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ABSTRACT

This paper develops a new numerical framework for mode III crack problems of thin-walled structures by
integrating multiple advanced techniques in the boundary element literature. The details of special crack-tip
elements for displacement and stress are derived. An exponential transformation technique is introduced to
accurately calculate the nearly singular integral, which is the key task of the boundary element simulation of
thin-walled structures. Three numerical experiments with different types of cracks are provided to verify the
performance of the present numerical framework. Numerical results demonstrate that the present scheme is valid
for mode III crack problems of thin-walled structures with the thickness-to-length ratio in the microscale, even
nanoscale, regime.
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Nomenclature

KIII stress intensity factor
G fundamental solutions of displacement
H fundamental solutions of traction
n unit outward normal vector
p field point
q source point
M special shape functions of displacement
M̂ special shape functions of traction
N shape function
w displacement
�w crack-opening-displacement
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Greek Symbols

� boundary
� domain
γ strain
τ stress
μ shear modulus
ξ dimensionless coordinate
η dimensionless projection coordinate

1 Introduction

Thin-walled structures have a wide application in many industrial fields, such as aeronautical
engineering, pipelines, bridges, and shipbuilding [1–6]. Crack analysis of thin-walled structures is very
essential to their reliability and durability in engineering applications. Unfortunately, exact analytical
or semi-analytical solutions to crack problems with complex loadings and geometries are generally
intractable. It is thus necessary to take advantage of numerical methods [7–34] for efficiently assessing
crack-like defects.

As a well-established numerical technique, the finite element method (FEM) [7–12] has been
widely applied to the numerical simulation of fracture mechanics problems. The FEM generally
requires very fine meshes to guarantee an accurate and reliable computation of the mechanical fields
of thin-walled structures, especially near the crack-tips. The boundary element method (BEM) [13–
18] is another powerful numerical approach for crack analysis owing to its advantage of dimension
reduction and semi-analytical nature. The BEM has been recognized as an alternative and competitive
tool in the scientific community, because it only requires the discretization of the boundary and the
crack-surfaces of cracked materials and structures [35].

One of the key tasks of the BEM analysis for crack problems in thin-walled structures is the
accurate evaluation of nearly singular integrals [36–41] arising from the boundary integral equation
(BIE) discretization. The standard Gaussian quadrature is invalid for the numerical calculation of
nearly singular integrals because of their highly oscillating integral kernels. Fine meshes can be
used to alleviate or remove the nearly singularity of these integrals, however, which can significantly
increase the CPU time of numerical computations of integrals. Up to now, many techniques have been
developed for directly calculating nearly singulars of low-order or high-order elements, which were
reviewed in detail in [42]. These techniques contribute to the accurate numerical solutions of thin-
walled structures in various applications. Whereas it is rarely reported to apply these algorithms in the
BEM analysis of thin-walled structures with cracks.

In this paper, a new numerical framework for mode III crack problems of thin-walled structures
is constructed by integrating multiple advanced techniques in the boundary element literature. The
displacement and stress shape functions of special crack-tip elements are derived in detail. An
exponential transformation technique for high-order elements is introduced to accurately calculate the
nearly singular integral. The rest of the paper is organized as follows. Section 2 describes the model of
the mode III crack problem in an isotropic and linearly elastic medium. Section 3 constructs the BEM
framework for the mode III crack problem of thin-walled structures. Section 4 verifies the developed
approach by solving numerical experiments for thin-walled structures with a central, edge, or semi-
infinite crack. Section 5 gives the conclusions.
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2 Definition of Mode III Crack Problem

For anti-plane problems in isotropic and linearly elastic medium, deformations are assumed to
depend on the in-plane coordinates (x, y), namely only displacement component w(x, y) in the z
direction is nonzero. Based on this assumption, the strain tensor components γxz and γyz are nonzero,
which can be determined as

γxz (x, y) = ∂w(x, y)

∂x
, and γyz (x, y) = ∂w(x, y)

∂y
, (1)

According to Hooke’s law [43,44], we have nonzero stress components as

τxz (x, y) = μ
∂w(x, y)

∂x
, and τyz (x, y) = μ

∂w(x, y)

∂y
, (2)

where μ denotes the shear modulus.

Trough above-mentioned process, the equilibrium equation without body force is expressed in
terms of displacement as the following form of Laplace equation [45–47]:

∂2w(x, y)

∂x2
+ ∂2w(x, y)

∂y2
= 0, (x, y) ∈ �, (3)

where � is the domain of interested problem. Obviously, the equilibrium equation for the mode III
crack problem is recast into the Laplace equation. Traction or displacement boundary conditions are
imposed on the boundary � of the problem domain, and traction-free conditions are satisfied on the
crack surface.

3 A BEM Framework for Mode III Crack Problems
3.1 Multi-Domain Boundary Integral Equations

The equilibrium equation can be transformed into the boundary integral equation (BIE) [48] as

C(p)w(p) +
∫

�

H(p, q)w(q)d�(q) =
∫

�

G(p, q)τ (q)d�(q), p ∈ �, (4)

where p is the field point, q is the source point, C(p) = 0.5 with a smooth boundary at p, τ(q) =
τxz(q)n1(q) + τyz(q)n2(q) with the outward normal unit vector n(q) = (n1(q), n2(q)), G(p, q) and H(p, q)

respectively denote the fundamental solutions of displacement and traction which have the expressions
as

G (p, q) = − 1
2πμ

ln r(p, q), and H (p, q) = − 1
2π

∂ ln r(p, q)

∂n(q)
, (5)

where r(p, q) denotes the distance between p and q.

In this work, we focus on mode III crack problems of thin-walled structures. Based on multi-
domain technique [49–51], the computational domain of the interested problem is divided into
two sub-domains �1 and �2 by using an auxiliary boundary �a along the crack-tip direction (see
Fig. 1). The BIE of Eq. (4) is used for each isotropic and linearly elastic subdomain �i (i = 1, 2).
Discontinuous quadratic elements are applied to the discretization of the BIE. It should be noted that
special crack-tip shape functions are employed for crack-tip elements.
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Figure 1: Sketches of isotropic body with a central crack

The geometric description of each discontinuous quadratic element is given as

xi =
3∑

j=1

Nj(ξ)xj
i, i = 1, 2, (6)

where xi (i = 1, 2) are coordinates of the point on the boundary element, xj
i (i = 1, 2; j = 1, 2, 3) are

coordinates of the left point, the middle point, and the right point of the element, ξ is the dimensionless
coordinate with −1 ≤ ξ ≤ 1, and Nj(ξ) (j = 1, 2, 3) are shape functions as

N1(ξ) = 1
2

(
ξ 2 − ξ

)
, N2(ξ) = 1 − ξ 2, N3(ξ) = 1

2

(
ξ 2 + ξ

)
. (7)

The quantities (displacement and traction) on the boundary element are approximated by

w =
3∑

j=1

Nα

j (ξ)wj, and τ =
3∑

j=1

Nα

j (ξ)τj, (8)

where wj (j = 1, 2, 3) and τj (j = 1, 2, 3) are the values of displacement and traction at ξ =
−α, 0, α (0 < α < 1), respectively, and Nα

j (ξ) (j = 1, 2, 3) are displacement/traction shape functions
as

Nα

1 (ξ) = 1
2

(
ξ 2

α2
− ξ

α

)
, Nα

2 (ξ) = 1 − ξ 2

α2
, Nα

3 (ξ) = 1
2

(
ξ 2

α2
+ ξ

α

)
. (9)

It should be noted that the parameter α in Eq. (8) is free to choose value from the region (0, 1),
which has little influence on the numerical accuracy of the present method.

Through the discretization of the BIE for sub-domains �1 and �2, we can form two linear equation
systems as(

H1 Ha
1

) (
w1

wa
1

)
= (

G1 Ga
1

) (
τ 1

τ a
1

)
, (10)

(
H2 Ha

2

) (
w2

wa
2

)
= (

G2 Ga
2

) (
τ 2

τ a
2

)
, (11)

where G and H denote the coefficient matrix, w is the vector of displacement, τ is the vector of traction,
subscripts “1” and “2” of the physical quantities (displacement and traction) or coefficient matrix are
used to distinguish sub-domains �1 and �2, and their superscript “a” is related with the auxiliary
boundary �a in Fig. 1. Based on the relationships of wa

1 = wa
2 and τ a

1 = −τ a
2 on �a, Eqs. (10) and (11)

have the coupling form as(
H1 Ha

1 0

0 Ha
2 H2

) ⎛
⎝w1

wa

w2

⎞
⎠ =

(
G1 Ga

1 0

0 −Ga
2 G2

)⎛
⎝τ 1

τ a

τ 2

⎞
⎠ , (12)
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where wa = wa
1 (= wa

2), and τ a = τ a
1 (= τ a

2). We can obtain the displacement and the traction on the
boundary once Eq. (12) is solved.

Finally, the stress intensity factor (SIF) for mode III crack problems in thin-walled structures can
be calculated as

KIII = μ

4

√
2π

r
�w (13)

where r denotes the distance between the crack tip and the near node on the crack surface, and �w
represents crack-opening-displacement (COD) at this near node. Obviously, �w can be determined
by using the value of the displacement on the crack surface which has been calculated by Eq. (12).
The displacement extrapolation method is another way to calculate the SIF, which makes a linear
extrapolation as

KIII = 1
α

[
K1

III − (1 − α) K2
III

]
(14)

where K1
III and K2

III are evaluated respectively by Eq. (13) at node ξ = −α and ξ = 0 of the crack-tip
element (crack-tip is at ξ = −1).

3.2 Special Crack-Tip Elements for the Displacement and the Stress
It is necessary to adopt special crack-tip elements for accurately simulating

√
r-behavior in the

near-tip displacement field and 1/
√

r-behavior in the near-tip stress field. To satisfy this requirement,
the displacement w in crack-tip element can be approximated as

w =
3∑

j=1

Mα

j (ξ)wj = a1 + a2

√
r + a3r (15)

where Mα

j (ξ) (j = 1, 2, 3) are the special shape functions of displacements. Based on the location of
the crack-tip, Mα

j (ξ) (j = 1, 2, 3) have two kinds of forms as

I) Crack-tip located at ξ = −1: Mα

j (ξ) = Aα

j1 + Aα

j2

√
1 + ξ + Aα

j3 (1 + ξ) , j = 1, 2, 3 (16)

II) Crack-tip located at ξ = 1: Mα

j (ξ) = Bα

j1 + Bα

j2

√
1 − ξ + Bα

j3 (1 − ξ) , j = 1, 2, 3 (17)

where Aα

ji (i = 1, 2, 3) and Bα

ji (i = 1, 2, 3) can be determined by establishing a linear equation system
as

Mα

j (ξ) =
{

1, ξ at the collocation node,
0, ξ at the other nodes.

(18)

Finally, the displacement shape functions Mα

j (ξ) (j = 1, 2, 3) for the crack-tip elements with the
crack-tip located at ξ = ±1 have the formulations as

Mα

1 (ξ) = α
(√

1 ∓ ξ − 1
) + ξ

(
1 − √

1 ∓ α
)

α
(√

1 + α − 1
) + α

(√
1 − α − 1

) , (19)

Mα

2 (ξ) = α
(√

1 + α ∓ √
1 − α

) − 2α
√

1 ∓ ξ + ξ
(√

1 ∓ α − √
1 ± α

)
α

(√
1 + α − 1

) + α
(√

1 − α − 1
) , (20)

Mα

3 (ξ) = α
(√

1 ∓ ξ − 1
) + ξ

(√
1 ± α − 1

)
α

(√
1 + α − 1

) + α
(√

1 − α − 1
) . (21)
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On the other hand, the stress/traction in crack-tip element is approximated as

σ =
3∑

j=1

M̂α

j (ξ)σj = â1 + â2

1√
r

+ â3

√
r (22)

where M̂α

j (ξ) (j = 1, 2, 3) are the special shape functions of stresses/tractions. M̂α

j (ξ) (j = 1, 2, 3) also
have two different types of formulas which are given as

I) Crack-tip located at ξ = −1: M̂α

j (ξ) = Âα

j1 + Âα

j2

1√
1 + ξ

+ Âα

j3

√
1 + ξ , j = 1, 2, 3 (23)

II) Crack-tip located at ξ = 1: M̂α

j (ξ) = B̂α

j1 + B̂α

j2

1√
1 − ξ

+ B̂α

j3

√
1 − ξ , j = 1, 2, 3 (24)

where Âα

ji (i = 1, 2, 3) and B̂α

ji (i = 1, 2, 3) can be obtained by

M̂α

j (ξ) =
{

1, ξ at the collocation node,
0, ξ at the other nodes.

(25)

The stress/traction shape functions M̂α

j (ξ) (j = 1, 2, 3) for the crack-tip elements with the crack-tip
located at ξ = ±1 can be finally expressed as

M̂α

1 (ξ) =
√

1 ± α√
1 ∓ ξ

(√
1 ∓ α + 1

) (√
1 ∓ ξ − 1

) ± ξ(√
1 + α ∓ 1

) (√
1 − α ± 1

) ∓ α
, (26)

M̂α

2 (ξ) = 1√
1 ∓ ξ

(√
1 + α − √

1 ∓ ξ
) (√

1 − α − √
1 ∓ ξ

)
(√

1 + α − 1
) (√

1 − α − 1
) , (27)

M̂α

3 (ξ) =
√

1 ∓ α√
1 ∓ ξ

ξ ± (√
1 ± α + 1

) (√
1 ∓ ξ − 1

)
α ± (√

1 ± α + 1
) (√

1 ∓ α − 1
) . (28)

3.3 Nearly Singular and Singular Integrals in the BEM Formulation
After the above-mentioned boundary element discretization, we have to deal with two types of

nearly singular integrals [42] as

S1 =
∫ 1

−1

φ1(ξ) ln r2(ξ)dξ , and S2 =
∫ 1

−1

φ2(ξ)
1

r2β(ξ)
dξ , β > 0 (29)

where φi(ξ) (i = 1, 2) are regularized functions resulting from shape functions and Jacobian
determinant of coordinate transformation, and r(ξ) is a distance between field point and source point
expressed as [52]

r(ξ) = √
(ξ − η)2ϕ(ξ) + d2 (30)

in which ϕ(ξ) is the positive function, η ∈ [−1, 1] is the dimensionless projection coordinate of the
field point near the boundary element, and d is the minimum distance between this field point to the
near-boundary element. Replacing r(ξ) in Eq. (29) by its expression, we have

S1 =
∫ 1

−1

φ1(ξ) ln
[
(ξ − η)2ϕ(ξ) + d2

]
dξ , and S2 =

∫ 1

−1

φ2(ξ)
1

[(ξ − η)2ϕ(ξ) + d2]β
dξ (31)

Obviously, the above-mentioned integrals have near singularities when d is a small number.
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The exponential transformation in [42,53] is applied to the regularization of nearly singular
integrals. Firstly, we split Si (i = 1, 2) in Eq. (30) into two parts as

S1 =
[∫ η

−1

+
∫ 1

η

]
φ1(ξ) ln

[
(ξ − η)2ϕ(ξ) + d2

]
dξ , and S2 =

[∫ η

−1

+
∫ 1

η

]
φ2(ξ)

1

[(ξ − η)2ϕ(ξ) + d2]β
dξ

(32)

and they can be recast as

S1 =
∫ η̂

0

φ1(ξ) ln
[
(ξ − η)2ϕ(ξ) + d2

]
dξ , and S2 =

∫ η̂

0

φ2(ξ)
1

[(ξ − η)2ϕ(ξ) + d2]β
dξ (33)

where η̂ is a constant related with η. Next, we apply the exponential transformation ξ = d(e� (1+ζ ) − 1)

with � = ln
(
1 + η̂/d

)
/2, which maps ξ

(
0, η̂

)
to ζ(−1, 1). Substituting this transformation into

Eq. (32), one can obtain

S1 = �d
∫ 1

−1

φ1(t)
{
ln

[
(e� (1+ζ ) − 1)2ϕ(t) + 1

] + ln d2
}

e� (1+ζ )dζ ,

and S2 = �

d2β−1

∫ 1

−1

φ2(t)e� (1+ζ )

[(e� (1+ζ ) − 1)2ϕ(t) + 1]β
dζ (34)

It is obvious that the above-mentioned integral has no near singularity when d is close to zero.

Singular integrals [54,55] also appeared in the boundary element discretization of the BIEs. In this
work, a generally direct method [56] is applied for the regularization of these singular integrals. The
details are not provided here, and the interested readers are referred to [56]. In addition, the Gaussian
quadrature formula is used for all numerical integrations in this work.

4 Numerical Experiments

Three numerical experiments are provided to test the performance of the developed method. The
numerical accuracy of the SIF calculated by the present approach is estimated by the relative error
formulation [57,58] as

Relative error =
∣∣∣∣KNumerical

III − KExact
III

KExact
III

∣∣∣∣ . (35)

The displacement extrapolation method is used for calculating the SIF in all numerical examples,
and α for all boundary elements is set to 0.5.

4.1 Test Problem 1: A Thin-Walled Structure with a Central Crack
As the first example, a thin-walled structure with a central crack is considered. The sketch of the

structure is shown in Fig. 2. The length of the half crack is a. The thickness-to-length (TOL) ratio of
the thin-walled structure is defined by b/H. The anti-plane shear loading τ0 = 1 is imposed on the
upper and lower boundaries in Fig. 2. Traction-free condition is applied on the remaining boundaries
and the crack surface. The analytical solution of the SIF (mode III) is given as

KIII = τ0

√
πa

√
2b
πa

tan
(πa

2b

)
. (36)
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Figure 2: The sketch of a thin elastic body with a central crack

In the numerical simulation, H is set to be 10, and a/b = 1/4. 40 discontinuous quadratic elements
are adopted for the BIE discretization, and 4 of these elements are used on the crack surface. For
the thin-walled structure with TOL ratio from 1E − 01 to 1E − 07, Fig. 3 plots the numerical error
variation of the SIF by using the present method. As we can observe, the satisfied results are obtained
by the developed approach with a small number of boundary elements even for the structure with TOL
ratio of 1E − 07.

Figure 3: Relative errors of the SIF for the thin-walled structure with different TOL ratio

Next, the performance of the present method for solving the thin-walled structure with a central
crack of different length is investigated. TOL ratio is set to IE − 06. Table 1 lists the numerical results
of the normalized SIF. It can be found from this table that the numerical results have a good agreement
with the exact solutions.

Table 1: Normalized SIF for thin-walled structure with a central crack of different length

a/b Number of
elements

KIII/τ0

√
πa

Exact Present method Relative errors

1/5 44 1.0170E + 00 1.0195E + 00 2.4739E − 03

(Continued)
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Table 1 (continued)

a/b Number of
elements

KIII/τ0

√
πa

Exact Present method Relative errors

1/4 40 1.0270E + 00 1.0258E + 00 1.1889E − 03
1/3 44 1.0501E + 00 1.0349E + 00 1.4451E − 02
1/2 40 1.1284E + 00 1.0833E + 00 3.9911E − 02

4.2 Test Problem 2: A Thin-Walled Structure with an Edge Crack
As the second example, we consider a thin-walled structure with an edge crack, and Fig. 4 shows

its dimension. The crack length is a, and the TOL ratio of this structure is also defined by b/H. The
anti-plane shear loading τ0 = 1 is imposed on the upper and lower boundaries. Traction-free condition
is used on the crack surface and the remaining boundaries. Exact solution of the SIF (mode III) is same
as that of the example 1. In this example, H is set to be 10, and b = 3a.

Figure 4: The sketch of a thin elastic body with an edge crack

We use 36 discontinuous quadratic elements including 4 elements on the crack surface in the
numerical simulation of the present method and the conventional BEM. Here, nearly singular integrals
are directly calculated by standard Gaussian quadrature in the conventional BEM. Table 2 gives the
numerical results of normalized SIF KIII/

(
τ0

√
πa

)
for the TOL ratio from 1E − 01 to 1E − 08.

Table 2: Normalized SIF KIII/
(
τ0

√
πa

)
for various TOL ratio b/H

b/H Exact Present method Relative error Conventional
BEM

Relative error

1E − 01 1.0501E + 00 1.0500E + 00 9.3865E − 05 1.0499E + 00 1.3215E − 04
1E − 02 1.0501E + 00 9.8831E − 01 5.8833E − 02 8.2115E − 01 2.1796E − 01
1E − 03 1.0501E + 00 9.7688E − 01 6.9710E − 02 −3.4766E + 01 —

(Continued)
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Table 2 (continued)

b/H Exact Present method Relative error Conventional
BEM

Relative error

1E − 04 1.0501E + 00 9.7574E − 01 7.0833E − 02 −4.7094E − 01 —
1E − 05 1.0501E + 00 9.7559E − 01 7.0953E − 02 −1.4411E − 01 —
1E − 06 1.0501E + 00 9.7560E − 01 7.0968E − 02 −1.1626E − 01 —
1E − 07 1.0501E + 00 9.7767E − 01 6.8931E − 02 −9.8917E − 02 —
1E − 08 1.0501E + 00 1.0162E + 00 3.2282E − 02 −8.6203E − 02 —

Obviously, the present method yields accurate results even for the TOL of 1E − 08, but the
conventional BEM is invalid when the TOL is less than 1E − 02.

4.3 Test Problem 3: A Thin-Walled Structure with a Semi-Infinite Crack
A thin-walled structure with a semi-infinite crack (see Fig. 5) is investigated as the third example,

in which the TOL ratio of the structure is defined by h/L. As shown in Fig. 5, the upper and lower
boundaries are subject to the displacement constraint w = 0, and the crack surface imposes the anti-
plane shear loading τ0 = 1. Traction-free condition is used on the left and right boundaries. Exact
solution of the SIF (mode III) is expressed as

KIII = τ0

√
2h. (37)

Figure 5: The sketch of a thin elastic body with a semi-infinite crack

L is set to 10 in this case.

In this simulation, 180 discontinuous quadratic elements including 34 elements on the crack
surface are used for the present method and the conventional BEM. For the thin-walled structure

with the TOL ratio from 1E − 01 to 1E − 09, the numerical results of normalized SIF KIII/
(
τ0

√
2h

)
calculated by above-mentioned two approaches are shown in Table 3. As we can see from this table,
the present method has a good performance for different TOL ratio, especially for TOL ratio of
1E − 09. However, the conventional BEM can obtain accurate results only when the TOL ration is
not great than 1E − 03.

5 Conclusion and Generalization

A novel numerical framework for mode III crack problems of thin-walled structures is presented
by combining several advanced techniques in the BEM literature. The displacement and stress shape
functions of special crack-tip elements are derived in detail. Moreover, an exponential transformation
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technique is applied for the nearly singular integrals resulting from these special structures. Mode III
crack problems for thin-walled structures with a central, edge or semi-infinite crack are investigated
by the developed method. Numerical results illustrate that the present approach obtains accurate
numerical results for ultra-thin structures even with the TOL ration of 1E − 09. The present scheme
can be extended for 3D crack problems of thin-walled structures, which will be reported in the near
future.

Table 3: Normalized SIF KIII/
(
τ0

√
2h

)
for different TOL ratio h/L

h/L Exact Present method Relative error Conventional
BEM

Relative error

1E − 01 1.0 9.9801E − 01 2.0379E − 03 9.9682E − 01 3.1955E − 03
1E − 02 1.0 9.9792E − 01 2.0847E − 03 9.9722E − 01 2.8162E − 03
1E − 03 1.0 9.9776E − 01 2.2088E − 03 1.0415E + 00 4.1520E − 02
1E − 04 1.0 9.9774E − 01 2.2597E − 03 5.2635E + 00 —
1E − 05 1.0 9.9809E − 01 1.8787E − 03 1.8189E + 01 —
1E − 06 1.0 9.9831E − 01 1.6669E − 03 −3.5853E + 00 —
1E − 07 1.0 9.9863E − 01 1.3953E − 03 −2.2837E + 02 —
1E − 08 1.0 9.9889E − 01 1.0695E − 03 −2.0967E + 03 —
1E − 09 1.0 9.9930E − 01 6.9430E − 04 −1.8034E + 04 —
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