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ABSTRACT

The optimization of multi-zone residential heating, ventilation, and air conditioning (HVAC) control is not an
easy task due to its complex dynamic thermal model and the uncertainty of occupant-driven cooling loads. Deep
reinforcement learning (DRL) methods have recently been proposed to address the HVAC control problem. How-
ever, the application of single-agent DRL for multi-zone residential HVAC control may lead to non-convergence or
slow convergence. In this paper, we propose MAQMC (Multi-Agent deep Q-network for multi-zone residential
HVAC Control) to address this challenge with the goal of minimizing energy consumption while maintaining
occupants’ thermal comfort. MAQMC is divided into MAQMC2 (MAQMC with two agents:one agent controls
the temperature of each zone, and the other agent controls the humidity of each zone) and MAQMC3 (MAQMC
with three agents:three agents control the temperature and humidity of three zones, respectively). The experimental
results show that MAQMC3 can reduce energy consumption by 6.27% and MAQMC2 by 3.73% compared with the
fixed point; compared with the rule-based, MAQMC3 and MAQMC2 respectively can reduce 61.89% and 59.07%
comfort violation. In addition, experiments with different regional weather data demonstrate that the well-trained
MAQMC RL agents have the robustness and adaptability to unknown environments.
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1 Introduction

Nowadays, building energy consumption accounts for 40% of total energy consumption [1], of
which HVAC energy consumption takes up 50%, and 30% of all CO2 emissions [2]. The HVAC system,
which is the main facility to regulate thermal comfort, is now essential in buildings. It is necessary to
study a control strategy to save energy while keeping thermal comfort.
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The typical goal in HVAC optimal control is to save energy while maintaining thermal comfort. In
the literature, there has been a great deal of research on optimal control strategies for HVAC to achieve
the above goal. In HVAC systems, rule-based control (RBC) is an easy-to-implement control method
and based on engineer experience. However, RBC cannot learn critical knowledge from historical
data to adapt itself. Model predictive control (MPC), a model-based method, has been proposed to
deal with the problem of RBC. In [3], the HVAC system is modelled by a grey-box RC-equivalent
approach and identified parameters using measurement data extracted directly from the Building
Management System, where MPC is used to minimize total cooling effort and energy is saved by 21%.
Kumar et al. [4] proposed a stochastic MPC framework for HVAC plants and experimental results
showed that stochastic MPC provides a more systematic approach to mitigate uncertainties and that
this can save energy by 7.5%. An Artificial Neural Network (ANN) based MPC optimization method
was presented in [5] and this method compared with the fixed set-point can save operating cost between
6% and 73% depending on the season.

Model-based methods such as MPC mentioned above need to build an accurate dynamic thermal
model of the HVAC to solve the optimal control problem. Accurate modeling requires a large amount
of historical data as well as data from sensors collected in real time. Model-based methods inevitably
suffer from modeling errors and poor portability to specific models. The above issues are great
challenges for the further development of model-based methods.

In recent years, the great progress in computing hardware has led to the development of machine
learning techniques such as deep learning and reinforcement learning (RL). Wang et al. [6] proposed
a ventilation monitoring and control method based on metabolism to reduce the risk of COVID-19
infection. In [7], Yin et al. applied the deep reinforcement learning method to build an intelligent
dynamic pricing system. Wu et al. [8,9] used neural network algorithms to optimize transportation
problems. In [10], a rule-based HVAC system uses deep learning to estimate dynamic preconditioning
time in residential buildings and the proposed system demonstrates effectiveness over conventional
rule-based control. In the power systems field, an intelligent multi-microgrid (MMG) energy manage-
ment method [11] was proposed based on deep neural network (DNN) and model-free reinforcement
learning and this method compared with conventional model-based methods shows the effectiveness in
solving power system problems with partial or uncertain information. In [12], an event-driven strategy
was proposed to improve the optimal control of HVAC systems. Fu et al. [13] reviewed in detail
the application of reinforcement learning in building energy efficiency. Meanwhile, more specifically,
model-free deep reinforcement learning (DRL) combining deep learning and reinforcement learning
has received tremendous attention in the HVAC optimal control problem. In contrast to model-based
methods, model-free DRL requires only the training data generated by the environment, not the exact
model. Another advantage of model-free DRL is that it does not require much a priori knowledge,
which can be learned from the training data. And the computational cost of DRL is much lower than
that of model-based methods. Fu et al. [14] presented a DQN method based on deep-forest to predict
building energy consumption. In [15], Gao et al. proposed a DRL based framework, DeepComfort,
for thermal comfort control and the proposed method can reduce the energy consumption of HVAC
by 4.31% while improving the occupants’ thermal comfort by 13.6%. However, they still focus on
single-zone HVAC control and use a single agent to accommodate multiple setpoints. Although the
DRL approach has many advantages, for multi-zone residential HVAC control, single-agent DRL may
present the following problems. A single agent to control setpoints in multiple zones not only increases
the computational cost, but also has the potential for non-convergence.

Motivated by the above issues, this study applies MAQMC (Multi-Agent deep Q-network for
Multi-zone residential HVAC Control) to optimize the thermal comfort control of the multi-zone
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HVAC combination of temperature and humidity. It aims to minimize energy consumption under the
condition of satisfying occupants’ thermal comfort requirements in multi-zone HVAC systems. Our
proposed approach also provides the theory and technology to reduce carbon emissions in terms of
energy efficiency and comfort in buildings. The main contributions of this paper are summarized as
follows:

(1) We apply multi-agent reinforcement learning to optimize multi-zone residential HVAC control.
Since multi-zone HVAC has complex thermal dynamics, personnel occupancy changes, and a
high-dimensional action space, we use the proposed MAQMC to solve the above problems.
Then, we formulate the multi-zone residential HVAC control problem as the RL problem
including state, action, and reward function.

(2) We compare MAQMC and single-agent DQN to demonstrate the effectiveness of MAQMC
in multi-zone HVAC control with a high-dimensional action space; we also compare the
performance of MAQMC2 (MAQMC with two agents) and MAQMC3 (MAQMC with three
agents) as well as design benchmark cases without RL and compare them, experimentally
showing that MAQMC3 has a faster convergence speed and slightly higher performance than
MAQMC2 and MAQMC can get more energy saving while maintaining thermal comfort
compared with benchmark cases.

(3) We verify that the well-trained MAQMC has high adaptability as well as robustness under
different regional weather.

The rest of the paper is organized as follows. Section 2 surveys the related works. Section 3
introduces the theoretical background of RL and multi-agent RL; the HVAC control problem
formulation is introduced in Section 4; details of simulation implementation and the simulation results
of the MAQMC are presented in Section 5, plus a comparison with the single-agnet DQN and
benchmark cases; finally, Section 6 concludes the paper.

2 Related Works

There has been pioneering work using DRL methods applied to HVAC systems. In [16], DRL is
applied to optimize the problem of the supply water temperature setpoint in a heating system and the
well-trained agent can save energy between 5% and 12%. Achieving energy savings from optimizing
HVAC control equates to cost savings. Jiang et al. [17] proposed Deep Q-network (DQN) with an
action processor, saving close to 6% of the total cost with demand charges, while close to 8% without
demand charges. Du et al. [18] implemented DRL methods to address the issue of 2-zone residential
HVAC control strategies that allow for the lower bound of the user comfort level (temperature)
with energy savings. In [19], performance-based thermal comfort control (PTCC) based on DQN
was proposed to minimize energy consumption while satisfying thermal comfort conditions. In [20],
Zhang et al. proposed a practical control framework (named BEM-DRL) based on deep reinforcement
learning and the proposed BEM-DRL can reduce the energy consumption of HVAC by 16.7% with
more than 95% probability compared to the old rule-based control.

All of the above research work demonstrates the effectiveness of DRL approaches compared with
the benchmarks they have designed for HVAC optimal control. Although Du et al. [18] have addressed
the multi-zone HVAC control problem, their control object is only the set-point of temperature. In [21],
Nagarathinam et al. use a multi-agent deep reinforcement learning method to control air-handling-
units (AHUs) and chillers. They mainly consider the cooling side to save energy and maintain comfort.
Kurte et al. [22] used Deep Q-Network (DQN) to meet residential demand response and compared it to
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the model-based HVAC approach. Fu et al. [23] proposed a distributed multi-agent DQN to optimise
HVAC systems. Cicirelli et al. [24] used DQN to balance energy consumption and thermal comfort.
Kurte et al. [25,26] applied DRL in residential HVAC control to save costs and maintain comfort.

In summary, DRL methods have been heavily applied in HVAC control in recent years. However,
multi-agent reinforcement learning (MARL) was less studied in the optimal control of multi-zone
residential HVAC, and we take this opportunity to discuss the robustness and adaptability of related
techniques in this area.

3 Theoretical Background of RL and Multi-Agent RL
3.1 Reinforcement Learning (RL)

RL is trial-and-error learning by interacting with the environment [27]. From Fig. 1, The agent
gets the current state from the environment and then it takes actions to influence the environment. The
environment gives the agent the reward. The goal of RL is to maximize the cumulative reward in the
environment interaction. The RL problem can be formulated as a Markov Decision Process (MDP),
which includes a quintuple 〈S, A, R, P, γ〉. MDP is shown in Fig. 2.

(1) S represents the state space, st ∈ S indicates the state of the agent at time t.

(2) A is the action space, at ∈ A represents the action taken by the agent at time t.

(3) R: S×A → R is the reward function, rt indicates the immediate reward value obtained by the
agent executing the action at in the state st.

(4) P: S × S × A → [0, 1] is state transition probability distribution function satisfying the
Markov property p(st+1|s1, a1, . . . , sT , aT) = p(st+1|st, at).

(5) γ is the discounted factor. γ is used to weighten the impact of the future reward.

Figure 1: RL agent-environment interaction

Figure 2: Model structure diagram of an MDP

In the MDP model, a RL agent decides which action to take, and this action follows a policy that
is π :S × A → [0, 1]. π(at|st) represents the probability of selecting at in st. The return Gt is the total

discounted reward from time-step t: Gt =
T∑

k=t

γk−trk. The state value function and the state action value

function are defined as V π(s) = E[Gt|St = s; π ] and Qπ(s, a) = E[Gt|St = s, At = a; π ].
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3.2 Deep Q-Network (DQN)
DQN is a typical DRL method based on value function. Volodymyr et al. [28] combined the

convolution neural network with traditional Q-learning and proposed a deep Q-network model to
handle high-dimensional state inputs. Convolutional neural networks can also be replaced by deep
neural networks. In DQN, the input is current state and the output is Q-value for each potential
action at the current state. DQN parameterizes the state action value function Qπ(s, a) by a nonlinear
neural network, and updates the neural network parameters to approximate the optimal state action
value function Q∗(s, a). We use Q(s, a; ω), where ω repesents the estimated parameters, to denote
the parameterized value function. However, it is usually not convergent to use a nonlinear function
approximation for the value function in RL. To address the above issues, experience replay mechanism
and two neural networks are used in the DQN. One is the target network Q(s, a; ω′) and the other
is the online network Q(s, a; ω). Yj = r + maxa′ Q(s′, a′; ω′) is used to approximately represent the
optimization objective of the value function. The loss function is as follows:

L(ω) = Es,a,r,s′
[(

Yj − Q (s, a; ω)
)2

]
. (1)

The online network Q(s, a; ω) is updated in real time. The target network Q(s, a; ω′) can be copied
from the online network Q(s, a; ω) after N rounds. We can differentiate ω in Eq. (1), and the gradient
is as follows:

∇ωL(ω) = Es,a,r,s′
[(

Yj − Q (s, a; ω)
)∇ωQ(s, a; ω)

]
. (2)

3.3 Multi-Agent Reinforcement Learning (MARL)
As the name implies, there are multiple agents interacting with the environment together, and

these agents work together to learn the optimal policy. A multi-agent MDP is composed of the tuples
< N, S, A i

i∈N, R i
i∈N, P, γ >, where N represents the number of agents, S is the environment state,A i

represents the set of actions of agent i, P is the state transition probability distribution function, R i

is the reward function of agent i, and γ is the discount factor.

Generating an optimal joint strategy for MARL is difficult when multiple agents are learning
in a non-stationary environment. There is a large amount of MARL research today to address such
problems. In this study, we use a distributed MARL with cooperation mechanism [29]. In a distributed
cooperative multi-agent, agents share rewards among them, i.e., r1 = r2 = · · · = rN. The structure of a
distributed MARL with cooperation mechanism is shown in Fig. 3.

Figure 3: MARL
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4 Multi-Zone Residential HVAC System Control Problem Formulation
4.1 Optimization Control Problem

In this study, we consider a residential apartment with multiple zones. Firstly, we give a brief
introduction of multi-zone residential HVAC system control problem. The goal of the HVAC control
is to minimize energy consumption while keeping thermal comfort within the comfort band. When
there is a difference between indoor temperature and humidity and the set point, the HVAC system
will be turned on to push the indoor temperature and humidity closer to the set point to meet the
comfort level of the user. In this paper, we consider HVAC systems being utilized for cooling without
loss of generality.

In optimization control problems, we need to consider not only the energy consumption but also
the thermal comfort of the user. Thermal comfort is usually influenced by many factors such as
temperature, humidity, wind speed, thermal radiation and clothing. Generally speaking, temperature
and humidity are two factors that are easier to consider and measure in real time. Fanger [30] proposed
a Predicted Mean Vote-Predicted Percentage Dissatisfied (PMV-PPD) thermal comfort model to
express people’s satisfaction with the environment. The value of PPD ≤10 is considered acceptable
according to the ASHRAE 55-2017 [31]. The range of PMV is [−3, 3], where −3 stands for cold, 3 for
hot, and 0 for moderate. In this work, we use a Python package in [32] to calculate PMV and PPD. We
consider PMV and PPD together to maintain thermal comfort of the occupants. We use the PMV-PPD
model that takes as inputs room temperature, room humidity, average air velocity, metabolic rate, and
clothing insulation, and outputs the PMV-PPD values. The average air velocity, metabolic rate and
clothing insulation are set to general default values of 0.1, 1.1 and 0.5.

4.2 Mapping Multi-Zone Residential HVAC Control Problem into Markov Decision Process (MDP)
In this section, we formulate the multi-zone residential HVAC control problem as an MDP which

can be solved by deep RL algorithms. Because of the complex thermal dynamics of HVAC, it is difficult
to obtain the state transition probability P. As a result, we need model-free DRL methods to solve
the optimal control problem. The model-free DRL method does not require any prior knowledge of
the environment or P in advance. If P is known, we can solve it using model-based RL methods such
as dynamic programming, which becomes a planning problem. In this paper, an MDP mainly includes
state, action and reward functions, which can be defined as follows:

1) State space

The state space includes: 1) current outdoor temperature Tout(t); 2) current outdoor relative
humidity RHout(t); 3) current indoor temperature Tin,Roomk(t) for Room1, Room3 and Room5; 4)
humidity ratio Hrin,Roomk(t) for Room1, Room3 and Room5; 5) the lower bound of the comfort
|PMVRoomk(t)| and PPDRoomk(t) for Room1, Room3 and Room5; 6) current electricity price price(t),
where t is the current time step.

Note that the state space includes the lower bound of the comfort |PMVRoomk(t)| and PPDRoomk(t),
which change with time. This is reasonable when the room is occupied, the indoor comfort needs to be
maintained at a higher level than when the room is not occupied. It is necessary to lower the range of
user comfort to save energy during working hours. The state space also includes the current electricity
price price(t). It is also necessary to reduce the cost while meeting the lower bound of comfort.
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2) Action space

The action space shown in Table 1 includes temperature set-points and relative humidity set-points
in Room1, Room3 and Room5. In DQN, the action space is discrete, so this study discretizes the range
of temperature setpoints and relative humidity set-points respectively with a step size of 0.5◦C and
5%. If there is only one agent, there will be 157464 action combinations. Using a single agent DQN
algorithm is difficult to converge due to the above 157464 action combinations.

Table 1: Action space

Parameter Notation Range Unit

Temperature set-point for Room1 Tset
Room1 [24, 28] ◦C

Temperature set-point for Room3 Tset
Room1 [24, 28] ◦C

Temperature set-point for Room5 Tset
Room5 [24, 28] ◦C

Relative humidity set-point for Room1 RHset
Room5 [24, 28] ◦C

Relative humidity set-point for Room3 RHset
Room5 [40, 65] %

Relative humidity set-point for Room5 RHset
Room5 [40, 65] %

3) Reward function

To minimize energy consumption under the condition of satisfying thermal comfort requirements,
we define the reward function as:

rewardRoom1 (t) =
{
α ∗ (|PMVRoom1| + PPDRoom1) + β ∗ QRoom1

t , if PMV and PPD meet current
penalty, requirements, otherwise (3)

rewardRoom3 (t) =
{
α ∗ (|PMVRoom3| + PPDRoom3) + β ∗ QRoom3

t , if PMV and PPD meet current
penalty, requirements, otherwise (4)

rewardRoom5 (t) =
{
α ∗ (|PMVRoom5| + PPDRoom5) + β ∗ QRoom5

t , if PMV and PPD meet current
penalty, requirements, otherwise (5)

rt = −(rewardRoom1(t) + rewardRoom3(t) + rewardRoom5(t))/153, (6)

where rewardRoom1(t), rewardRoom3(t), and rewardRoom5(t) respectively represent the rewards obtained by
agents from Room1, Room3 and Room5 at time t. QRoomk

t represents the cost spent at time t. 153
represents the number of days of training. The reward function is closely related to thermal comfort
and energy consumption. The thermal comfort we represent by considering PMV and PPD together.
Taking into account the occupancy, we set weighting coefficients α and β to reflect whether to focus
on considering thermal comfort or energy consumption. penalty we set is 50. Also taking into account
the occupancy in a room, we set different ranges for PMV and PPD in three rooms. The higher the
comfort, the closer the absolute value of PMV is to 0, and the smaller the value of PPD.

4.3 MAQMC-Based Control Strategy for Multi-Zone HVAC System
In this section, we detail the proposed MAQMC algorithm. MAQMC follows a similar process to

that of the DQN. MAQMC can be divided into MAQMC2 and MAQMC3 as shown in Algorithm 1.
These two algorithms are further explained as follows:
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Algorithm 1: MAQMC2 and MAQMC3
Require: N \ \ Number of agents (agent n, n = 1, 2, . . . ,N), N = 2 or 3
Require: A1, A2, . . . ,AN\\Action-space of each agent
Require: Learning rate lr ∈ [0, 1], ε > 0
Require: M\\Number of episodes
1: for each agent n = 1 to N do
2: Initialize online network Qn with random weight ωn

3: Initialize target network Q′
n with random weight ω′

n = ωn

4: Initialize replay buffer Dn

5: end for
6: for eposide = 1 to M do
7: Obtain the initial state s0

(
Tout(0), RHout(0), Tin,Roomk (0), Hrin,Roomk(0), |PMVRoomk (t) |,

PPDRoomk(t), price (t))
8: for t = 1 to T do
9: The action an

t is selected by ε−greedy policy at st

10: an
t =

⎧⎨⎩ Samplefrom An, probability ε,
arg

ãn
j

max Qn

(
st, ãn

)
, otherwise,

11: rt is obtained according to Eq. (6), st + 1 is observed from the environment, st + 1, rt =
env.step

(
a1

t , . . . , aN
t

)
12: Store transition

(
st, an

t , rt, st+1

)
in Dn

13: Draw mini-batch sample transitions < sj, an
j , rj, sj+1 > from Dn

14: Y n
j =

{
rj, if episode terminates at step j + 1

rj + γ max
ãn

j

Q′
n

(
sj+1, ãn

j ; ω′
n

)
, otherwise

15: Perform a gradient descent step on
(
Y n

j − Qn

(
sj, an

j ; ωn

))2
with respect to the network

parameter ωn

16: Every C steps reset Q′
n = Qn

17: end for
18: end for

MAQMC2: In the MAQMC2, we use two agents: one to control the temperature set-
points in three zones and the other to control the humidity setpoints. First, the online network
Qn is randomly initialized for each agent n, and their corresponding target networks Q′

n are
initialized with the same parameters, as shown in lines 1–3. In line 4, replay buffer Dn is
also initialized. Starting from line 6, for each episode, the agents can obtain the initial state
s0

(
Tout(0), RHout(0), Tin,Roomk (0), Hrin,Roomk(0), |PMVRoomk (t) |, PPDRoomk(t), price (t)

)
, then HVAC control

action, i.e., set-points of the temperature and humidity, is chosen based on the online network Qn by
ε − greedy policy, as shown by lines 9 and 10. Next, in line 11, the selected action is executed in the
environment so that RL agents get the reward rt from the reward function we set as well as the next
state st+1. The transition (st, an

t , rt, st+1) is stored in replay buffer Dn. When the number of transitions
reaches the limit we set, a small-batch of transitions is randomly selected to calculate Y n

j , as shown in
lines 13 and 14. Randomly selected transitions can break the temporal correlation, making it possible
to satisfy the condition that the data for machine learning obeys independent identical distribution.
The parameters of the online network Qn are updated by the mean square error of Y n

j with respect to
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the Q value of the online network in line 15. After C steps, the parameters of the online network Qn

are copied to the target network Q′
n, as shown by line 16.

MAQMC3: In the MAQMC3, we use three agents: the agent, which controls the temperature
setpoint and humidity setpoint, is deployed in each zone. The training process of MAQMC3 is similar
to the that of MAQMC2. It mainly differs from MAQMC2 in that the joint action of the agents is
different.

The control interval of RL agents is one hour. Since we only focus on the HVAC cooling, the
weather data from May to September in Changsha is used as the training data. During the training
period, May to September is defined as an episode. In 50 episodes are simulated for RL agents to learn.
After training, we use weather data from two different regions as test data to verify the adaptability
and robustness of the proposed MAQMC.

5 Case Study

In this section, a multi-zone residential HVAC model is used to demonstrate the effectiveness of
the applied MAQMC-based control method, as well as by comparison with the single-DQN-based
control method and the benchmark cases, to fully verify the advantages of the MAQMC method.

5.1 Simulation Environment
In this study, we use a multi-zone residential HVAC model [33] with real-world weather data [34]

to train and test the proposed MAQMC. The plain layout of the residential HVAC model which has
five zones and three occupants is shown Fig. 4. The layout of the residential apartment is identified
from multi-level residential buildings in Chongqing, China.

Figure 4: Plain layout of the 3-occupant apartment

Considering whether the room is occupied and how many occupants there are at different
moments, the specific schedule is shown in Table 2. As the toilet and kitchen are occupied only under
specific circumstances, these two rooms are not considered for the time being. When Room1, Room3
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and Room5 are occupied, there are 2 occupants, 1 occupant and 3 occupants, respectively. Agents
control the set points of temperature and humidity in each room, so that when the room is occupied, it
can save energy while maintaining thermal comfort, and pay more attention to energy saving when it is
unoccupied. The specific simulation process is shown in Fig. 5. Firstly, the PMV and PPD of the three
rooms are calculated by the indoor temperature and relative humidity. Then, judge whether rooms are
occupied and whether PMV and PPD are within the set range to get the reward. Agents get the state
and the reward to learn continuously, and finally get the optimal strategy.

Table 2: Occupancy schedule

Room Time The lower bound of the comfort

Room1 0:00–7:00 |PMVRoom1| <= 0.15 and PPDRoom1 <= 8
Room1 7:00–24:00 0.2 <= PMVRoom1 <= 0.3 and PPDRoom1 <= 10
Room3 0:00–7:00 |PMVRoom3| <= 0.2 and PPDRoom3 <= 9
Room3 7:00–24:00 0.2 <= PMVRoom3 <= 0.3 and PPDRoom3 <= 10
Room5 0:00–7:00 0.2 <= PMVRoom5 <= 0.3 and PPDRoom5 <= 10
Room5 7:00–24:00 |PMVRoom5| <= 0.1 and PPDRoom5 <= 6

Figure 5: The simulation process

5.2 Implementation Details
The detailed design of networks and hyperparameters in the MAQMC are shown in Table 3.

The design of the DQN is also listed for comparison. The input of MAQMC and DQN is a vector
containing state variables. Since the DQN requires a discrete action space, we discretize the range
of temperature setpoints and relative humidity set-points respectively with a step size of 0.5◦C and
5%. Therefore, there are 54 actions for each zone and 157464 combinations of actions for the 3-zone
HVAC. In MAQMC2, agent 1 contains 729 actions of temperature and agent 2 contains 216 actions
of humidity. As a result, the outputs of agent 1 and agent 2 in MAQMC2 are vectors respectively
containing 729 Q values and 216 Q values. In MAQMC3, the agent in each zone contains 54 actions
of temperature and humidity. The output of each agent in MAQMC3 is a vector containing 54 Q
values.
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Table 3: DNN structure and hyperparameters applied in MAQMC and DQN

Algorithm MAQMC2 MAQMC3 DQN

Size of input 15 15 15
No. of hidden layers 2 2 2
Size of each hidden layer [11, 128], [128, 64] [11, 128], [128, 64] [11, 128], [128, 64]
Size of output agent 1 : [729] agent 2 : [216] [54] [157464]
Activation function Relu Relu Relu
Optimizer Adam Adam Adam
Learning rate 10−3 10−3 10−3

Batch size 64 64 64
Discount factor (γ) 0.1 0.1 0.1
Buffer size 20000 20000 20000
Delayed policy update C 2 2 2
Weights of the reward α = 0.1, β = 10 α = 0.1, β = 10 α = 0.1, β = 10

In this study, we similarly design two benchmark cases without the RL agent described as follows:
(1) Fixed setpoint case is shown in Table 4. The setpoints are set at values that more comfort-oriented
values; (2) Rule-based case is shown in Table 5. The setpoints are set at values that favor energy
efficiency at peak price hours, and more comfort-oriented values at non-peak price hours.

Table 4: Fixed setpoint

Room Time Set-points

Room1 0:00–7:00 26◦C and 45%
Room1 7:00–24:00 26.5◦C and 60%
Room3 0:00–7:00 26◦C and 45%
Room3 7:00–24:00 26.5◦C and 60%
Room5 7:00–24:00 26.5◦C and 60%
Room5 0:00–7:00 26◦C and 45%

Table 5: Rule-based case

Room Condition Set-points

Room1 If the electricity price is high and 0:00–7:00 28◦C and 60%
Room1 If the electricity price is low and 0:00–7:00 25.5◦C and 55%
Room1 If the electricity price is high and 7:00–24:00 28◦C and 60%
Room1 If the electricity price is low and 7:00–24:00 26.5◦C and 60%
Room3 If the electricity price is high and 0:00–7:00 28◦C and 60%
Room3 If the electricity price is low and 0:00–7:00 25.5◦C and 55%
Room3 If the electricity price is high and 7:00–24:00 28◦C and 60%

(Continued)
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Table 5 (continued)

Room Condition Set-points

Room3 If the electricity price is low and 7:00–24:00 26.5◦C and 60%
Room5 If the electricity price is high and 0:00–7:00 28◦C and 60%
Room5 If the electricity price is low and 0:00–7:00 26.5◦C and 60%
Room5 If the electricity price is high and 7:00–24:00 28◦C and 60%
Room5 If the electricity price is low and 7:00–24:00 25.5◦C and 55%

5.3 Performance of the MAQMC
5.3.1 Convergence of the MAQMC

The rewards obtained after each episode for MAQMC2, MAQMC3 and single-DQN are pre-
sented in Fig. 6 during training. We conduct five independent experiments on MAQMC2 and
MAQMC3, respectively. We take the months of May to September as a training episode. Notice that
the reward for single-DQN is not convergent and the rewards for both MAQMC2 and MAQMC3
converge. This is because it is difficult for single-DQN to select the optimal action among 157464
action combinations in a limited amount of time. MAQMC can then greatly reduce the space of action
combinations, allowing for collaborative cooperation among each agent to solve complex control
problems. From Fig. 6, MAQMC3 converges faster than MAQMC2, and its reward is somewhat
higher than that of MAQMC2. The reward of MAQMC3 tends to converge after 7 episodes, while
that of MAQMC2 begins to converge after 10 episodes. In MAQMC3, there are three agents such
that the action space of each agent will be smaller than that of the two agents in MAQMC2.
Therefore, MAQMC3 will learn faster than MAQMC2. The reward of MAQMC3 is higher than that
of MAQMC2 because some of the selected actions in MAQMC2 may be suboptimal while learning.

Figure 6: The rewards of MAQMC2, MAQMC3 and single-DQN

5.3.2 Computational Efficiency

In both the training process and the testing process, the code is written in Python 3.7 with the open
source deep learning platform pytorch 1.6 [35]. The time cost is around a few minutes for testing, which
is highly time-efficient. The hardware environment is a desktop with an Intel(R) Core(TM) i5-10400F
2.9 GHz CPU and 8.00 GM RAM.
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5.3.3 Comparison of the MAQMC with the Benchmark Cases under Different Weather Data

a) Overall evaluation of energy consumption, cost and thermal comfort of the four methods

In this work, the well-trained RL agents from MAQMC2 and MAQMC3 are applied in new test
days to verify their learning performance and adaptability. We compare MAQMC with benchmark
cases in terms of energy consumption and thermal comfort. The final optimized test results of the
MAQMC and the benchmark cases are shown in Table 6. Energy consumption and total cost are
further shown in Fig. 7. In Table 6, the well-trained RL agents from MAQMC2 and MAQMC3
are applied to generate the HVAC control strategies for the test 20 days from July 01 to July 20 in
Chongqing. The weather conditions on the test days are different from those on the training days,
because the outdoor temperature in Chongqing is higher than that in Changsha in summer. Energy
consumption in the table represents the total energy consumption on the test day, and the total cost
involves the total energy cost over the 20 days. Average comfort violation in a day indicates on the
average number of hours per day in violation of thermal comfort. As shown in the table, the control
strategy generated by MAQMC3 has less energy consumption, lower cost and fewer average comfort
violation than those of MAQMC2. With respect to benchmark cases, in the fixed setpoint case, the
setpoints are always set to be biased towards comfort to avoid any comfort violation. However, the
fixed setpoint case has the highest energy consumption and total cost. In the rule-based case, because
it follows the electricity price structure, it has the lowest energy consumption and total cost among
the four methods. Since the setpoints are always set in favor of energy saving at peak price hours, its
comfort violation is the highest. The indoor temperature and humidity ratios of the three zones are
shown in Figs. 8–13. PMV-PPD in each zone is further illustrated in Figs. 14–16.

Table 6: Test results of different HVAC control methods

Control method MAQMC2 MAQMC3 Fixed setpoint Rule-based

Energy consumption (kWh/m2) 12.90 12.55 13.36 10.16
Total cost (RMB) 1361.55 1340.84 1424.68 851.84
Average comfort violation in a day (h) 5.67 5.18 0 13.60

(a) energy consumption (b) total cost

Figure 7: Comparison of energy consumption and cost
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(a) Room1 based on MAQMC2 for 20 test days.

(b) Room1 based on MAQMC3 for 20 test days.

Figure 8: Room1 based on MAQMC and benchmark cases for 20 test days
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(a) Room1 based on rule-based for 20 test days.

(b) Room1 based on a fixed setpoint for 20 test days.

Figure 9: Room1 based on MAQMC and benchmark cases for 20 test days
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(a) Room3 based on MAQMC2 for 20 test days.

(b) Room3 based on MAQMC3 for 20 test days.

Figure 10: Room3 based on MAQMC and benchmark cases for 20 test days
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(a) Room3 based on rule-based for 20 test days.

(b) Room3 based on a fixed setpoint for 20 test days.

Figure 11: Room3 based on MAQMC and benchmark cases for 20 test days
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(a) Room5 based on MAQMC2 for 20 test days.

(b) Room5 based on MAQMC3 for 20 test days.

Figure 12: Room5 based on MAQMC and benchmark cases for 20 test days
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(a) Room5 based on rule-based for 20 test days.

(b) Room5 based on fixed setpoint for 20 test days.

Figure 13: Room5 based on MAQMC and benchmark cases for 20 test days
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(a) PMV in Room1(0:00-7:00) (b) PMV in Room1(7:00-24:00)

(c) PPD in Room1(0:00-7:00) (d) PPD in Room1(7:00-24:00)

Figure 14: Comparison of energy consumption and cost
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(a) PMV in Room3(0:00-7:00) (b) PMV in Room3(7:00-24:00)

(c) PPD in Room3(0:00-7:00) (d) PPD in Room3(7:00-24:00)

Figure 15: Comparison of energy consumption and cost
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(a) PMV in Room5(0:00-7:00) (b) PMV in Room5(7:00-24:00)

(c) PPD in Room5(0:00-7:00) (d) PPD in Room5(7:00-24:00)

Figure 16: Comparison of energy consumption and cost

b) Control performance of MAQMC for PMV-PPD in three rooms under price signals

From Figs. 8–13, the indoor temperature and humidity ratio change at a daily cycle. From Figs. 8
and 14, indoor temperature in Room1 is basically controlled between 25◦C and 27.5◦C based on the
MAQMC. From 0:00 to 7:00, PMV in Room1 is more biased towards the positive interval based on
MAQMC3. However, based on MAQMC2 is more biased towards the negative interval. Therefore,
MAQMC3 is better than MAQMC2 in reducing energy costs. From 7:00 to 24:00, PMV at some
moments violates the comfort range we set, which may be due to the fact that MAQMC makes the
setpoint more biased towards better comfort at off-peak price hours. Throughout the day, PPD in
Room1 remains within the comfort range based on the MAQMC. In the rule-based case, since the
rule-based control is with the price structure, if the electricity price is high at this moment and the
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outdoor temperature is high, which can lead to severe comfort violation, as shown in Fig. 14. Finally,
in the fixed setpoint case, since the setpoint is always biased towards comfort, the comfort level in the
room is kept at the highest level in the four cases. However, this fixed setpoint case leads to the highest
energy consumption and cost.

Indoor temperature, humidity ratio and PMV-PPD in Room3 are shown in Figs. 10 and 15. From
Fig. 15, PMV in Room3 based on MAQMC2 and MAQMC3 basically remained in [−0.2, 0.2] in 0:00
to 7:00. However, between 7:00 and 24:00, PMV violates the set range based on MAQMC at some
moments. PPD in Room3 based on MAQMC are kept above the lower bound of PPD and the value
of PPD is almost below 7. Similarly, the rule-based case with the highest level of comfort violation but
it has the lowest energy cost.

In Figs. 12 and 16, the details of Room5 are presented. From 0:00 to 7:00, PMV in Room5 based
on MAQMC violation moments are more. This is also partly due to the fact that the HVAC system is
not fully activated, for example, only the humidity regulation system is turned on and the temperature
regulation system is not turned on. Between 7:00 and 24:00, only a few moments violate the comfort
level in terms of PMV. For PPD, only at 7:00 to 24:00 very few moments have slight comfort violation.
Again, the rule-based case is the control method that has the highest comfort level violations and the
fixed setpoint is the method that has the least violations.

Table 7 presents the average PMV and PPD value for all three zones In July 1st to July 20th under
Chongqing weather data. MAQMC2 and MAQMC3 can maintain the PMV and PPD value in the set
range for most of the time. The average value of PMV in Room3 from 7:00 to 24:00 is slightly less than
0.2 based on MAQMC2, so there is a slight comfort violation in this time period. And the average
value of PMV in Room5 from 0:00 to 24:00 is also less than 0.2 based on MAQMC2 and MAQMC3.
However, the average PMV value of MAQMC3 is higher than that of MAQMC2. Therefore, the energy
consumption of MAQMC2 is slightly higher than that of MAQMC3. The average values of PPD
are kept within the set range based on MAQMC2 and MAQMC3. The rule-based control method
has the most comfort violations and the fixed setpoint method has the least comfort violations. The
average comfort violation in the three rooms on the test days is shown in Table 8. Except for the fixed
setpoint, MAQMC3 has the smallest average comfort violation, MAQMC2 is the second, and rule-
based control is the worst. The total average comfort violation for MAQMC was less than half of the
rule-based.

Table 7: PMV-PPD

Room Time Comfort Metric MAQMC2 MAQMC3 Fixed setpoint Rule-based

0:00–7:00 PMV Mean −0.0275 0.057571429 0 0.238
0:00–7:00 PMV Std 0.104826853 0.098746616 0 0.2315795
0:00–7:00 PPD Mean 5.243571 5.249285714 5 7.288571429

Room1 0:00–7:00 PPD Std 0.387801535 0.492168367 0 2.209172693
7:00–24:00 PMV Mean 0.223059 0.203147059 0.208385093 0.328264706
7:00–24:00 PMV Std 0.100570919 0.109160549 0.012338001 0.131003611
7:00–24:00 PPD Mean 6.212059 6.101470588 5.890372671 7.530882353
7:00–24:00 PPD Std 0.59526291 0.491548828 0.061489268 1.512426863

(Continued)
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Table 7 (continued)

Room Time Comfort Metric MAQMC2 MAQMC3 Fixed setpoint Rule-based

0:00–7:00 PMV Mean 0.060286 0.048285714 0.000379747 0.227714286
0:00–7:00 PMV Std 0.093915183 0.145700703 0.005089134 0.215644735
0:00–7:00 PPD Mean 5.237143 5.480714286 5.000632911 7.036428571

Room3 0:00–7:00 PPD Std 0.36092265 0.008481889 0 2.071047791
7:00–24:00 PMV Mean 0.193 0.221882353 0.205248447 0.319176471
7:00–24:00 PMV Std 0.096231959 0.108814953 0.016670943 0.119967677
7:00–24:00 PPD Mean 5.95 6.263823529 5.867080745 7.410882353
7:00–24:00 PPD Std 0.543206909 0.695211242 0.110903096 1.482321616

0:00–7:00 PMV Mean 0.13 0.170928571 0.198734177 0.357
0:00–7:00 PMV Std 0.101782672 0.095434609 0.029587227 0.081872862
0:00–7:00 PPD Mean 5.562857 5.789285714 5.824050633 7.792142857

Room5 0:00–7:00 PPD Std 0.462763494 0.562713931 0.196417715 1.149292423
7:00–24:00 PMV Mean −0.01797 −0.006676471 0.000434783 0.267176471
7:00–24:00 PMV Std 0.101369672 0.101988264 0.00731555 0.229806632
7:00–24:00 PPD Mean 5.222941 5.211470588 5.000931677 7.524705882
7:00–24:00 PPD Std 0.385125574 0.431794174 0.016269784 2.091057678

Table 8: Average comfort violation (h)

Room MAQMC2 MAQMC3 Fixed setpoint Rule-based

Room1 4.4 4.6 0 12.6
Room3 4.5 4.4 0 12.4
Room5 7.8 6.55 0 15.8

Total average 5.57 5.18 0 13.6

In summary, both MAQMC2 and MAQMC3 can learn from outdoor temperature and humidity,
indoor conditions and electricity price signals to learn better control strategies. Of course, MAQMC
also performs average at some time, but overall performs well.

6 Conclusion

In this paper, we propose a MAQMC method that is applied to control the multi-zone HVAC
system to minimize energy consumption while maintaining occpants’ comfort. The simulation results
show that the trained RL agents of MAQMC are able to save energy while maintaining comfort
and have the adaptability to different environments. MAQMC is more energy efficient than fixed-
point and better than rule-based to maintain comfort. And The performance of MAQMC3 is better
than that of MAQMC2. On the one hand, the action space for each intelligence in MAQMC3 is
much smaller than that of MAQMC2, so MAQMC3 is able to explore more space to get a better
strategy. On the other hand, MAQMC3’s agents (one agent controls the temperature and humidity
of a room) are more coordinated than MAQMC2’s agents (one agent controls the temperature and
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the other the humidity). MAQMC3 and MAQMC2 can reduce energy consumption by 6.27% and
43.73%, respectively, compared with to the fixed point. Compared with the rule-based, MAQMC3
and MAQMC2 can reduce the comfort violation by 61.89% and 59.07%, respectively.

For future work, we focus on both the cooling and heating seasons. Being able to develop RL
agents that can adapt to both heating and cooling on a year-round basis. The agents can make optimal
decisions while maintaining thermal comfort and saving energy.
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