90228 812.69591 827.68976 815.91933 812.93446 816.71073
std 2.21E + 00 3.08E + 00 2.62E + 00 5.12E + 00 1.58E + 01 2.07E + 01 3.69E + 00 3.95E + 00 2.97E + 00 1.11E + 01 9.28E + 00
median 808.95463 858.21387 809.95008 848.9468 832.36631 821.12256 815.29334 834.83538 818.90419 823.87898 819.66
ET 0.3250002 1.8945481 0.8614258 0.354857 0.3171315 0.4475804 0.3828746 1.2504869 0.7580395 0.3373446 0.4180784
rank 1 11 2 10 8 7 3 9 4 6 5

C17-
F9

mean 900 1439.2536 926.16775 1598.9883 1562.1942 900.34594 900.78655 948.97968 900 958.54298 905.0812
best 900 1139.663 901.0761 1009.0175 1043.5495 900.00299 900.01409 928.3364 900 901.81727 901.98992
std 2.60E−08 2.98E + 02 4.44E + 01 7.15E + 02 6.50E + 02 4.36E−01 1.32E + 00 2.70E + 01 0.00E + 00 5.12E + 01 2.16E + 00
median 900 1383.0983 905.49128 1431.7658 1345.5542 900.23299 900.18809 939.43633 900 953.61704 905.78519
ET 0.3562098 1.9355973 0.8955252 0.3693074 0.3140052 0.4698967 0.3918213 1.2679357 0.7862795 0.3677462 0.4245071
rank 2 9 6 11 10 3 4 7 1 8 5

C17-
F10

mean 1448.2414 2472.9544 1840.8555 2330.0521 2254.8178 1612.9939 1706.457 2155.1391 2665.9463 1977.6016 1778.7483
best 1339.1179 2202.7083 1122.4927 1523.226 1886.5293 1495.6607 1610.8705 2065.3083 2227.3131 1837.465 1530.4446
std 1.19E + 02 2.73E + 02 5.13E + 02 5.53E + 02 4.09E + 02 1.31E + 02 7.72E + 01 8.45E + 01 3.51E + 02 2.07E + 02 2.21E + 02
median 1421.8198 2455.6405 2010.586 2527.3279 2189.5993 1587.4155 1712.9007 2160.193 2699.8038 1897.4982 1783.6486
ET 0.2921257 1.9344708 0.8899964 0.3861561 0.3123344 0.4670793 0.3881009 1.3143316 0.8104788 0.3601149 0.4339666
rank 1 10 5 9 8 2 3 7 11 6 4

C17-
F11

mean 1102.4081 3988.9348 1115.9881 1288.4482 1220.2127 1126.1077 1143.8912 1151.1927 1167.7559 1138.16 5155.6612
best 1101.035 2128.0718 1112.5021 1151.0867 1124.5424 1113.657 1134.6187 1132.2017 1132.3212 1114.3392 1359.2219
std 1.0913706 1728.279 4.0348047 141.03395 125.71804 1.46E + 01 9.882597 1.74E + 01 31.540223 16.776248 3985.9942
median 1102.4457 4053.552 1114.9148 1258.449 1175.5186 1123.2158 1141.9369 1149.9879 1166.8796 1142.2867 4377.88
ET 0.3082884 1.9053695 0.8705133 0.3753039 0.291397 0.4437908 0.3689143 1.2571838 0.8021757 0.3487779 0.426534
rank 1 10 2 9 8 3 5 6 7 4 11

C17-
F12

mean 1209.4469 67700546 3037.4471 89572425 9353082.3 517891.28 151943.54 2295970.5 895980.25 14707.321 1692251.5
best 1200.0549 30532622 1669.0281 330069.7 57983.924 8014.0696 41866.656 493223.58 9831.5883 1562.5217 171741.04
std 1.80E + 01 3.33E + 07 1.67E + 03 1.76E + 08 9.76E + 06 6.17E + 05 2.10E + 05 1.42E + 06 1.19E + 06 1.00E + 04 2.74E + 06
median 1200.6076 67910730 2527.3454 1923878.3 8475087.7 384471.94 49316.617 2526439.2 492469.14 16361.009 400976.52
ET 0.3032189 1.9319159 0.8627085 0.3800094 0.2951645 0.4692286 0.372782 1.2642304 0.8014802 0.3495984 0.4363488
rank 1 10 2 11 9 5 4 8 6 3 7

C17-
F13

mean 1305.6389 40894980 1343.4927 16224.82 20438.622 13523.206 11757.028 7095.1454 12468.177 5580.4752 70502.24
best 1301.7989 115399.57 1311.2063 7208.9788 8268.3414 2358.1337 7429.7441 3996.5404 7359.7815 2151.9689 12200.378
std 3.86E + 00 5.66E + 07 2.21E + 01 6.98E + 03 1.10E + 04 1.05E + 04 5.04E + 03 3.39E + 03 3.79E + 03 3.06E + 03 7.31E + 04
median 1305.1608 20451941 1352.2554 17905.32 19461.528 12026.242 10471.052 6346.504 13268.961 5291.5555 50644.828
ET 0.3159577 1.8878708 0.9128838 0.3918017 0.3109009 0.4621428 0.4100802 1.293707 0.7846826 0.3845192 0.4292407
rank 1 11 2 8 9 7 5 4 6 3 10

C17-
F14

mean 1402.2394 5470.9716 1427.7437 4765.1136 1584.9334 1435.7655 2833.0291 1521.9175 5567.3905 7002.6586 6763.8244
best 1400.9954 2190.0306 1401.9899 2573.429 1496.5768 1429.0875 1476.9492 1475.783 2070.8126 3681.5587 1870.5221
std 1.8833096 2.52E + 03 22.172178 1.46E + 03 8.71E + 01 5.06E + 00 1.58E + 03 3.70E + 01 3060.1102 3.26E + 03 5.16E + 03
median 1401.4934 5804.6809 1427.4043 5441.0149 1577.9782 1436.7638 2528.55 1525.2724 5361.7578 6433.3565 6801.1672
ET 0.3127391 1.9024018 0.888269 0.3900152 0.309189 0.4749437 0.4114049 1.3180878 0.7786291 0.3770875 0.4499625
rank 1 8 2 7 5 3 6 4 9 11 10

C17-
F15

mean 1500.432 9246.3665 1508.1166 14722.578 5770.572 1556.754 5410.7223 1793.1079 15392.044 4459.8968 4356.8363
best 1500.3617 4958.6671 1502.3574 4159.502 2029.7502 1535.9023 1810.0088 1692.966 6548.9487 2271.1247 1868.5744
std 6.52E−02 5.19E + 03 6.89E + 00 1.09E + 04 6.24E + 03 1.84E + 01 2.49E + 03 1.48E + 02 6.13E + 03 1.91E + 03 2.81E + 03
median 1500.4366 7766.8841 1506.3314 15203.76 2981.3282 1557.1446 6299.4192 1733.9539 17366.648 4350.8524 4234.0085
ET 0.294 1.9022906 0.8479029 0.361073 0.2894658 0.4514907 0.3667248 1.2349542 0.8035952 0.341312 0.4035415
rank 1 9 2 10 8 3 7 4 11 6 5

C17-
F16

mean 1601.417 2049.3493 1693.6086 2139.1819 1859.9833 1875.4528 1751.4474 1702.8066 2212.7605 1872.4306 1822.0213
best 1601.0584 2022.0876 1602.8932 1993.8675 1659.0682 1722.138 1608.1802 1640.8401 2163.3077 1720.5276 1749.2084
std 2.69E−01 2.01E + 01 1.15E + 02 1.70E + 02 2.08E + 02 1.26E + 02 1.74E + 02 1.03E + 02 5.96E + 01 1.18E + 02 4.86E + 01
median 1601.4494 2053.9084 1664.7854 2097.6784 1847.8764 1876.5461 1697.9799 1656.6107 2194.891 1897.6183 1845.052
ET 0.3153007 1.8969569 0.8690144 0.3843161 0.3049045 0.4727657 0.3788271 1.282693 0.8012009 0.3413454 0.4216952
rank 1 9 2 10 6 8 4 3 11 7 5

(Continued)
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Table 11 (continued)
LEO RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

C17-
F17

mean 1718.215 1860.355 1740.9724 1863.2917 1865.2555 1798.9236 1770.9041 1758.3665 1966.631 1861.4076 1752.9279
best 1706.6847 1817.3276 1732.6829 1802.7291 1824.6212 1734.4969 1743.3297 1757.5236 1759.2691 1772.4206 1749.6637
std 7.71E + 00 5.07E + 01 8.21E + 00 7.19E + 01 4.07E + 01 6.19E + 01 2.84E + 01 1.01E + 00 1.60E + 02 9.52E + 01 2.46E + 00
median 1721.7195 1846.9176 1741.4033 1841.5942 1858.1224 1802.7053 1771.7776 1758.0739 1978.2256 1845.205 1753.2717
ET 0.3658334 1.9520999 0.9804134 0.4225763 0.3617183 0.5147969 0.4358819 1.4915146 0.8211044 0.401581 0.4841767
rank 1 7 2 9 10 6 5 4 11 8 3

C17-
F18

mean 1800.7237 94816134 1833.5988 28939.221 24569.47 17408.62 23074.566 40341.67 11965.988 11312.675 9290.5265
best 1800.0758 1566346.8 1810.6191 11253.046 3349.5232 4178.411 7853.7434 15409.717 8162.1711 3072.7269 4531.9869
std 5.71E−01 1.83E + 08 1.73E + 01 1.22E + 04 1.55E + 04 1.63E + 04 1.16E + 04 1.77E + 04 4.81E + 03 6.63E + 03 5.92E + 03
median 1800.7107 4220229.1 1837.6971 33389.233 28156.391 13637.271 24346.02 44840.006 10615.389 12384.862 7518.9237
ET 0.3256107 1.8980687 0.8925264 0.3567493 0.3006547 0.4739268 0.3785245 1.280987 0.7779809 0.3552352 0.4123118
rank 1 11 2 9 8 6 7 10 5 4 3

C17-
F19

mean 1901.0291 679394.81 1909.263 73494.592 292988.36 2023.3414 6135.8892 2157.1287 28942.073 11413.638 20057.439
best 1900.9488 161328.47 1902.5189 2005.9509 7901.4191 1925.8671 1933.5347 2043.9118 8744.8689 5501.8386 8219.752
std 6.50E−02 8.04E + 05 5.99E + 00 1.35E + 05 5.51E + 05 1.68E + 02 5.04E + 03 1.43E + 02 1.99E + 04 6.29E + 03 1.13E + 04
median 1901.0328 341107.87 1908.7373 8081.1832 22321.465 1946.7148 5287.4278 2113.0137 26612.935 10074.195 21059.965
ET 0.6015283 2.1930547 1.4988764 0.6585444 0.6057556 0.7472846 0.682842 2.1939116 1.0763017 0.6634356 0.7332974
rank 1 11 2 9 10 3 5 4 8 6 7

C17-
F20

mean 2010.0534 2301.7385 2024.9164 2213.9835 2256.847 2155.3699 2054.9244 2084.6507 2329.6939 2235.7275 2052.2351
best 2001.9904 2248.0003 2020.3081 2089.0765 2066.7782 2026.6169 2030.6709 2064.3507 2201.9677 2196.8025 2036.0513
std 1.02E + 01 5.15E + 01 8.87E + 00 1.49E + 02 1.29E + 02 9.73E + 01 2.42E + 01 2.56E + 01 9.38E + 01 3.50E + 01 1.84E + 01
median 2006.6239 2298.0865 2020.5675 2170.523 2303.7862 2165.9516 2055.9022 2076.3213 2347.968 2240.2324 2047.3626
ET 0.3549563 1.9792104 1.0031495 0.4189973 0.3629973 0.5175917 0.4502586 1.4757591 0.8379548 0.4152999 0.4851776
rank 1 10 2 7 9 6 4 5 11 8 3

C17-
F21

mean 2200 2308.2706 2290.0245 2348.6744 2337.4394 2297.0061 2292.0723 2304.9949 2361.3391 2322.6768 2308.7322
best 2200 2245.3264 2209.0492 2336.2904 2318.0377 2201.9281 2201.4314 2205.0065 2357.5108 2309.5763 2223.4109
std 1.221E−05 59.029993 54.252421 18.961418 14.666468 6.36E + 01 60.473011 6.68E + 01 5.8686381 11.367088 57.267239
median 2200 2301.2791 2313.7008 2340.7329 2341.0693 2325.2005 2321.3294 2335.6805 2358.9014 2321.9666 2334.4727
ET 0.3670121 1.9871627 0.9961948 0.431126 0.3589478 0.5171054 0.4407936 1.4386133 0.8538204 0.4021599 0.4880179
rank 1 6 2 10 9 4 3 5 11 8 7

C17-
F22

mean 2300.4086 2960.4831 2306.5754 2388.4242 2318.9205 2303.6665 2305.9506 2323.9978 2300.2574 2313.3484 2321.8836
best 2300 2756.6595 2302.8892 2310.0835 2313.2141 2302.3375 2300.6213 2315.17 2300 2300.6448 2315.3845
std 4.77E−01 2.11E + 02 3.48E + 00 8.99E + 01 7.76E + 00 9.58E−01 6.58E + 00 7.23E + 00 1.77E−01 2.34E + 01 5.73E + 00
median 2300.3665 2917.2594 2306.5182 2386.4565 2316.1003 2303.905 2303.8566 2325.2645 2300.3161 2302.1961 2322.693
ET 0.3999132 2.0271331 1.0408899 0.4446991 0.3889436 0.5590779 0.4744016 1.5425062 0.8605875 0.4368888 0.5218687
rank 2 11 5 10 7 3 4 9 1 6 8

C17-
F23

mean 2608.667 2697.6138 2648.389 2690.7613 2658.5666 2613.7637 2623.5065 2637.0749 2733.7617 2642.8041 2663.4253
best 2606.5232 2673.1877 2624.4481 2672.5407 2613.963 2607.0408 2608.1065 2623.829 2724.4199 2612.6221 2652.9578
std 2.05E + 00 2.01E + 01 2.07E + 01 1.78E + 01 3.38E + 01 6.12E + 00 1.60E + 01 1.09E + 01 9.84E + 00 2.02E + 01 1.44E + 01
median 2608.5333 2697.5253 2648.1834 2687.7457 2663.6208 2614.1411 2624.2502 2636.9896 2732.5358 2651.4089 2658.0759
ET 0.4175118 1.9807793 1.0808874 0.4609724 0.431678 0.5594673 0.4829631 1.5702774 0.8909863 0.4357085 0.5259606
rank 1 10 6 9 7 2 3 4 11 5 8

C17-
F24

mean 2500.0002 2889.4365 2641.6992 2821.9182 2795.2084 2751.4754 2750.8673 2765.2163 2740.8134 2778.2175 2773.0636
best 2500.0001 2839.3557 2500.5995 2796.5576 2751.5338 2746.0029 2737.1449 2758.0342 2500 2773.298 2765.1812
std 4.785E−05 3.70E + 01 162.78876 2.24E + 01 2.95E + 01 3.95E + 00 2.02E + 01 5.82E + 00 162.61032 3.85E + 00 1.03E + 01
median 2500.0002 2895.5602 2640.796 2822.5121 2806.3359 2752.3181 2743.0222 2765.5625 2802.961 2778.592 2769.4377
ET 0.4417598 1.989241 1.098033 0.4703164 0.4488538 0.5772698 0.5009254 1.5867588 0.8846244 0.445734 0.5386319
rank 1 11 2 10 9 5 4 6 3 8 7

C17-
F25

mean 2897.7429 3383.1819 2934.6471 3128.9324 2954.6209 2898.191 2941.7004 2930.7864 2932.5136 2934.9204 2954.9786
best 2897.7429 3352.0262 2899.7425 2943.9861 2948.9808 2897.8394 2918.7097 2909.7743 2899.585 2899.61 2952.1894
std 3.04E−07 4.90E + 01 2.33E + 01 2.54E + 02 5.12E + 00 2.46E−01 1.54E + 01 1.60E + 01 2.20E + 01 2.36E + 01 2.69E + 00
median 2897.7429 3362.6645 2945.8363 3033.9803 2954.1309 2898.2616 2948.6451 2932.2998 2943.4085 2945.6644 2954.6376
ET 0.418846 1.9986182 1.0641379 0.4549042 0.4141905 0.5427762 0.465997 1.5381446 0.8526837 0.4317387 0.5142647
rank 1 11 5 10 8 2 7 3 4 6 9

(Continued)
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Table 11 (continued)
LEO RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

C17-
F26

mean 2875.0004 4236.0105 3263.5095 3883.8521 3260.1768 2900.1421 2956.2263 3287.936 4125.3708 2851.8668 3024.4918
best 2800.0013 3815.9884 2900.0298 2911.5703 2833.7931 2900.1055 2900.235 2989.7582 3570.8634 2600 2907.1933
std 5.00E + 01 4.53E + 02 4.72E + 02 7.64E + 02 4.96E + 02 3.94E−02 3.77E + 01 5.87E + 02 3.81E + 02 1.94E + 02 9.89E + 01
median 2900 4168.6271 3098.7525 3925.0346 3116.6752 2900.133 2971.5624 2997.1261 4250.1054 2894.9058 3028.4579
ET 0.4662288 2.0127518 1.1348664 0.5017804 0.4605082 0.5896628 0.5151757 1.6685732 0.9167256 0.4923115 0.5441807
rank 2 11 7 9 6 3 4 8 10 1 5

C17-
F27

mean 3089.278 3174.6119 3111.5464 3166.2836 3173.718 3093.1151 3092.4668 3109.3677 3295.5918 3117.8607 3150.7429
best 3088.978 3139.1529 3098.0647 3137.1017 3127.7165 3089.6471 3089.0864 3093.6744 3218.4998 3098.4758 3133.3309
std 2.23E−01 4.12E + 01 1.59E + 01 3.22E + 01 3.36E + 01 3.08E + 00 2.63E + 00 2.96E + 01 7.80E + 01 1.89E + 01 1.76E + 01
median 3089.3081 3165.578 3106.8009 3166.5004 3180.6311 3093.1165 3092.9317 3095.0128 3291.7639 3114.8985 3147.2637
ET 0.432171 2.0431644 1.1940608 0.5065569 0.4503224 0.6019193 0.5331149 1.7209385 0.918766 0.4850874 0.5712062
rank 1 10 5 8 9 3 2 4 11 6 7

C17-
F28

mean 3025.0006 3912.0323 3307.722 3471.8196 3307.8554 3332.3379 3244.7641 3439.0869 3471.5812 3319.6545 3195.8925
best 2800.0022 3867.8031 3100.0812 3402.2513 3187.9788 3150.0575 3177.6079 3227.0805 3421.3532 3182.82 3168.5063
std 1.50E + 02 3.69E + 01 1.51E + 02 9.02E + 01 1.21E + 02 1.22E + 02 1.04E + 02 2.12E + 02 4.06E + 01 1.03E + 02 2.18E + 01
median 3100.0001 3914.5034 3343.1136 3440.3562 3315.6409 3383.7349 3201.7703 3398.7271 3472.0867 3341.8726 3200.6847
ET 0.4020287 2.0094507 1.1278612 0.4821352 0.4198695 0.5727171 0.502574 1.6352087 0.8968212 0.4629656 0.5554748
rank 1 11 4 10 5 7 3 8 9 6 2

C17-
F29

mean 3144.724 3339.5801 3165.6945 3314.6405 3324.3104 3231.0752 3187.9911 3232.8143 3520.4547 3287.4708 3278.031
best 3134.1607 3207.6108 3148.2017 3288.9693 3264.6542 3177.2234 3173.9741 3177.7522 3333.3629 3208.0319 3224.1938
std 8.54E + 00 1.15E + 02 1.65E + 01 2.43E + 01 5.93E + 01 5.19E + 01 1.16E + 01 6.03E + 01 1.61E + 02 5.95E + 01 5.08E + 01
median 3145.445 3346.043 3163.2563 3313.3322 3317.8657 3223.867 3188.4674 3217.3081 3523.3351 3302.4084 3272.3932
ET 0.4219881 2.0567265 1.1564944 0.4921447 0.4352592 0.589355 0.5099219 1.6727754 0.8960592 0.4754221 0.5467503
rank 1 10 2 8 9 4 3 5 11 7 6

C17-
F30

mean 3407.9782 5675648.8 5604.9984 4719850.6 3203269.4 378962.03 836407.72 31117.588 1814995.5 631248.38 2253452.4
best 3395.1259 984371.01 3643.8625 2489911.1 28614.714 14708.39 8096.1658 21195.57 306189.65 3865.2596 228474.19
std 1.80E + 01 8.54E + 06 3.63E + 03 2.74E + 06 2.89E + 06 7.25E + 05 9.54E + 05 1.07E + 04 2.52E + 06 8.70E + 05 2.00E + 06
median 3401.7333 1625841.3 3868.5572 3954248.4 3366679.2 17686.312 819283.54 29368.199 692721.36 333588.26 2288979.6
ET 0.6317577 2.271566 1.6151179 0.7461312 0.6762314 0.81334 0.7527132 2.3858616 1.1454059 0.7137589 0.7972583
rank 1 11 2 10 9 4 6 3 7 5 8

Sum rank 34 292 93 270 238 119 134 170 210 166 188

Mean rank 1.1724138 10.068966 3.2068966 9.3103448 8.2068966 4.1034483 4.6206897 5.862069 7.2413793 5.7241379 6.4827586

Total rank 1 11 2 10 9 3 4 6 8 5 7

p-value 1.972E−21 1.289E−19 1.972E−21 1.972E−21 3.406E−20 3.881E−21 1.972E−21 1.803E−20 7.408E−20 1.972E−21

Figure 8: (Continued)
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Figure 8: (Continued)
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Figure 8: (Continued)
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Figure 8: Boxplot diagrams of LEO and competitor algorithms performances on the CEC 2017 test
suite

7 LEO for Real-World Applications

In this section, LEO’s ability to solve real-world optimization applications is evaluated.

7.1 Tension/Compression Spring Design Optimization Problem
The tension/compression spring problem is a design challenge in real-world applications, the goal

of which is to minimize the weight of the tension/compression spring. The schematic of this design is
shown in Fig. 9. The mathematical model of tension/compression spring design is as follows [19]:

Consider: X = [x1, x2, x3 ] = [d, D, P] .

Minimize: f (x) = (x3 + 2) x2x2
1.

Subject to:

g1(x) = 1 − x3
2x3

71785x4
1

≤ 0, g2(x) = 4x2
2 − x1x2

12566
(
x2x3

1

) + 1
5108x2

1

− 1 ≤ 0,

g3(x) = 1 − 140.45x1

x2
2x3

≤ 0, g4(x) = x1 + x2

1.5
− 1 ≤ 0.

with

0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3 and 2 ≤ x3 ≤ 15.

Figure 9: Schematic view of the tension/compression spring problem

The results of the implementation of LEO and competitor algorithms in the optimization of
tension/compression spring design are reported in Tables 12 and 13. The simulation results show
that LEO has provided the optimal solution to this problem with the values of design variables
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equal to (0.051689, 0.356718, 11.28897) and the value of the objective function equal to 0.012665.
The analysis of the results shows that LEO has provided better results compared to competitor
algorithms in optimizing tension/compression spring design. The LEO convergence curve during
tension/compression spring design optimization is presented in Fig. 10.

Table 12: Comparison results for the tension/compression spring design problem

Algorithm Optimum variables Optimum cost

d D P

LEO 0.051689 0.356718 11.28897 0.012665
RSA 0.05 0.310539 15 0.013198
MPA 0.051684 0.356585 11.29675 0.012665
TSA 0.051905 0.361628 11.0584 0.012723
WOA 0.051486 0.351849 11.58021 0.012666
MVO 0.05 0.313567 14.55586 0.012978
GWO 0.05113 0.343162 12.14438 0.012689
TLBO 0.069268 0.939835 2 0.018038
GSA 0.0576 0.505834 6.273568 0.013885
PSO 0.068994 0.933432 2 0.017773
GA 0.069326 0.939615 2 0.018064

Table 13: Statistical results for the tension/compression spring design problem

Algorithm mean best std median ET rank

LEO 0.012665 0.012665 1.38E−18 0.012665 14.54877 1
RSA 0.018891 0.013198 0.009397 0.01332 1.054796 8
MPA 0.012666 0.012665 6.11E−07 0.012665 3.067909 2
TSA 0.013023 0.012723 0.000339 0.012881 2.232119 4
WOA 0.014042 0.012666 0.001447 0.013513 3.335292 5
MVO 0.016781 0.012978 0.001966 0.017902 1.136586 6
GWO 0.01274 0.012689 6.52E−05 0.012723 3.502764 3
TLBO 0.018521 0.018038 0.000405 0.018374 18.83583 7
GSA 0.019435 0.013885 0.003219 0.019385 4.320089 9
PSO 4.41E + 13 0.017773 1.22E + 14 0.017773 3.289217 11
GA 5.43E + 12 0.018064 1.42E + 13 0.02413 5.853759 10
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Figure 10: Convergence analysis of the LEO for the tension/compression spring design optimization
problem

7.2 Welded Beam Design Optimization Problem
The welded beam design problem is an engineering issue in real-world applications to minimize the

fabrication cost of the welded beam. The schematic of this design is shown in Fig. 11. The mathematical
model of welded beam design is as follows [19]:

Consider: X = [x1, x2 , x3 , x4] = [h, l, t, b].

Minimize: f (x) = 1.10471x2
1x2 + 0.04811x3x4 (14.0 + x2)

Subject to:

g1 (x) = τ (x) − 13600 ≤ 0, g2 (x) = σ (x) − 30000 ≤ 0,

g3 (x) = x1 − x4 ≤ 0,

g4 (x) = 0.10471x2
1 + 0.04811x3x4 (14 + x2) − 5.0 ≤ 0,

g5 (x) = 0.125 − x1 ≤ 0, g6 (x) = δ (x) − 0.25 ≤ 0,

g7 (x) = 6000 − pc (x) ≤ 0,

where

τ (x) =
√

τ ′ + (2ττ ′)
x2

2R
+ (τ ′′)2, τ ′ = 6000√

2x1x2

, τ ′′ = MR
J

,

M = 6000
(

14 + x2

2

)
, R =

√
x2

2

4
+
(

x1 + x3

2

)2

,

J = 2
√

2 x1x2

(
x2

2

12
+
(

x1 + x3

2

)2
)

, σ (x) = 504000
x4x2

3

, δ (x) = 65856000
(30 · 106) x4x3

3

,

pc (x) = 4.013
(
30 · 106

)
x3x3

4

6 · 196

(
1 − x3

28

√
30 · 106

4 (12 · 106)

)
,
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with

0.1 ≤ x1, x4 ≤ 2, 0.1 ≤ x2, x3 ≤ 10.

Figure 11: Schematic view of the welded beam design problem

The results of welding beam design optimization using LEO and competitor algorithms are
reported in Tables 14 and 15. The simulation results show that LEO has provided the optimal solution
to this problem with the values of design variables equal to (0.20573, 3.470489, 9.036624, 0.20573)
and the value of the objective function equal to (1.724852). Based on the optimization results, the
proposed LEO approach has provided superior performance in handling the welded beam design
problem compared to competitor algorithms. The convergence curve of LEO while achieving the
solution for welded beam design is plotted in Fig. 12.

Table 14: Comparison results for the welded beam design problem

Algorithm Optimum variables Optimum cost

h l t b

LEO 0.20573 3.470489 9.036624 0.20573 1.724852
RSA 0.236392 3.235121 8.568725 0.237878 1.889845
MPA 0.20573 3.470489 9.036624 0.20573 1.724852
TSA 0.205581 3.499014 9.022691 0.20658 1.73255
WOA 0.161832 4.691246 9.365763 0.204143 1.855028
MVO 0.204638 3.487916 9.059375 0.205619 1.728592
GWO 0.205665 3.472964 9.03602 0.205822 1.725685
TLBO 0.248204 3.662307 8.684848 0.365402 2.945841
GSA 0.250196 3.715003 7.942199 0.277498 2.135258
PSO 0.330894 4.892002 7.839737 0.468597 3.930698
GA 0.329815 3.245087 6.377571 0.417296 2.597963
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Table 15: Statistical results for the welded beam design problem

Algorithm mean best std median ET rank

LEO 1.724852 1.724852 6.83E−16 1.724852 3.363431 1
RSA 2.249565 1.889845 0.242249 2.209624 1.427522 6
MPA 1.724853 1.724852 7.34E−07 1.724852 3.909917 2
TSA 1.745368 1.73255 0.006329 1.747237 3.143402 5
WOA 2.582368 1.855028 0.761705 2.281472 4.759158 8
MVO 1.7386 1.728592 0.008201 1.737193 435.4079 4
GWO 1.727195 1.725685 0.001082 1.726991 4.935636 3
TLBO 9.02E + 12 2.945841 2.67E + 13 5.109645 25.56709 9
GSA 2.455682 2.135258 0.249943 2.422385 5.715263 7
PSO 1.58E + 14 3.930698 2.79E + 14 5.54E + 13 4.841792 11
GA 5.16E + 13 2.597963 1.82E + 14 4.954044 8.077649 10

Figure 12: Convergence analysis of the proposed LEO for the welded beam design optimization
problem

7.3 Speed Reducer Design Optimization Problem
The speed reducer design problem is a real-world application in engineering studies with the aim

of minimizing the weight of the speed reducer. The schematic of this design is shown in Fig. 13. The
mathematical model of speed reducer design is as follows [60,61]:

Consider: X = [x1, x2, x3, x4, x5, x6, x7] = [b, m, p, l1, l2, d1, d2].

Minimize: f (x) = 0.7854x1x2
2

(
3.3333x2

3 + 14.9334x3 − 43.0934
)− 1.508x1

(
x2

6 + x2
7

)
+ 7.4777

(
x3

6 + x3
7

)+ 0.7854
(
x4x2

6 + x5x2
7

)
.

Subject to:

g1 (x) = 27
x1x2

2x3

− 1 ≤ 0, g2 (x) = 397.5
x1x2

2x3

− 1 ≤ 0,
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g3 (x) = 1.93x3
4

x2x3x4
6

− 1 ≤ 0, g4 (x) = 1.93x3
5

x2x3x4
7

− 1 ≤ 0,

g5 (x) = 1
110x3

6

√(
745x4

x2x3

)2

+ 16.9 · 106 − 1 ≤ 0,

g6 (x) = 1
85x3

7

√(
745x5

x2x3

)2

+ 157.5 · 106 − 1 ≤ 0,

g7 (x) = x2x3

40
− 1 ≤ 0, g8 (x) = 5x2

x1

− 1 ≤ 0,

g9 (x) = x1

12x2

− 1 ≤ 0, g10 (x) = 1.5x6 + 1.9
x4

− 1 ≤ 0,

g11 (x) = 1.1x7 + 1.9
x5

− 1 ≤ 0,

with

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3,

7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5.

Figure 13: Schematic view of speed reducer design problem

The results of using LEO and competitor algorithms in optimizing of speed reducer design are
released in Tables 16 and 17. The simulation results show that LEO has provided the optimal solution
to this problem with the values of design variables equal to (3.5, 0.7, 17, 7.3, 7.8, 3.350215, 5.286683)

and the value of the objective function equal to 2996.348. What is evident from the analysis of
simulation results is that the proposed LEO approach has provided better results in speed reducer
design and superior performance compared to competitor algorithms. The LEO convergence curve
during speed reducer design optimization is shown in Fig. 14.
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Table 16: Comparison results for the speed reducer design problem

Algorithm Optimum variables Optimum cost

b m p l1 l2 d1 d2

LEO 3.5 0.7 17 7.3 7.8 3.350215 5.286683 2996.348
RSA 3.54876 0.700327 17 7.3 7.8 3.354293 5.287113 3018.311
MPA 3.5 0.7 17 7.3 7.8 3.350215 5.286683 2996.348
TSA 3.517395 0.7 17 7.3 7.8 3.367129 5.287918 3008.294
WOA 3.533787 0.7 17 7.486762 7.88665 3.350644 5.286713 3013.296
MVO 3.502135 0.7 17 7.541675 8.049195 3.358798 5.28743 3007.468
GWO 3.501526 0.7 17.0011 7.387738 7.804499 3.350782 5.28704 2998.382
TLBO 3.592592 0.713244 19.94265 7.668475 8.297272 3.841732 5.297945 3844.25
GSA 3.569804 0.700714 17.58068 7.319542 8.192896 3.479603 5.33575 3205.71
PSO 3.555742 0.703886 21.66698 7.837641 8.111648 3.40429 5.431289 4085.292
GA 3.564938 0.710523 22.56662 7.917575 7.973648 3.426693 5.308706 4269.365

Table 17: Statistical results for the speed reducer design problem

Algorithm mean best std median ET rank

LEO 2996.348 2996.348 8.97E−13 2996.348 3.29166 1
RSA 3259.403 3018.311 80.46219 3258.554 1.513922 7
MPA 2997.327 2996.348 2.86026 2996.364 3.601877 2
TSA 3037.677 3008.294 14.77695 3039.229 2.595855 5
WOA 3110.617 3013.296 86.29035 3093.958 3.980838 6
MVO 3031.118 3007.468 11.34626 3032.71 4.210757 4
GWO 3004.897 2998.382 4.296095 3005.444 4.027501 3
TLBO 6.47E + 13 3844.25 6.06E + 13 4.48E + 13 20.44886 10
GSA 3512.39 3205.71 248.8387 3443.385 5.315226 8
PSO 2.03E + 14 4085.292 3.26E + 14 6.86E + 13 3.850949 11
GA 5.58E + 13 4269.365 6.6E + 13 2.54E + 13 6.526017 9

Figure 14: Convergence analysis of the LEO for the speed reducer design optimization problem
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7.4 Pressure Vessel Design Optimization Problem
The pressure vessel design problem is an optimization challenge in real-world applications to

minimize the design cost. The schematic of this design is shown in Fig. 15. The mathematical model
of pressure vessel design is as follows [62]:

Consider: X = [x1, x2, x3, x4] = [Ts, Th, R, L].

Minimize: f (x) = 0.6224x1x3x4 + 1.778x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3.

Subject to:

g1 (x) = −x1 + 0.0193x3 ≤ 0, g2 (x) = −x2 + 0.00954x3 ≤ 0,

g3 (x) = −πx2
3x4 − 4

3
πx3

3 + 1296000 ≤ 0, g4 (x) = x4 − 240 ≤ 0,

with

0 ≤ x1, x2 ≤ 100 , 10 ≤ x3, x4 ≤ 200.

Figure 15: Schematic view of the pressure vessel design problem

The results obtained from the implementation of LEO and competitor algorithms on the
pressure vessel design problem are reported in Tables 18 and 19. The simulation results show
that LEO has the optimal solution to this problem with the values of design variables equal to
(0.778027, 0.384579, 40.31228, 200) and the value of the objective function equal to 5882.901. The
simulation results indicate that LEO performs better in pressure vessel design optimization than
competitor algorithms. LEO convergence curve during pressure vessel design optimization is drawn
in Fig. 16.

Table 18: Comparison results for the pressure vessel design problem

Algorithm Optimum variables Optimum cost
Ts Th R L

LEO 0.778027 0.384579 40.31228 200 5882.901
RSA 0.86013 0.593171 43.04395 168.5946 6865.859
MPA 0.778027 0.384579 40.31228 200 5882.901
TSA 0.781524 0.393985 40.37834 200 5946.404
WOA 0.888888 0.468339 45.65375 136.9744 6253.655

(Continued)
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Table 18 (continued)

Algorithm Optimum variables Optimum cost
Ts Th R L

MVO 0.779395 0.387108 40.3343 199.8642 5900.834
GWO 0.778602 0.385041 40.31623 199.9834 5888.694
TLBO 1.243025 2.27283 43.75321 193.3142 16567.11
GSA 1.135128 0.561094 58.81491 112.4656 10086.81
PSO 1.404574 1.147427 71.4385 43.86409 16221.83
GA 1.441419 0.823568 59.47861 129.9565 15421.79

Table 19: Statistical results for the pressure vessel design problem

Algorithm mean best std median ET rank

LEO 5882.901 5882.901 1.87E-12 5882.901 3.66951 1
RSA 11252.55 6865.859 3227.668 10925.66 1.168503 7
MPA 5883.013 5882.901 0.426155 5882.901 2.989616 2
TSA 6313.121 5946.404 523.8611 6022.13 2.169944 4
WOA 8554.521 6253.655 2130.801 8233.353 3.369625 6
MVO 6740.322 5900.834 408.5954 6851.96 3.450834 5
GWO 6227.057 5888.694 516.3003 5930.408 3.286289 3
TLBO 34608.64 16567.11 14549.03 31967.28 17.56472 10
GSA 22843.39 10086.81 8114.234 22923.1 4.310473 8
PSO 42178.43 16221.83 12122.96 42055.87 3.356884 11
GA 34057.02 15421.79 12025.37 32102.06 5.450805 9

Figure 16: Convergence analysis of the LEO for the pressure vessel design optimization problem
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7.5 The Effectiveness of the LEO in Solving Real-Time Applications
Real-Time Applications (RTAs) are applications that operate in specific time frames that users

sense as current or immediate. Typically, RTAs are employed to process streaming data. Without
ingesting and storing the data in a back-end database, real-time software should be able to sense,
analyze and act on streaming data as it enters the system. RTAs usually use event-driven architecture
to handle streaming data [63] asynchronously. RTAs include clustering applications, Internet of Things
(IoT) applications, systems that control scientific experiments, medical imaging systems, industrial
control systems, and certain monitoring systems.

Metaheuristic algorithms, including the proposed LEO approach, are effective tools for managing
real-time applications. In many RTAs, a combination of metaheuristic algorithms and neural networks
have been employed to optimize the performance of real-time systems. The proposed LEO approach
has applications in various fields of RTAs, including sensor networks, medical applications, IoT sys-
tems, military applications, electric vehicle control, fuel injection system control, robotics applications,
clustering, etc.

8 Conclusions and Future Research

This paper introduced a new human-based metaheuristic algorithm called Language Education
Optimization (LEO), which has applications in optimization tasks. The fundamental inspiration
behind LEO design is the process of teaching a foreign language in language schools where the teacher
teaches skills to students. According to exploration and exploitation abilities, LEO was mathematically
modeled in three phases (i) teacher selection, (ii) students learning from each other, and (iii) individual
practice. The performance of LEO in optimization applications was tested on fifty-two benchmark
functions of unimodal, multimodal, fixed-dimensional multimodal types and the CEC 2017 test suite.
The optimization results showed that LEO, with its high power of exploration and exploitation, and its
ability to balance exploration and exploitation, has a compelling performance in solving optimization
problems. Ten well-known metaheuristic algorithms were employed to compare the results of the LEO
implementation. The analysis of the simulation results showed that LEO has an effective performance
in handling optimization tasks and providing solutions, and is far superior and more competitive
than the competitor algorithms. The implementation results of the proposed LEO approach on four
engineering design problems showed the high ability of LEO in optimizing real-world applications.

The most special advantage of the proposed LEO approach is that it does not have any control
parameters and therefore does not need a parameter adjustment process. The high ability in explo-
ration and exploitation and balancing them during the search process is another advantage of the
proposed LEO. However, LEO also has limitations and disadvantages. First, as with all metaheuristic
algorithms, there is no claim that LEO is the best optimizer for all optimization problems. The second
disadvantage of LEO is that there is always a possibility that newer algorithms will be designed
that perform better in solving optimization problems compared to the proposed approach. The third
disadvantage of LEO is that, similar to other stochastic approaches. It does not provide any guarantee
to provide the global optima for all optimization problems.

Following the design of LEO, several research tasks are activated for future work, the most
important of which is the design of binary and multimodal versions of LEO. Employing LEO in
optimization tasks in various sciences, real-time applications, and implementing LEO in real-world
applications are other research suggestions of this study.
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