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ABSTRACT

This new work aims to develop a full coupled thermomechanical method including both the temperature profile
and displacements as primary unknowns of the model. This generic full coupled 3D exact shell model permits the
thermal stress investigation of laminated isotropic, composite and sandwich structures. Cylindrical and spherical
panels, cylinders and plates are analyzed in orthogonal mixed curved reference coordinates. The 3D equilibrium
relations and the 3D Fourier heat conduction equation for spherical shells are coupled and they trivially can be
simplified in those for plates and cylindrical panels. The exponential matrix methodology is used to find the
solutions of a full coupled model based on coupled differential relations with respect to the thickness coordinate.
The analytical solution is based on theories of simply supported edges and harmonic relations for displacement
components and sovra-temperature. The sovra-temperature magnitudes are directly applied at the outer faces
through static state hypotheses. As a consequence, the sovra-temperature description is assumed to be an unknown
variable of the model and it is calculated in the same way as the three displacements. The final system is based on a set
of coupled homogeneous differential relations of second order in the thickness coordinate. This system is reduced
in a first order differential relation system by redoubling the number of unknowns. Therefore, the exponential
matrix methodology is applied to calculate the solution. The temperature field effects are evaluated in the static
investigation of shells and plates in terms of displacement and stress components. After an appropriate preliminary
validation, new benchmarks are discussed for several thickness ratios, geometrical data, lamination sequences,
materials and sovra-temperature values imposed at the outer faces. Results make evident the accordance between
the uncoupled thermo-mechanical model and this new full coupled thermo-mechanical model without the need
to separately solve the Fourier heat conduction relation. Both effects connected with the thickness layer and the
related embedded materials are included in the conducted thermal stress analysis.
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Three-dimensional exact thermo-elastic shell model; full coupled thermoelasticity; three-dimensional fourier heat
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1 Introduction

The monitoring of temperature gradients in the aerospace structures is one of the main topics in
the stress analysis. The study of temperature contribution on strains and stresses is very important
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for modern aircraft, spaceships, launchers, high-tech propulsion devices, pressure vessels for nuclear
energy applications and other installations for industries. In each proposed application, a dedicated
structural thermal analysis must be conducted where several features must be included, e.g., heat trans-
fer conditions, transitory and static state thermal stress components, production and remaining stress
components, vibrations of heated plate and shell structures, large deflections, post-buckling behavior
and analyses of shell and plate geometries [1–4]. When thermal stress analyses are conducted, both
the opportune developing of the mechanical models and the accurate definition of the temperature
fields are fundamental. In this work, the coupled structural model is related to the application of the
three-dimensional equilibrium relations and the three-dimensional Fourier heat conduction relation
for shells. In this way, the thermal field is an unknown variable as the displacements along with
the three main directions. For this reason, the proposed model is defined as full coupled. The main
features about full coupled thermo-mechanical analyses were discussed in [5–11] using the appropriate
developing of divergence and gradient relations, constitutive equations, variational statements for the
case of linear coupled thermoelastic problem, boundary conditions, proportional relations between
the gradient of the thermal unknown and the heat flux, field equations, balance relations for energy
and the starting circumstances.

The most recent works in literature about the thermo-elastic investigation of laminated and one-
layered shells and plates are discussed in four different sections: the first one is related to 3D exact
solutions, the second one is on 3D numerical models, the third one is related to 2D exact solutions
and the last part is on 2D numerical models. Therefore, the innovative points of this new three-
dimensional full coupled thermo-elastic shell theory for the thermal stress investigation of sandwich
and multilayered structures are properly focused.

Bhaskar et al. [12] proposed a closed-form three-dimensional model for plates having an assumed
temperature profile as a linear function in the thickness direction. The model was written as an uncou-
pled and linear thermo-elastic solution based on the classic pure elastic 3D models by Pagano et al. [13–
15]. The closed-form three-dimensional plate models in [16–19] employed a calculated through-the-
thickness temperature evaluation accomplished via the study of the typical heat conduction equations
in static conditions. Kulikov and Plotnikova [17,18] employed the methodology of sample surfaces and
they developed exact 3D solutions for laminated composite shells. Governing relations in displacement
form for a plate embedding monoclinic layers were written in [19]. Exact solutions for thermal
stress investigations of composite multilayered plates were developed in [20]. Brischetto et al. [21,22]
developed a 3D uncoupled thermo-elastic model for composite and functionally graded shells and
plates having the temperature evaluation defined via the three-dimensional Fourier heat conduction
relation. Monge et al. [23] proposed a 3D semi-analytical thermo-mechanical model where the
Differential Quadrature Method (DQM) was employed for the derivatives in the thickness direction
analogous to the 3D pure elastic shell theory in [24] and [25]. In [26], a 3D theory of elasticity was
proposed for functionally graded and carbon nanotube reinforced composite rectangular plates having
simply supported sides and thermo-mechanical loads imposed at the external surfaces. The use of the
Fourier series expansion in the in-plane directions and the state space methodology along the thickness
direction allowed exact solutions for static analysis of plates.

Numerical 3D models are more general than exact 3D models but even more complicated. They
permit the analysis of general boundary, loading and lamination conditions. Moleiro et al. [27]
presented a mixed layer-wise theory for the full coupled thermo-elastic bending investigation of
multilayered plates embedding functionally graded material layers under thermal and/or mechanical
loads. Adineh et al. [28] proposed a three-dimensional solution for plates using the differential
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quadrature method and a temperature evaluation accomplished from the resolution of the three-
dimensional heat conduction problem. Thermal stress investigation of plates was proposed in [29]
where finite difference methods for the thermal investigation and 3D shell finite elements for the stress
calculation were employed. In [30], a semi-loof finite element model for the thermal stress investigation
of laminated shells and plates was obtained. The 3D multifield relations for shells of revolution
embedding functionally graded piezoelectric layers and subjected to thermal and mechanical loads
were obtained in [31]; the related displacement and heat conduction relations included thermal effects.
Governing equations, based on the three-dimensional elasticity and heat conduction equations, were
proposed in [32] for the thermoelastic investigation of multilayered composite cylinders. Thermoelastic
vibrations of circular panels having free and clamped sides, with a thermal shock applied on the
external faces, were discussed in [33]. Yeh [34] proposed a system of coupled thermo-elastic relations
for vibrations of plates via the Galerkin method. The finite element static analysis of piezo-magnetic-
elastic plates exposed to hygrothermal loads was analyzed in [35]. The numerical modeling is obtained
via linear coupled constitutive relations for magneto-electro-elastic materials considering the effects
connected with thermal and hygroscopic fields and the principle of total potential energy. A three-
dimensional finite element theory based on the zig-zag first order sub-laminate approximations was
discussed in [36]. The temperature field was calculated using a thermal theory where the trough-the-
thickness temperature profile was imposed to linearly change in each layer.

Important simplified assumptions are performed through the thickness direction of the structures
in 2D exact models. The 2D exact model for shells proposed in [37] was based on the assumption of
a temperature profile through the thickness and the Sander’s theory for spherical shells. An exact
2D analytical solution was presented in [38,39] where the temperature profile was assumed as linear.
In [38], the thermal effects were analysed on plates by using refined theories. The thermal effects
on cross-ply shells were presented in [39]. An exact 2D formulation in cylindrical coordinates was
discussed in [40]. The exact solution was proposed via the Airy stress function written in a Fourier-
series form and the temperature distribution was also written in cylindrical coordinates. A layered
shear deformation laminated plate theory was presented in [41]. Both in-plane displacements and
temperature were assumed to be linear for each discretized layer. In [42], a new higher-order theory
was developed for thick laminated plates subjected to several combinations of thermal and mechanical
loads. Other analytical two-dimensional refined equivalent single layer and layer-wise models were
presented in [43] for laminated and sandwich shell panels to remark the difference between the linear
assumed temperature profile and the three-dimensional one computed in the thickness direction. The
temperature profile effects were compared in terms of displacement and stress results. Full coupled 2D
thermo-elastic analyses of shell and plate structures (that includes the temperature in the governing
relations as a primary unknown of the model) were introduced in [44] and [45].

In the framework of two-dimensional numerical theories, the work [46] solved the one-dimensional
heat transfer equation to calculate a temperature profile for cylindrical shells where only the material
layer effect was included. The Rayleigh-Ritz method applied to classical shell theories was proposed for
the thermal stress analysis of multilayered cylindrical panels. The temperature profile was calculated
in [47] by solving the three-dimensional variant of heat conduction relation in order to consider both
the effects related to the embedded material and the thickness layer. A third-order theory for shells
where the transverse normal displacement is constant through the thickness direction was proposed
in [47]. Barut et al. [48] proposed a non-linear shell model based on the Midlin theory for the finite
element thermal stress investigation. The proposed finite element was locking free and the temperature
distribution was defined as non-uniform. Thermally-induced large-deflection behaviors of laminates
were investigated in [49] in the case of doubly-curved panels, cylindrical shells and flat panels. The
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employed finite element methodology was developed via the first-order shear deformation theory.
Sandwiches with honeycomb core and composite faces were studied in [50]. The analysis was developed
for sandwich configurations loaded with a through-the-thickness temperature gradient combined with
pressure loadings. Raju et al. [51] presented a thermal study for tapered columns with rectangular
sections via the finite element analysis; the work was useful to understand the post-buckling behaviour
of the columns. Daneshjo et al. [52,53] developed a zigzag third-order shear deformation plate theory
for the dynamic coupled thermo-elastic investigation of multilayered structures. The analysis was
proposed as a mixed finite element model. Ibrahimbegovic et al. [54] developed a coupled thermo-
mechanical first-order shear deformation theory for the finite element investigation of shell panels.
Lee [55] investigated the coupled 1D thermo-elastic problem in quasi-static conditions for laminated
hollow axisymmetric cylinders having clamped edges and boundary conditions which depend on time.
The model was built on the basic relations of thermoelastic analysis using a polar coordinate system.
Oh et al. [56] presented a full coupled thermo-electro-mechanical zigzag cubic finite element plate
theory. A simple triangular finite element with three nodes was used.

The present new 3D coupled thermo-elastic shell model has the following innovative points.
It is general for cylindrical and spherical shells, cylinders and plates including different composite,
orthotropic and isotropic layers. The closed-form solution of equations is written using simply-
supported hypotheses for all the sides as boundary conditions and harmonic structures for thermal
and elastic primary unknowns. The system of differential relations is solved using the exponential
matrix methodology, along the thickness direction. In this way, a layer-wise theory is possible where
equilibrium and compatibility conditions can be easily imposed. Moreover, the included temperature
evaluation permits taking into account the thermal thickness layer effect and the thermal material layer
effect without separately solving the 3D Fourier heat conduction equation. In the open literature, there
are not 3D exact full coupled thermo-elastic models based on the exponential matrix methodology able
to analyze several benchmarks using the same tool. The proposed three-dimensional exact coupled
thermo-elastic shell theory can be seen as a generalization of the pure elastic model already proposed
by Brischetto in [57–59] for free vibration and static analyses of plates and shells with constant radii of
curvature. The inclusion of the three-dimensional Fourier heat conduction relation in perpendicular
mixed curved coordinates (see [60–63]) to 3D equilibrium relations gives a homogeneous differential
equation system that can be solved via the procedure shown in [64] and [65]. The new results are
proposed as displacements, stresses and temperature profiles through the thickness direction. They can
be employed as benchmarking results for those researchers interested in the working up and testing
phase of new three-dimensional and two-dimensional numerical shell theories for the thermal stress
investigation of sandwich and laminated composite structures.

2 3D Exact and Coupled Thermoelastic Shell Model

The proposed three-dimensional methodology is able to consider plate and shell geometries by
means of a generic and unique theory where several structures can be analysed by means of the same
tool. The innovative point with respect to the similar 3D model proposed by Brischetto et al. in [21] is
the full coupling considered for the elastic and thermal fields. Therefore, the primary variables of the
model are the three displacement components and the scalar temperature profile.

2.1 3D Equilibrium Relations for Spherical Panels
Fig. 1 shows the different proposed geometries in mixed curved orthogonal reference coordinates

(α, β, z).
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Figure 1: Geometry and applied temperatures for the eight benchmarks

The value h for the thickness is constant in each structure. The origin of these curved coordinates is
positioned in an angle, where α and β are parallel to the sideways and located on the centre reference
surface Ω0. The middle surface Ω0 is the reference surface for the evaluation of all the geometrical
parameters. z is the coordinate in the thickness direction and it is perpendicular to Ω0 and directed
towards the top surface. Rα and Rβ are the radii of curvature in the in-plane directions α and β,
respectively, and they are considered as constant. a and b are the shell dimensions in α and β directions,
respectively. A specific parametric coefficient is calculated for α, β and z directions:

Hα =
(

1 + z
Rα

)
=

(
1 + z̃ − h/2

Rα

)
, Hβ =

(
1 + z

Rβ

)
=

(
1 + z̃ − h/2

Rβ

)
, Hz = 1. (1)

Hα and Hβ are functions of the thickness coordinate z (it varies in the range between −h/2 and
+h/2 where the origin is located in correspondence of the �0 surface) or z̃ (it oscillates in the range
between 0 and h with the zero located at the bottom surface).

For shells with constant curvature radii, the parameters Hα and Hβ showed in Eq. (1) are linear
functions in the thickness direction z. For a spherical panel having a given lamination sequence
and composed by a number NL of physical layers, the governing equations are the three equilibrium
equations and the 3D Fourier heat conduction relation. They are valid for each k physical layer:
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= 0. (5)

Eqs. (2)–(5) are valid for all the structures proposed in Fig. 1. The relations are proposed for
spherical panels having constant radii of curvature because they are the most general. They allow
the formulation for plates, cylinders and cylindrical panels by assuming appropriate values for the
two radii of curvatures. Eq. (5) is the 3D Fourier heat conduction equation in steady-state conditions
specifically written for spherical shells and already presented by Brischetto et al. in [21]. In a full
coupled thermoelastic problem, the three-dimensional Fourier heat conduction relation is directly
coupled with the three-dimensional equilibrium relations. The three conduction coefficients in the
α, β and z directions and employed for the three-dimensional Fourier heat conduction relation are:

κ∗k
1 = κk

1

H2
α

, κ∗k
2 = κk

2

H2
β

, κ∗k
3 = κk

3 . (6)

where the dependence by z is due to Hα and Hβ .

2.2 Geometrical and Constitutive Equations
The geometries proposed are loaded by means of a sovratemperature field θ(α, β, z) =

T−T0, where T0 is a reference temperature (commonly, the environment temperature). The geometrical
equations defined in orthogonal mixed curved reference coordinates (α, β, z) are:
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θ k, (7)

where [εαα
k εββ

k εzz
k γ βz

k γ αz
k γ αβ

k]T are the six components of the strain vector for each k layer and they
are defined as the algebraic sum of displacement strain and thermal strain components. The strain
components are defined via the vector of displacements uk, vk and wk in α, β, z directions and via the
sovra-temperature θ k using the thermal expansion coefficient μk

α
, μk

β
and μk

z components described in
the structural reference coordinates (α, β, z). The coefficients for thermal expansion definition in the



CMES, 2023, vol.136, no.3 2557

structural reference coordinates are calculated from thermal expansion coefficients μk
1, μk

2 and μk
3 in

the material reference coordinates (1, 2, 3) via the appropriate rotations.

The constitutive equation allows the six strain components to be linked with the six stress
components via the elastic coefficient matrix C . The constitutive equation is valid for each layer k:

σ k = Ck
εk = Ck

(εk
m − εk

θ
), (8)

the stress vector σ k =[σ αα
k σ ββ

k σ zz
k σ βz

k σ αz
k σ αβ

k]T has 6×1 dimension, the matrix Ck including elastic
coefficients has 6 × 6 dimension and the strain vector (algebraic summation of displacement part
εk

m and thermal part εk
θ
) has dimension 6 × 1. The matrix of elastic coefficients in the global reference

coordinates α, β and z for the orthotropic case, with related 0◦ or 90◦ angles, has the following structure:

Ck =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ck
11 Ck

12 Ck
13 0 0 0

Ck
12 Ck

22 Ck
23 0 0 0
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13 Ck

23 Ck
33 0 0 0

0 0 0 Ck
44 0 0

0 0 0 0 Ck
55 0

0 0 0 0 0 Ck
66

⎤
⎥⎥⎥⎥⎥⎥⎦

. (9)

The analytical form of Eqs. (2)–(5) is only developed for angles of orthotropy 0◦ or 90◦ ; in fact,
these features permit simplifying the mathematical formulation thanks to the feature Ck

16 = Ck
26 =

Ck
36 = Ck

45 = 0. The substitution of Eq. (7) into Eq. (8) allows to link the stresses with the primary
variables of the problem u and θ . The explicit form of Eq. (8) defines the thermo-mechanical coupling
coefficients λk

α
, λk

β
and λk

z in the global coordinates α, β and z. They are defined as follows:

λk
α
= Ck

11μ
k
α
+ Ck

12μ
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13μ
k
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= Ck
12μ
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23μ
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λk
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13μ
k
α
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23μ
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β
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33μ
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2.3 Solution Procedure
The closed-form solution of the coupled relations (2)–(5) is defined via the imposition of the

harmonic form for displacement components and sovra-temperature. This feature means simply
supported boundary conditions for all the analyses that will be carried out. The harmonic relations
for displacement components and the temperature field are:

uk (α, β, z) = Uk (z) cos (αα) sin
(
ββ

)
, (13)

vk (α, β, z) = V k (z) sin (αα) cos
(
ββ

)
, (14)

< wk (α, β, z) , θ k (α, β, z) >=< W k (z) , �k (z) > sin (αα) sin
(
ββ

)
, (15)

where the two parameters α and β are written as α = mπ

a
and β = nπ

b
. a and b indicate the shell

dimensions in in-plane directions. m and n indicate the half-wave numbers in α and β directions,
respectively. Uk(z), V k(z) and W k(z) stand for the displacement maximum values. �k(z) is the sovra-
temperature maximum value.

The introduction of the harmonic expression of the displacements and temperature profile
(Eqs. (13)–(15)), the geometrical relations and the constitutive equations (Eqs. (7)–(12)) into the
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coupled thermo-mechanical Eqs. (2)–(5) gives a set of four differential relations written as functions
of maximum values for the displacement components and for the sovra-temperature with associated
derivatives defined in z. The derivatives performed in α and β directions are exactly defined via
the harmonic expressions (13)–(15): therefore, they are known algebraic values. The final system is
composed of four differential relations of second order in z. They do not have constant terms because
of Hα and Hβ which depend on z. Therefore, each k physical layer must be divided into an appropriate
number of artificial layers. As a consequence, a further index j is introduced for the global artificial
layers and it varies in the range between 1 and the total number of artificial or mathematical layers M.
The number of artificial layers can be calculated from the number of subdivisions of each physical layer.
Assuming that each mathematical layer is sufficiently thin, the coefficients Hα and Hβ can be exactly
calculated in its middle point. In this way, coefficients Aj

s (having s from 1 to 19) and coefficients Jj
r

(with r from 1 to 7) become constant terms. The compact form of this system of partial differential
relations of second order in z is:

Aj
1U

j + Aj
2V

j + Aj
3W

j + Jj
1�

j + Aj
4U

j
,z + Aj

5W
j
,z + Aj

6U
j
,zz = 0, (16)
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6)�
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7�
j
,zz = 0. (19)

This system of equations can be decreased to a first order one via the methodology discussed in
[66] and [67]. The order of the derivatives performed in z is decreased when the number of unknowns in
all j layers is redoubled from 4 (Uj, V j, W j, �j) to 8 (Uj, V j, W j, �j, Uj′ , V j′ , W j′ , �j′). The superscript
′ indicates the partial derivatives in z. Terms �j and �j′ are defined in analogy with the displacement
amplitudes (and the related derivatives) via the solution of the system of Eqs. (16)–(19). In this case,
the temperature evaluation through the thickness direction does not must be “a priori” defined by
separately solving the Fourier heat conduction relation or by assuming a linear behaviour. The matrix
form of the problem is:⎡
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, (20)



CMES, 2023, vol.136, no.3 2559

Eq. (20) can be compacted as:

DjX j′ = AjX j, (21)

where X j = [Uj V j W j �j Uj′V j′W j′�j′ ]T and X j′ = ∂X j

∂z
. Superscript T indicates a transposed vector.

Eq. (21) can be developed as:

X j′ = Dj−1
AjX j, (22)

X j′ = A∗j
X j, (23)

with A∗j = Dj−1
Aj. The inclusion of the proposed formulation into a Matlab tool is easy because

it is sufficient to properly define the different matrices presented in the above formulation. The
implemented code can compute both the displacement components and the temperature profile along
the thickness direction.

A general homogeneous system of first order differential relations can be proposed as:

dx
dt

= Ax, (24)

x indicates a vector of dimension M ×1 and A indicates a matrix of dimension M ×M (consisting
of constant terms). Eq. (24) has the following solution:

x(t) = eAtx0. (25)

In analogy, the resolution of Eq. (23) becomes:

X j
(
z̃j
) = e

(
A∗j

z̃j
)
X j

(0) . (26)

Eq. (26) is employed to define the unknown vector X j at the highest point of the layer j when the
term A∗∗j = e(A∗j

hj ) has been calculated in each j artificial layer having thickness hj. The exponential
matrix is expanded and calculated for each j layer having thickness hj as:

A∗∗j = e(A∗j
hj ) = I + A∗j

hj + A∗j2

2!
hj2 + A∗j3

3!
hj3 + . . . + A∗jN

N!
hjN , (27)

where I has 8 × 8 dimension and it is the typical identity matrix. Therefore, Eq. (27) in Eq. (26) gives:

X j
(hj) = A∗∗j

X j
(0), (28)

an alternative form of Eq. (28) is:

X j
t = A∗∗j

X j
b , (29)

where X j
(hj) is X j

t and X j
(0) is X j

b. t and b indicate the highest point (top) and the lowest point (bottom)
of the j layer, respectively.

Eq. (29) connects the top and bottom unknown vector (primary variables and the related
derivatives in z) within the corresponding artificial j layer. To move from the j mathematical layer to the
next one, a set of interlaminar requirements must be fulfilled. These interlaminar continuity conditions
consider the displacement components, the transverse shear and transverse normal stresses, the
temperature and the transverse normal heat flux at each interface. The continuity of the displacement
components and sovra-temperature at each interface can be imposed as:
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uj
b = uj−1

t , vj
b = vj−1

t , wj
b = wj−1

t , θ
j
b = θ j−1

t . (30)

The requirements specified in Eq. (30) are obviously imposed for the displacement maximum
values Uj, V j, W j and for the sovra-temperature amplitude �j. In the same way, the continuity of
transverse shear stresses, transverse normal stress and transverse normal heat flux in the z direction
are imposed as:

σ j
zzb

= σ j−1
zzt

, σ j
αzb

= σ j−1
αzt

, σ j
βzb

= σ j−1
βzt

, qj
zb

= qj−1
zt

. (31)

In Eqs. (30) and (31), for each considered unknown, the continuity is established between the
evaluation made at the lowest point (b) of the general j-th layer and the evaluation made at the highest
point (t) of the (j−1)-th layer. The use of constitutive Eq. (8) and the harmonic forms (13)–(15) allows
for obtaining an amplitude form of Eqs. (30) and (31). The methodology has already been discussed in
[57–59], the only difference lies in the dimension of the involved matrices and vectors. The amplitude
form of Eqs. (30) and (31) is re-proposed in compact matrix composition by using a new transfer
matrix:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

U
V
W
�

U ′

V ′

W ′

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

j

b

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
T1 0 T2 0 T3 0 0 0
0 T4 T5 0 0 T6 0 0
T7 T8 T9 τ1 0 0 T10 0
0 0 0 0 0 0 0 τ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

j,j−1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

U
V
W
�

U ′

V ′

W ′

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

j−1

t

(32)

The diagonal part composed of 1 indicates the congruence conditions expressed as displacement
components and the continuity of temperature written in Eq. (30). The other coefficients Ti and τi

indicate the stress and heat flux continuity of Eq. (31) expressed as displacement components and
temperature (and related derivatives in z). A matrix expression of Eq. (32) is:

X j
b = T j,j−1X j−1

t . (33)

Eq. (33) allows linking unknows and related derivatives in z defined at the bottom of the j layer
with unknows (and related derivatives in z) defined at the top of the (j − 1) layer.

All structures taken into account have simply supported sides, this boundary condition is
automatically imposed via the harmonic forms for all the primary unknowns:

θ = w = v = 0, σαα = 0 for α = 0, a , (34)

θ = w = u = 0, σββ = 0 for β = 0, b . (35)

In addition, load boundary requirements must be imposed at the top and bottom of the structures.
These conditions can be written as:

σzz = 0, σαz = 0, σβz = 0, � = T − T0 for z = ±h/2, (36)

the last equations allow to impose the sovra-temperature values directly at the top and bottom of the
structure for the pure thermal stress analysis. Eq. (36) can be rewritten, in matrix form as:
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− CM
13

HM
αt

α − CM
23

HM
βt

β
CM

13

HM
αt

Rα

+ CM
23

HM
βt

Rβ

−λM
z 0 0 CM

33 0

0 − CM
44

HM
βt

Rβ

CM
44

HM
βt

β 0 0 CM
44 0 0

− CM
55

HM
αt

Rα

0
CM

55

HM
αt

α 0 CM
55 0 0 0

0 0 0 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U

V

W

�

U ′

V ′

W ′

�′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M

t

=

⎡
⎢⎢⎢⎣

0

0

0

�t

⎤
⎥⎥⎥⎦ , (37)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− C1
13

H1
αb

α − C1
23

H1
βb

β
C1

13

H1
αb

Rα

+ C1
23

H1
βb

Rβ

−λ1
z 0 0 C1

33 0

0 − C1
44

H1
βb

Rβ

C1
44

H1
βb

β 0 0 C1
44 0 0

− C1
55

H1
αb

Rα

0
C1

55

H1
αb

α 0 C1
55 0 0 0

0 0 0 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U

V

W

�

U ′

V ′

W ′

�′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

b

=

⎡
⎢⎢⎢⎣

0

0

0

�b

⎤
⎥⎥⎥⎦ . (38)

Eqs. (37) and (38) can be compacted as:

BM
t XM

t = Pt , (39)

B1
bX

1
b = Pb , (40)

subscripts t and b indicate the highest and lowest point, respectively. Superscript M shows the last
artificial layer and superscript 1 shows the first artificial layer. Vector P includes the impositions
related to the mechanical load conditions in the three directions α, β and z and the sovra-temperature.
Assuming a classical thermal stress analysis, the mechanical load conditions are set equal to zero.

In order to include Eqs. (39) and (40) into a matrix expression of an algebraic system, it is useful
to indicate XM

t = XM
(hM) in terms of X1

b = X1
(0) (displacements, temperature and related derivatives

in z̃ at the highest point of the last mathematical layer connected with the displacement components,
temperature and related derivatives in z̃ at the lowest point of the first mathematical layer). These
conditions are obtained by introducing recursively Eq. (33) into Eq. (29):

XM
t = (

A∗∗MTM,M−1A∗∗M−1TM−1,M−2
. . . A∗∗2T2,1A∗∗1) X1

b. (41)

Eq. (41) defines the 8 × 8 matrix Hm for multilayered structures. This matrix is different from that
in [57,59] for the pure elastic investigation; the difference is due to the coupling of the 3D Fourier heat
conduction relation with the 3D equilibrium equations. In a compact form, it can be rewritten as:

XM
t = HmX1

b. (42)

Using Eqs. (42), (39) can be rewritten in terms of X1
b:

BM
t HmX1

b = Pt. (43)

Eqs. (43) and (40) can be now compacted as:
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EX1
b = P , (44)

where

E =
[

BM
t Hm

B1
b

]
, (45)

and

P =
[
Pt

Pb

]
. (46)

Matrix E is always 8 × 8 even if the number M of artificial/mathematical layers changes and a
layer wise approach is employed. This matrix changes only in size with respect to the pure elastic
investigation in [57]. For this reason, this new model can be defined as the generalization of the pure
mechanical model proposed in [57] by Brischetto. The vector P now contains the load impositions.
The matrix form in Eq. (44) is substantially the same seen in [57–59] for the pure elastic investigation,
but the addition of the three-dimensional Fourier heat conduction relation in the 3D equilibrium
equations is now considered. The vector of unknows X1

b has 8 × 1 dimension.

After the calculation of the displacements at the bottom, Eqs. (33) and (29) can be subsequently
employed to define the displacement components and temperature (and connected derivatives made
with respect to z) through the global thickness of the shell or plate. Therefore, the unknown trends
along the z direction are obtained.

3 Results

The first part of this section shows three preliminary validation results to verify the developed
general three-dimensional exact coupled thermo-elastic shell theory. Comparisons with [21] are
performed to define the appropriate order of expansion N for the exponential matrix in Eq. (27)
and the correct number of artificial layers M for the exact definition of constant curvature terms
related to shell geometry. After the authentication of the model, new benchmarking analyses are
proposed in the second part of this section. N and M parameters are opportunely chosen and the new
results discuss the effects of thickness ratios, structure geometries, lamination sequences, embedded
materials and sovra-temperature impositions when a 3D thermal stress investigation of shells and
plates is performed. All the geometrical data for the validation results and benchmarks proposed in
this section are available in Tables 1 and 2, material data are shown in Table 3. In Table 3, Ei, νij and
Gi means, respectively, the Young modulus, Poisson ratio and shear modulus in the three directions
of the material reference system (1, 2, 3). μi and κi are the thermal expansion coefficients and the
thermal conduction coefficients in the three directions of the material reference system, respectively.
For isotropic materials, Gi is computed thanks to the equation written in the specific row.

Table 1: Temperature and geometrical data, as already proposed in [21], for the preliminary validation
results

Assessment 1 Assessment 2 Assessment 3
Square plate Cylindrical shell Spherical shell

a [m] 2, 4, 10, 20, 50, 100
π

3
Rα 1

(Continued)



CMES, 2023, vol.136, no.3 2563

Table 1 (continued)

Assessment 1 Assessment 2 Assessment 3
Square plate Cylindrical shell Spherical shell

b [m] 2, 4, 10, 20, 50, 100 1 1
h [m] 1 2, 1, 0.2, 0.1, 0.01 0.1
Rα [m] ∞ 10 5, 10, 50
Rβ [m] ∞ ∞ 5, 10, 50
h1 h/3 h/2 h/2
h2 h/3 h/2 h/2
h3 h/3 - -
Lamination 0◦ /90◦ /0◦ Al2024/Ti22 0◦ /90◦

�t [K] +1 +1 +0.5
�b [K] −1 0 −0.5
m 1 1 1
n 1 1 1

Table 2: Temperatures, geometrical data and lamination sequence for the eight benchmarking analyses.
s can assume the values 2, 5, 10, 20 and 100. t can assume the values 5, 2, 1, 0.5, 0.2 and 0.1

B1 B2 B3 B4 B5 B6 B7 B8
Square
plate

Square
plate

Cylinder Cylinder Cylindrical
shell

Cylindrical shell Spherical
shell

Spherical shell

a [m] s s 2π Rα 2π Rα
π

3
Rα

π

3
Rα

π

3
Rα

π

3
Rα

b [m] s s 30 30 20 20
π

3
Rα

π

3
Rα

h [m] 1 1 t t t t t t
Rα [m] ∞ ∞ 10 10 10 10 10 10
Rβ [m] ∞ ∞ ∞ ∞ ∞ ∞ 10 10
h1 [m] h h/3 h h/2 h 0.1 h h h/3
h2 [m] - h/3 - h/2 - 0.8 h - h/3
h3 [m] - h/3 - - - 0.1 h - h/3
Lamination 0

◦
0

◦
/90

◦
/0

◦
Al2024 Al2024/Ti22 Ti22 Al2024/PVC/Al2024 Steel Al2024/Ti22/Steel

�t [K] +0.5 +0.5 +0.5 +0.5 +1 +1 +1 +1
�b [K] −0.5 −0.5 −0.5 −0.5 0 0 0 0
m 1 1 2 2 1 1 1 1
n 1 1 1 1 0 0 1 1
M 300 300 300 300 300 300 300 300
N 3 3 3 3 3 3 3 3
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Table 3: Mechanical and thermal properties of the materials used for preliminary validation results
and new benchmarking analyses

Al2024
Aluminium

Ti22
Titanium

PVC Steel Composite
A

Composite
B

Composite
C

E1 [GPa] 73 110 3 210 25 25 172.72
E2 [GPa] 73 110 3 210 1 1 6.909
E3 [GPa] 73 110 3 210 1 1 6.909
ν12 0.3 0.32 0.4 0.3 0.25 0.25 0.25
ν13 0.3 0.32 0.4 0.3 0.25 0.25 0.25
ν23 0.3 0.32 0.4 0.3 0.25 0.25 0.25

G12 [GPa]
E1

2(1 + ν)

E1

2(1 + ν)

E1

2(1 + ν)

E1

2(1 + ν)
0.5 0.5 3.45

G13 [GPa]
E1

2(1 + ν)

E1

2(1 + ν)

E1

2(1 + ν)

E1

2(1 + ν)
0.5 0.5 3.45

G23 [GPa]
E1

2(1 + ν)

E1

2(1 + ν)

E1

2(1 + ν)

E1

2(1 + ν)
0.2 0.2 1.38

μ1[1/K] 25 · 10−6 8.6 · 10−6 50 · 10−6 12 · 10−6 1 1 0.57 · 10−6

μ2[1/K] 25 · 10−6 8.6 · 10−6 50 · 10−6 12 · 10−6 1125 3 35.6 · 10−6

μ3[1/K] 25 · 10−6 8.6 · 10−6 50 · 10−6 12 · 10−6 1125 1 35.6 · 10−6

k1[W/mK] 130 21.9 0.18 60 36.42 36.42 36.42
k2[W/mK] 130 21.9 0.18 60 0.96 0.96 0.96
k3[W/mK] 130 21.9 0.18 60 0.96 0.96 0.96

Tables 4–14 present four different acronyms used to indicate the different models compared in this
section: 3D-u-θ means the 3D full coupled thermo-elastic model where the displacements (indicated
as u) and the sovra-temperature profile (indicated as θ ) are fully coupled and they must be considered
as primary unknowns of the problem. 3D() is the general indication of the 3D uncoupled thermo-
elastic models presented by Brischetto et al. in [21], where the arguments inside the parentheses
denote the variable separately solved and the used Fourier heat conduction relation. Specifically,
3D(θc, 3D) indicates the 3D uncoupled model where the three-dimensional Fourier heat conduction
relation is separately solved to calculate θc, 3D(θc, 1D) denotes the 3D uncoupled model where the one-
dimensional Fourier heat conduction relation is separately solved to calculate θc and 3D(θa) denotes
the “a priori” assumed linear temperature evaluation. In the following subsection, the models will be
denoted via the proper acronyms.
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Table 4: First preliminary validation result, 0◦
/90◦

/0◦ composite plate with sovratemperature �t =
+1K and �b = −1K for m = n = 1. The solution for comparisons is the 3D(θc, 3D) model by Brischetto
et al. [21] with the 3D calculated temperature profile. Proposed 3D coupled thermoelastic solution
(3D-u-θ ) uses N = 3 and a variable number of M artificial layers

a/h 2 4 10 20 50 100

w = w/(a/h)2 in z = +h/2, α = a/2 and β = b/2

3D(θc, 3D) [21] 48.87 32.12 16.39 11.93 10.47 10.25

M = 102
3D-u-θ 48.85 32.11 16.40 11.93 10.47 10.25

M = 210
3D-u-θ 48.86 32.11 16.40 11.93 10.47 10.25

M = 300
3D-u-θ 48.86 32.11 16.40 11.93 10.47 10.25

σαα in z = +h/2, α = a/2 and β = b/2

3D(θc, 3D) [21] 487.6 796.8 948.0 961.8 964.3 964.5

M = 102
3D-u-θ 510.5 796.9 948.0 961.8 964.3 964.6

M = 210
3D-u-θ 497.0 796.8 948.0 961.8 964.3 964.6

M = 300
3D-u-θ 495.8 796.8 948.0 961.8 964.3 964.6

σαβ in z = −h/2, α = 0 and β = 0

3D(θc, 3D) [21] 142.9 119.4 71.96 56.46 51.27 50.50

M = 102
3D-u-θ 142.9 119.4 71.96 56.46 51.28 50.50

M = 210
3D-u-θ 142.9 119.4 71.96 56.46 51.28 50.50

M = 300
3D-u-θ 142.9 119.4 71.96 56.46 51.28 50.50
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Table 5: Second preliminary validation result, two-layered isotropic Aluminium/Titanium
(Al2024/Ti22) cylindrical shell with sovratemperature �t = +1K and �b = 0K for m = n = 1.
The solution for comparisons is the 3D(θc, 3D) model by Brischetto et al. [21] with the 3D calculated
temperature profile. Proposed 3D coupled thermoelastic solution (3D-u-θ ) uses N = 3 and a variable
number of M artificial layers

Rα/h 5 10 50 100 1000

w [mm] in z = 0, α = a/2 and β = b/2

3D(θc, 3D) [21] 0.0002 0.0010 0.0060 0.0129 0.0424

M = 100
3D-u-θ 0.0002 0.0010 0.0060 0.0129 0.0424

M = 200
3D-u-θ 0.0002 0.0010 0.0060 0.0129 0.0424

M = 300
3D-u-θ 0.0002 0.0010 0.0060 0.0129 0.0424

u[10−4 m] in z = +h/2, α = 0 and β = b/2

3D(θc, 3D) [21] −0.0031 −0.0031 −0.0027 −0.0023 0.0009

M = 100
3D-u-θ −0.0031 −0.0031 −0.0027 −0.0023 0.0009

M = 200
3D-u-θ −0.0031 −0.0031 −0.0027 −0.0023 0.0009

M = 300
3D-u-θ −0.0031 −0.0031 −0.0027 −0.0023 0.0009

Table 6: Third preliminary validation result, 0◦
/90◦ laminated composite spherical shell with sovratem-

perature �t = +0.5K and �b = −0.5K for m = n = 1. The solution for comparisons is the 3D(θc,
3D) model by Brischetto et al. [21] with the 3D calculated temperature profile. Proposed 3D coupled
thermoelastic solution (3D-u-θ ) uses N = 3 and a variable number of M artificial layers

Rα/h 50 100 500

w = 10h
b2μ1T1

w in z = 0, α = a/2 and β = b/2

3D(θc, 3D) [21] 1.0142 1.0780 1.1000

M = 100
3D-u-θ 1.0142 1.0780 1.1000

M = 200
3D-u-θ 1.0142 1.0780 1.1000

(Continued)
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Table 6 (continued)

Rα/h 50 100 500

M = 300
3D-u-θ 1.0142 1.0780 1.1000

Table 7: Benchmark one, composite square plate embedding one 0◦ lamina having simply supported
sides with sovratemperature �t = +0.5K and �b = −0.5K for m = 1 and n = 1. 3D uncoupled
thermoelastic models from [21] with the temperature profile assumed as linear (3D(θa)), defined via the
one-dimensional Fourier heat conduction relation (3D(θc, 1D)) and defined via the three-dimensional
Fourier heat conduction relation (3D(θc, 3D))

a/h 2 5 10 20 50 100

v[10−5 m] in z = −h/2, α = a/2 and β = 0

3D(θa) [21] 0.5261 0.5861 0.5918 0.7981 1.7020 3.3184
3D(θc, 1D) [21] 0.5261 0.5861 0.5918 0.7981 1.7020 3.3184
3D(θc, 3D) [21] 0.2718 0.4771 0.5572 0.7856 1.6977 3.3162
3D-u-θ 0.2718 0.4771 0.5572 0.7856 1.6977 3.3162

w[10−5 m] in z = 0, α = a/2 and β = b/2

3D(θa) [21] 0.0936 0.7345 2.3955 8.7090 52.699 209.77
3D(θc, 1D) [21] 0.0936 0.7345 2.3955 8.7090 52.699 209.77
3D(θc, 3D) [21] 0.0958 0.6221 2.2634 8.5750 52.565 209.64
3D-u-θ 0.0958 0.6221 2.2634 8.5750 52.565 209.64

σαα [104 Pa] in z = +h/2, α = a/2 and β = b/2

3D(θa) [21] 13.240 10.687 10.238 10.105 10.065 10.059
3D(θc, 1D) [21] 13.240 10.687 10.238 10.105 10.065 10.059
3D(θc, 3D) [21] 2.7489 7.2060 9.1706 9.8214 10.019 10.047
3D-u-θ 2.7480 7.2058 9.1705 9.8214 10.019 10.048

σαz [104 Pa] in z = +h/4, α = 0 and β = b/2

3D(θa) [21] 1.0518 0.9566 0.5860 0.3108 0.1265 0.0634
3D(θc, 1D) [21] 1.0518 0.9566 0.5860 0.3108 0.1265 0.0634
3D(θc, 3D) [21] 0.5278 0.7701 0.5501 0.3057 0.1261 0.0633
3D-u-θ 0.5278 0.7701 0.5501 0.3057 0.1261 0.0633

σzz [Pa] in z = −h/4, α = a/2 and β = b/2

3D(θa) [21] 1955.6 136.85 11.229 0.7601 0.0199 0.0013
3D(θc, 1D) [21] 1955.6 136.85 11.229 0.7601 0.0199 0.0013
3D(θc, 3D) [21] −503.79 −10.923 0.4205 0.0598 0.0018 0.0001
3D-u-θ −503.73 −10.923 0.4205 0.0598 0.0018 0.0001
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Table 8: Benchmark two, composite square plate embedding three 0◦
/90◦

/0◦ laminae having simply
supported sides with sovratemperature �t = +0.5K and �b = −0.5K for m = 1 and n = 1. 3D
uncoupled thermoelastic models from [21] with the temperature profile assumed as linear (3D(θa)),
defined via the one-dimensional Fourier heat conduction relation (3D(θc, 1D)) and defined via the
three-dimensional Fourier heat conduction relation (3D(θc, 3D))

a/h 2 5 10 20 50 100

u[10−5 m] in z = +h/2, α = 0 and β = b/2

3D(θa) [21] −0.0791 −0.1779 −0.3388 −0.6635 −1.6472 −3.2909
3D(θc, 1D) [21] −0.0791 −0.1779 −0.3388 −0.6635 −1.6472 −3.2909
3D(θc, 3D) [21] −0.0400 −0.1451 −0.3191 −0.6532 −1.6430 −3.2888
3D-u-θ −0.0401 −0.1451 −0.3191 −0.6532 −1.6430 −3.2888

w[10−5 m] in z = 0, α = a/2 and β = b/2

3D(θa) [21] 0.1159 0.8948 2.6731 9.0380 53.045 210.12
3D(θc, 1D) [21] 0.1159 0.8948 2.6731 9.0380 53.045 210.12
3D(θc, 3D) [21] 0.1132 0.7622 2.5294 8.9002 52.910 209.99
3D-u-θ 0.1132 0.7622 2.5294 8.9002 52.910 209.99

σββ [104 Pa] in z = −h/2, α = a/2 and β = b/2

3D(θa) [21] 6.9043 9.8311 10.943 11.336 11.459 11.477
3D(θc, 1D) [21] 6.9043 9.8311 10.943 11.336 11.459 11.477
3D(θc, 3D) [21] 9.4299 10.275 11.024 11.352 11.461 11.478
3D-u-θ 9.4301 10.275 11.024 11.352 11.462 11.478

σαz [104 Pa] in z = +h/4, α = 0 and β = b/2

3D(θa) [21] 1.1161 0.9225 0.5754 0.3091 0.1263 0.0634
3D(θc, 1D) [21] 1.1161 0.9225 0.5754 0.3091 0.1263 0.0634
3D(θc, 3D) [21] 0.5190 0.7375 0.5398 0.3040 0.1260 0.0633
3D-u-θ 0.5189 0.7375 0.5398 0.3040 0.1260 0.0633

σzz [Pa] in z = −h/4, α = a/2 and β = b/2

3D(θa) [21] 1704.4 124.34 11.042 0.7725 0.0205 0.0013
3D(θc, 1D) [21] 1704.4 124.34 11.042 0.7725 0.0205 0.0013
3D(θc, 3D) [21] −512.45 −16.459 0.3721 0.0744 0.0024 0.0002
3D-u-θ −512.40 −16.459 0.3721 0.0744 0.0024 0.0002
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Table 9: Benchmark three, cylinder embedding a single isotropic Aluminium (Al2024) layer having
simply supported sides with sovratemperature �t = +0.5K and �b = −0.5K for m = 2 and n = 1. 3D
uncoupled thermoelastic models from [21] with the temperature profile assumed as linear (3D(θa)),
defined via the one-dimensional Fourier heat conduction relation (3D(θc, 1D)) and defined via the
three-dimensional Fourier heat conduction relation (3D(θc, 3D))

Rα/h 2 5 10 20 50 100

u[10−5 m] in z = +h/2, α = 0 and β = b/2

3D(θa) [21] 3.0170 1.8209 0.9969 0.5167 0.2105 0.1059
3D(θc, 1D) [21] 3.0170 1.8209 0.9969 0.5167 0.2105 0.1059
3D(θc, 3D) [21] 3.0032 1.8196 0.9967 0.5167 0.2105 0.1059
3D-u-θ 3.0032 1.8196 0.9967 0.5167 0.2105 0.1059

w[10−5 m] in z = 0, α = a/2 and β = b/2

3D(θa) [21] 4.7030 2.3414 1.2126 0.6117 0.2453 0.1227
3D(θc, 1D) [21] 4.7030 2.3414 1.2126 0.6117 0.2453 0.1227
3D(θc, 3D) [21] 4.7108 2.3416 1.2126 0.6117 0.2453 0.1227
3D-u-θ 4.7108 2.3416 1.2126 0.6118 0.2453 0.1227

σαβ [104 Pa] in z = +h/4, α = 0 and β = 0

3D(θa) [21] 4.3550 3.4394 2.0110 1.0738 0.4451 0.2250
3D(θc, 1D) [21] 4.3550 3.4394 2.0110 1.0738 0.4451 0.2250
3D(θc, 3D) [21] 4.2954 3.4341 2.0102 1.0737 0.4451 0.2250
3D-u-θ ) 4.2954 3.4341 2.0102 1.0737 0.4451 0.2251

σαz [104 Pa] in z = +h/4, α = 0 and β = b/2

3D(θa) [21] −8.4089 −4.3683 −2.3272 −1.1947 −0.4846 −0.2434
3D(θc, 1D) [21] −8.4089 −4.3683 −2.3272 −1.1947 −0.4846 −0.2434
3D(θc, 3D) [21] −8.3275 −4.3624 −2.3264 −1.1946 −0.4846 −0.2434
3D-u-θ −8.3275 −4.3624 −2.3264 −1.1946 −0.4846 −0.2434

σzz [104 Pa] in z = −h/4, α = a/2 and β = b/2

3D(θa) [21] 14.109 5.3127 2.5599 1.2521 0.4937 0.2456
3D(θc, 1D) [21] 14.109 5.3127 2.5599 1.2521 0.4937 0.2456
3D(θc, 3D) [21] 13.978 5.3055 2.5591 1.2520 0.4937 0.2456
3D-u-θ 13.978 5.3055 2.5591 1.2520 0.4937 0.2457
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Table 10: Benchmark four, cylinder embedding two isotropic Aluminium/Titanium (Al2024/Ti22)
layers having simply supported sides with sovratemperature �t = +0.5K and �b = −0.5K for m = 2
and n = 1. 3D uncoupled thermoelastic models from [21] with the temperature profile assumed as
linear (3D(θa)), defined via the one-dimensional Fourier heat conduction relation (3D(θc, 1D)) and
defined via the three-dimensional Fourier heat conduction relation (3D(θc, 3D))

Rα/h 2 5 10 20 50 100

v[10−5 m] in z = −h/2, α = a/2 and β = 0

3D(θa) [21] 1.4618 0.8157 0.8649 0.9555 1.0315 1.0604
3D(θc, 1D) [21] 2.9972 2.7826 3.1004 3.3448 3.5181 3.5802
3D(θc, 3D) [21] 2.8572 2.7563 3.0931 3.3429 3.5178 3.5801
3D-u-θ 2.8572 2.7563 3.0931 3.3429 3.5178 3.5801

w[10−5 m] in z = 0, α = a/2 and β = b/2

3D(θa) [21] 0.9037 −0.6784 −1.4092 −1.7945 −2.0284 −2.1065
3D(θc, 1D) [21] −3.1677 −5.4294 −6.3630 −6.8341 −7.1132 −7.2051
3D(θc, 3D) [21] −2.8414 −5.3676 −6.3469 −6.8300 −7.1125 −7.2050
3D-u-θ −2.8414 −5.3676 −6.3469 −6.8300 −7.1125 −7.2050

σαα [104 Pa] in z = +h/2, α = a/2 and β = b/2

3D(θa) [21] −60.434 −77.267 −82.907 −85.559 −87.072 −87.561
3D(θc, 1D) [21] −103.96 −121.98 −127.17 −129.39 −130.57 −130.94
3D(θc, 3D) [21] −100.49 −121.39 −127.02 −129.35 −130.57 −130.94
3D-u-θ −100.49 −121.39 −127.02 −129.35 −130.57 −130.94

σβz [104 Pa] in z = −h/4, α = a/2 and β = 0

3D(θa) [21] −9.4212 −4.4541 −2.2626 −1.1307 −0.4509 −0.2251
3D(θc, 1D) [21] −10.034 −4.5094 −2.2221 −1.0907 −0.4298 −0.2137
3D(θc, 3D) [21] −9.8714 −4.5011 −2.2213 −1.0906 −0.4298 −0.2137
3D-u-θ −9.8714 −4.5011 −2.2213 −1.0906 −0.4298 −0.2137

σzz [104 Pa] in z = −h/4, α = a/2 and β = b/2

3D(θa) [21] 12.392 4.6425 2.2412 1.0977 0.4333 0.2156
3D(θc, 1D) [21] 13.659 4.7199 2.2012 1.0583 0.4129 0.2047
3D(θc, 3D) [21] 13.403 4.7109 2.2004 1.0582 0.4129 0.2047
3D-u-θ 13.403 4.7109 2.2004 1.0582 0.4129 0.2047
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Table 11: Benchmark five, cylindrical shell embedding one isotropic Titanium (Ti22) layer having
simply supported sides with sovratemperature �t = 1.0K and �b = 0.0K for m = 1 and n = 0. 3D
uncoupled thermoelastic models from [21] with the temperature profile assumed as linear (3D(θa)),
defined via the one-dimensional Fourier heat conduction relation (3D(θc, 1D)) and defined via the
three-dimensional Fourier heat conduction relation (3D(θc, 3D))

Rα/h 2 5 10 20 50 100

u[10−5 m] in z = +h/2, α = 0 and β = b/2

3D(θa) [21] −3.5730 −1.7728 0.6652 5.4209 19.623 43.275
3D(θc, 1D) [21] −3.5730 −1.7728 0.6652 5.4209 19.623 43.275
3D(θc, 3D) [21] −3.2200 −1.7140 0.6772 5.4223 19.622 43.274
3D-u-θ −3.2200 −1.7140 0.6772 5.4223 19.622 43.276

w[10−5 m] in z = 0, α = a/2 and β = b/2

3D(θa) [21] 2.0687 6.3251 13.444 27.651 70.233 141.18
3D(θc, 1D) [21] 2.0687 6.3251 13.444 27.651 70.233 141.18
3D(θc, 3D) [21] 2.1059 6.3144 13.431 27.642 70.229 141.18
3D-u-θ 2.1059 6.3144 13.431 27.642 70.228 141.18

σαα [104 Pa] in z = +h/2, α = a/2 and β = b/2

3D(θa) [21] 7.0586 0.0892 −0.5280 −0.4182 −0.2053 −0.1117
3D(θc, 1D) [21] 7.0586 0.0892 −0.5280 −0.4182 −0.2053 −0.1117
3D(θc, 3D) [21] −5.0098 −2.1901 −1.1261 −0.5712 −0.2301 −0.1179
3D-u-θ −5.0100 −2.1902 −1.1261 −0.5712 −0.2305 −0.1156

σββ [104 Pa] in z = −h/2, α = a/2 and β = b/2

3D(θa) [21] 1.5486 −0.2240 −0.2448 −0.1544 −0.0694 −0.0351
3D(θc, 1D) [21] 1.5486 −0.2240 −0.2448 −0.1544 −0.0694 −0.0351
3D(θc, 3D) [21] −1.7924 −0.7635 −0.3792 −0.1879 −0.0747 −0.0364
3D-u-θ −1.7924 −0.7635 −0.3792 −0.1879 −0.0746 −0.0372

σzz [Pa] in z = −h/4, α = a/2 and β = b/2

3D(θa) [21] 346.96 −27.698 −51.184 −19.624 −3.8665 −0.9796
3D(θc, 1D) [21] 346.96 −27.698 −51.184 −19.624 −3.8665 −0.9796
3D(θc, 3D) [21] 14.887 −285.50 −91.627 −25.148 −4.2371 −1.0266
3D-u-θ 14.887 −285.50 −91.627 −25.147 −4.2213 −1.0709
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Table 12: Benchmark six, sandwich cylindrical shell with Aluminium faces and PVC core having simply
supported sides with sovratemperature �t = 1.0K and �b = 0.0K for m = 1 and n = 0. 3D uncoupled
thermoelastic models from [21] with the temperature profile assumed as linear (3D(θa)), defined via the
one-dimensional Fourier heat conduction relation (3D(θc, 1D)) and defined via the three-dimensional
Fourier heat conduction relation (3D(θc, 3D))

Rα/h 2 5 10 20 50 100

u[10−5 m] in z = +h/2, α = 0 and β = b/2

3D(θa) [21] −10.134 −6.2106 0.7010 14.818 57.457 128.61
3D(θc, 1D) [21] −10.547 −6.0658 1.7093 17.534 65.279 144.94
3D(θc, 3D) [21] −10.428 −6.0160 1.7227 17.536 65.279 144.94
3D-u-θ −10.428 −6.0161 1.7227 17.536 65.278 144.95

w[10−5 m] in z = 0, α = a/2 and β = b/2

3D(θa) [21] 2.8059 15.568 37.159 80.036 208.30 421.89
3D(θc, 1D) [21] 3.0068 17.794 42.099 90.160 233.78 472.91
3D(θc, 3D) [21] 3.4353 17.879 42.112 90.159 233.78 472.90
3D-u-θ 3.4353 17.879 42.112 90.159 233.78 472.93

σββ [104 Pa] in z = −h/2, α = a/2 and β = b/2

3D(θa) [21] 11.276 5.8276 5.0898 4.8953 4.8300 4.8193
3D(θc, 1D) [21] 6.0584 0.8660 0.1630 −0.0221 −0.0839 −0.0936
3D(θc, 3D) [21] 3.7887 0.6018 0.1018 −0.0369 −0.0863 −0.0941
3D-u-θ 3.7886 0.6018 0.1018 −0.0369 −0.0860 −0.0969

σαz [104 Pa] in z = +h/4, α = 0 and β = b/2

3D(θa) [21] 2.4049 0.8769 0.4277 0.2118 0.0843 0.0421
3D(θc, 1D) [21] 2.3775 0.8540 0.4130 0.2036 0.0808 0.0403
3D(θc, 3D) [21] 1.8442 0.8126 0.4077 0.2029 0.0808 0.0403
3D-u-θ 1.8442 0.8126 0.4077 0.2029 0.0808 0.0403

σzz [104 Pa] in z = −h/4, α = a/2 and β = b/2

3D(θa) [21] −22.828 0.1782 0.1182 0.0657 0.0278 0.0142
3D(θc, 1D) [21] −728.70 0.2087 0.1288 0.0698 0.0292 0.0148
3D(θc, 3D) [21] −273.08 0.2005 0.1273 0.0696 0.0292 0.0148
3D-u-θ −273.07 0.2005 0.1273 0.0696 0.0292 0.0148
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Table 13: Benchmark seven, spherical shell embedding one isotropic Steel layer having simply
supported sides with sovratemperature �t = 1.0K and �b = 0.0K for m = 1 and n = 1. 3D uncoupled
thermoelastic models from [21] with the temperature profile assumed as linear (3D(θa)), defined via the
one-dimensional Fourier heat conduction relation (3D(θc, 1D)) and defined via the three-dimensional
Fourier heat conduction relation (3D(θc, 3D))

Rα/h 2 5 10 20 50 100

u[10−5 m] in z = +h/2, α = 0 and β = b/2

3D(θa) [21] −2.9176 −1.7996 −0.8976 −0.3635 −0.1096 −0.0478
3D(θc, 1D) [21] −2.9176 −1.7996 −0.8976 −0.3635 −0.1096 −0.0478
3D(θc, 3D) [21] −2.4554 −1.7161 −0.8837 −0.3617 −0.1095 −0.0478
3D-u-θ −2.4554 −1.7161 −0.8837 −0.3617 −0.1095 −0.0478

w[10−5 m] in z = 0, α = a/2 and β = b/2

3D(θa) [21] 2.5188 5.1544 6.5432 6.7022 6.3930 6.2141
3D(θc, 1D) [21] 2.5188 5.1544 6.5432 6.7022 6.3930 6.2141
3D(θc, 3D) [21] 2.1970 4.9750 6.4703 6.6807 6.3894 6.2132
3D-u-θ 2.1970 4.9750 6.4703 6.6807 6.3894 6.2132

σαβ [104 Pa] in z = +h/4, α = 0 and β = 0

3D(θa) [21] −63.025 −43.070 −17.981 −5.0090 −0.6002 −0.0429
3D(θc, 1D) [21] −63.025 −43.070 −17.981 −5.0090 −0.6002 −0.0429
3D(θc, 3D) [21] −50.132 −40.541 −17.589 −4.9637 −0.5977 −0.0426
3D-u-θ −50.132 −40.541 −17.589 −4.9637 −0.5977 −0.0426

σαz [104 Pa] in z = +h/4, α = 0 and β = b/2

3D(θa) [21] 16.767 3.5155 −2.2579 −3.0027 −1.7068 −0.9349
3D(θc, 1D) [21] 16.767 3.5155 −2.2579 −3.0027 −1.7068 −0.9349
3D(θc, 3D) [21] 6.5367 2.3933 −2.3892 −3.0150 −1.7074 −0.9350
3D-u-θ 6.5366 2.3933 −2.3892 −3.0150 −1.7074 −0.9350

σzz [104 Pa] in z = −h/4, α = a/2 and β = b/2

3D(θa) [21] 1.4441 2.9960 3.6512 2.6452 1.2471 0.6508
3D(θc, 1D) [21] 1.4441 2.9960 3.6512 2.6452 1.2471 0.6508
3D(θc, 3D) [21] 4.8006 3.0618 3.6338 2.6400 1.2466 0.6507
3D-u-θ 4.8006 3.0618 3.6338 2.6400 1.2466 0.6507
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Table 14: Benchmark eight, spherical shell embedding three isotropic layers (Al2024/Ti22/Steel) having
simply supported sides with sovratemperature �t = 1.0K and �b = 0.0K for m = 1 and n = 1. 3D
uncoupled thermoelastic models from [21] with the temperature profile assumed as linear (3D(θa)),
defined via the one-dimensional Fourier heat conduction relation (3D(θc, 1D)) and defined via the
three-dimensional Fourier heat conduction relation (3D(θc, 3D))

Rα/h 2 5 10 20 50 100

v[10−5 m] in z = −h/2, α = a/2 and β = 0

3D(θa) [21] 0.6479 1.6264 1.3680 0.8175 0.3458 0.1743
3D(θc, 1D) [21] 1.3282 2.0430 1.5665 0.8946 0.3680 0.1838
3D(θc, 3D) [21] 1.3841 2.0187 1.5592 0.8934 0.3679 0.1838
3D-u-θ 1.3841 2.0187 1.5592 0.8934 0.3679 0.1838

w[10−5 m] in z = 0, α = a/2 and β = b/2

3D(θa) [21] 2.9557 5.8248 7.4366 7.7817 7.6037 7.4685
3D(θc, 1D) [21] 3.1261 6.2203 7.6461 7.7384 7.3669 7.1651
3D(θc, 3D) [21] 2.9405 6.1003 7.5992 7.7248 7.3647 7.1646
3D-u-θ 2.9405 6.1003 7.5992 7.7248 7.3647 7.1646

σαα [104 Pa] in z = +h/2, α = a/2 and β = b/2

3D(θa) [21] −30.353 −39.796 −63.025 −94.912 −121.52 −131.22
3D(θc, 1D) [21] −16.005 −31.260 −63.948 −101.82 −131.33 −141.73
3D(θc, 3D) [21] −49.975 −38.883 −65.959 −102.30 −131.40 −141.75
3D-u-θ −49.976 −38.883 −65.959 −102.30 −131.40 −141.75

σβz [104 Pa] in z = −h/4, α = a/2 and β = 0

3D(θa) [21] 13.084 5.4242 0.6419 −0.6211 −0.4972 −0.2884
3D(θc, 1D) [21] 12.141 3.6918 −0.6355 −1.3225 −0.7766 −0.4262
3D(θc, 3D) [21] 11.798 3.6010 −0.6378 −1.3213 −0.7765 −0.4262
3D-u-θ 11.798 3.6010 −0.6378 −1.3213 −0.7765 −0.4262

σzz [104 Pa] in z = −h/4, α = a/2 and β = b/2

3D(θa) [21] −2.1848 −0.6175 0.5564 0.6729 0.3720 0.2022
3D(θc, 1D) [21] 2.6622 1.1518 1.5228 1.1590 0.5600 0.2944
3D(θc, 3D) [21] 3.3096 1.1724 1.5195 1.1579 0.5599 0.2944
3D-u-θ 3.3096 1.1724 1.5195 1.1579 0.5599 0.2944

3.1 Preliminary Validation Results
A number of three preliminary validation results are employed for the validation of this new three-

dimensional general exact coupled thermo-elastic shell model, indicated as 3D-u-θ . A spherical panel,
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a cylindrical panel and a square plate are analysed for several thickness ratio values, temperature
profiles, materials and lamination stacking sequences. These validation results allow the verifiction
of the 3D-u-θ model when N = 3 and M = 300. Therefore, a valid exact three-dimensional
thermo-elastic analysis is possible for the eight further benchmark cases discussed and analysed in
Section 3.2. In general, as can be seen in the cases presented in this section, convergence occurs for
fewer mathematical layers than those employed in the 3D(θc, 3D) model presented in [21]. Table 1
summarises all the configurations analysed in this section.

The first preliminary validation result considers a square plate having simply-supported sides.
The geometrical data can be seen in the second column of Table 1 and the material data can be seen
in Table 3, in correspondence to the Composite A column. The results considered as a reference are
those obtained via the 3D(θc, 3D) model proposed by Brischetto et al. [21]. The new 3D-u-θ model
includes directly the three-dimensional Fourier heat conduction relation in the system given by three-
dimensional equilibrium relations. The proposed new solution employs N = 3 and an appropriate
number of artificial layers M for the definition of constant curvature parameters. The temperature
profile is considered a primary unknown as the displacements. Table 4 shows the no-dimensional
transverse normal displacement and in-plane normal and in-plane shear stress components for several
thickness ratio values a/h. The new 3D-u-θ model is perfectly consistent with the reference solution
[21] for each thickness ratio a/h; in fact, the material and thickness layer effects are evaluated in the
same way. Only the in-plane normal stress in a very thick plate (a/h = 2) shows a small difference
between the results. This feature is probably due to the mathematical formulation presented in [21]
that used hyperbolic functions to solve the 3D Fourier heat conduction relation. This methodology
could fail for very thick structures. However, the difference is always lower than 2%. In addition, for
all the cases proposed, M = 102 is always sufficient to obtain exact results, except for the in-plane
normal stress for thickness ratio a/h = 2. The acquired temperature profile considers both the effects
connected with the material embedded in the layer and the related thickness.

The second preliminary validation result shows a two-layered isotropic cylindrical shell having
simply-supported sides. The geometrical data can be seen in the third row of Table 1 and the material
data can be seen in Table 3, in correspondence to the Aluminium column (for the bottom physical
layer) and the Titanium column (for the top physical layer). The two physical layers have completely
different thermal and elastic properties. The employed reference results come from the 3D(θc, 3D)
model presented in [21]. The 3D-u-θ model adds the 3D Fourier heat conduction equation to the 3D
equilibrium equations and it possesses all the peculiarities already discussed in the first validation
result. Table 5 indicates transverse and in-plane displacement components for several thickness ratio
values Rα/h. The 3D-u-θ theory is always identical to the reference theory [21] because both employ
the 3D Fourier heat conduction relation: coupled with the 3D equilibrium equations or separately
solved in an external tool. For each thickness ratio Rα/h, the results are perfectly coincident. For all
the proposed cases, a number of artificial layers M = 100 is always sufficient to obtain exact results.

The last and third preliminary validation result proposes a simply-supported spherical shell.
The configuration and the geometrical data can be visualized in Table 1. The material used for
this validation result is the Composite B material shown in Table 3. The non-dimensional transverse

displacement is written as w = 10h
b2μ1T1

w. In it, T1 = 1K denotes the gradient of the temperature. The

solutions calculated via the 3D-u-θ model are compared with the 3D(θc, 3D) model, always proposed
by Brischetto et al. [21] and already described in the previous two validation results. Table 6 shows no-
dimensional transverse normal displacement for several thickness ratio values. The coupled 3D-u-θ
model is always coincident with the uncoupled reference solution [21] for each thickness ratio because
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both models use the three-dimensional Fourier heat conduction relation by including both the effects
due to the material and the thickness layer. M = 100 fictitious layers are always enough to calculate
the exact results for each investigated thickness ratio.

The next section proposes new benchmarking analyses where different geometrical data, thickness
ratios, lamination stacking sequences, materials, temperature profiles and displacement-stress studies
are proposed. Even if the preliminary results suggest M = 100 for all the validation results, the
conservative choice of M = 300 and N = 3 will be used for these new cases.

3.2 New Benchmarking Analyses
Eight benchmarking analyses are here discussed for cylindrical and spherical panels, cylinders

and plates. Temperature is enforced at the outer faces with different amplitudes and half-wave numbers
(see Fig. 1 for further information about geometrical data and temperature applications). In these new
results, several lamination schemes and materials are considered. Therefore, each configuration can be
one-layered or/and multi-layered. The 3D-u-θ model will be used for these new analyses. N = 3 terms
in the expansion of the exponential matrix and M = 300 artificial layers will be employed for each
proposed 3D coupled result (see the preliminary validation result section where these parameters have
been discussed and chosen). The 3D coupled thermal stress analysis will be discussed and compared
with past uncoupled 3D results where 3D calculated temperature profiles (θc, 3D), 1D calculated
temperature profiles (θc, 1D) and assumed temperature profiles (θa) are externally defined. These new
results will be test cases for those researchers interested in the creation of two-dimensional and three-
dimensional analytical and/or numerical shell models for thermal stress analysis. Table 1 summarises
all the geometrical configurations and temperature impositions proposed in this section.

The first benchmark represents a square one-layered composite plate with simply-supported sides
(see Fig. 1). The geometrical and material data used for this case are written in Table 2 (column B1)
and in Table 3 (the material used is Composite C). The considered thickness ratios are highlighted in
Table 2. Fig. 2 gives the temperature evaluation in the thickness direction of a thick and a thin plate.
In the thin one-layered composite plate, all the temperature profiles (calculated via (θc, 3D), calculated
via (θc, 1D), linearly assumed (θa) and obtained from u-θ as a primary variable) are in accordance.
For the thick structure case, the u-θ profile is coincident with the (θc, 3D) profile; these two models
have different behaviours through the thickness with respect to the (θc, 1D) profile and the (θa) profile
because they also include the effect connected with the thickness layer and not only with the material
properties. Therefore, for a thick plate, the temperature profile is not linear. Table 7 shows the in-plane
and transverse displacement components and the in-plane normal, transverse shear and transverse
normal stress components at different thickness coordinate values when thickness ratios vary. For the
thin structure cases, the four proposed three-dimensional models give coincident results because both
effects connected with the thickness layer and the embedded material are zero (in addition, it can be
seen the accordance between the 3D full coupled model and the 3D uncoupled model based on the 3D
Fourier heat conduction relation). For very thick and moderately thick structures, the 3D(θa) model
and the 3D(θc, 1D) are completely in accordance: for both the thickness layer effect is negligible. The
3D(θc, 3D) and the 3D-u-θ models give identical results because they are able to also include the effect
of the thickness layer. Fig. 3 gives the in-plane and transverse displacement components and two stress
components in the thickness direction of a thick (a/h = 10) structure. In-plane displacement is different
from the linear one and transverse displacement is different from constant because of the considered
big value for the thickness. The transverse shear stress is continuous and symmetric. In fact, only one
layer is employed in the plate. The transverse normal stress fulfills the boundary load requirements at
the external surfaces (σ t

zz = σ b
zz = Pz = 0).



CMES, 2023, vol.136, no.3 2577

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
 [K]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z/
h

Temperature profile (a/h = 2)

(u- )
( c,3D)

( c,1D)

( a)

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
 [K]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z/
h

Temperature profile (a/h = 100)

(u- )
( c,3D)

( c,1D)

( a)

Figure 2: Benchmark one, temperature profiles for two different a/h ratios (thick and thin) of the
composite square plate embedding one 0◦ lamina. Maximum value of θ(α, β, z) is investigated in the
centre of the square plate (a/2, b/2)
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Figure 3: (Continued)



2578 CMES, 2023, vol.136, no.3

-1000 0 1000 2000 3000 4000 5000 6000 7000 8000

z
 [Pa]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z/
h

z
 stress component

z

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

zz
 [Pa]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z/
h

zz
 stress component

zz

Figure 3: Benchmark one, displacement components and stress components for a moderately thick
composite square plate embedding one 0◦ lamina (a/h = 10) investigated via the 3D full coupled
model (3D-u-θ ). Maximum values: w and σzz in (a/2, b/2); u and σαz in (0, b/2)

The second benchmark shows a square composite plate, equally divided in three layers, having
simply-supported sides (in Fig. 1 the structure is shown). Geometrical data are available in Table 2 and
material data are available in the column Composite C of Table 3. The sovra-temperature profiles in
the thickness direction shown in Fig. 4 do not change with respect to the previous benchmark because
the two sides have the same value (a = b). Therefore, when the fibre orientation moves from 0◦ to 90◦ ,
the κ3 coefficient does not change and, even if the κ1 and κ2 coefficients are exchanged, they multiply
the same in-plane dimension value and the same half-wave number, because of the squared geometry.
Table 8 gives the results stated as displacement and stress components. For thin structures, the four
three-dimensional models are comparable. For thicker plates, the 3D(θc, 3D) and 3D-u-θ models are
in accordance and they show bigger differences with respect to the other two models because they
are able to consider the thickness layer effects (which means non linear temperature profile for thick
layers). Fig. 5 gives the displacement and stress components for the moderately thick (a/h = 10) plate.
In-plane displacement has the conventional zigzag behaviour seen in laminated orthotropic plates
with three changes of slope; the transverse displacement is not constant along the thickness direction
because of the thick geometry and the different material properties at the interface. The continuity
of displacements at each layer interface was possible thanks the correct compatibility requirements.
In-plane stress σαα is not continuous at each interface between two adjacent layers. The transverse
shear stress σαz is continuous; in fact, the equilibrium conditions were correctly imposed. Moreover, it
satisfies the free mechanical load requirements at the outer surfaces.
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Figure 4: Benchmark two, temperature profiles for two different a/h ratios (thick and thin) of
the composite square plate embedding three 0◦

/90◦
/0◦ laminae. Maximum value of θ(α, β, z) is

investigated in the centre of the square plate (a/2, b/2)
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Figure 5: Benchmark two, displacement components and stress components for a moderately thick
composite square plate embedding three 0◦

/90◦
/0◦ laminae (a/h = 10) investigated via the 3D full

coupled model (3D-u-θ ). Maximum values: w and σαα in (a/2, b/2); u and σαz in (0, b/2)
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The third benchmark shows an isotropic homogeneous cylinder having simply supported sides
(see Fig. 1). All the characteristics are written in Table 2, for what concerns the geometrical data, and
in Table 3, for what concerns the material employed (Aluminium Al2024). The temperature profiles
are shown in Fig. 6 for a thick and a thin structure. In this benchmark, the effect connected with the
thickness layer for thick cylinders is negligible due to the symmetry and the rigidity of the geometry.
These conclusions are still valid for the displacement and stress components discussed in Table 9;
here, 3D(θa), 3D(θc, 1D), 3D(θc, 3D) and 3D-u-θ models give the same results for thin cylinders. Small
discrepancies are remarked for very thick structures because the thickness layer effect evaluated via
the 3D(θc, 3D) and the 3D-u-θ model is not so important. The main reason of this behaviour is the
big stiffness of the closed and symmetric cylinder. Fig. 7 gives displacements and stresses through
the thickness direction of the one-layered isotropic cylinder. The considered cylinder is thick and
this feature gives not linear in-plane displacement and not constant transverse normal displacement.
Transverse normal stress fulfills the imposed outer mechanical load requirements.
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Figure 6: Benchmark three, temperature profiles for two different Rα/h ratios (thick and thin) of
the cylinder embedding a single isotropic Aluminium (Al2024) layer. Maximum value of θ(α, β, z)
is investigated in the centre of the cylinder at (a/2, b/2)
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Figure 7: (Continued)
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Figure 7: Benchmark three, displacement components and stress components for a moderately thick
cylinder embedding a single isotropic Aluminium (Al2024) layer (Rα/h = 10) investigated via the 3D
full coupled model (3D-u-θ ). Maximum values: w, σββ and σzz in (a/2, b/2); u in (0, b/2)

The benchmark number four discusses an isotropic two-layered cylinder with simply supported
sides (see Fig. 1 to visualize the case). Geometrical data are available in Table 2 in the column B4
and the mechanical properties of the material are written in Table 3 (for the bottom physical layer
the reference column is Aluminium, for the top the reference column is Titanium). The results in
Fig. 8 demonstrate that the temperature evaluation is never linear even when the cylinder is thin
(except for the (θa) case). This behavior is connected with the different thermal properties of the two
embedded physical layers, which means different slopes of the temperature profile. The thick cylinder
gives a small effect connected with the thickness of the layer because of the same reasons already
proposed in the benchmark three about the simmetry and rigidity of this type of structure. As in
the previous case, the 3D-u-θ model provides the same results calculated with the 3D(θc, 3D) model
because they consider both the thickness layer and the material layer effects. Displacement and stress
components for several thickness ratios Rα/h are shown in Table 10: the 3D(θa) results are always not
correct due to the non-linearity of the sovra-temperature evaluation in the thickness direction of the
structure. Displacement and stress components evaluation through the thickness direction shown in
Fig. 9 remarks the effects connected with the presence of two layers embedding different materials. In-
plane displacement, transverse displacement and transverse shear stress components are continuous;
in fact, congruence and equilibrium requirements have been appropriately included in the models.
In-plane stress shows an interruption at the boundary between the Aluminium alloy layer and the
Titanium alloy layer. Typical zigzag effects due to the transverse anisotropy are shown in Fig. 9.
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Figure 8: Benchmark four, temperature profiles for two different Rα/h ratios (thick and thin) of
the cylinder embedding two isotropic Aluminium/Titanium (Al2024/Ti22) layers. Maximum value of
θ(α, β, z) is investigated in the centre of the cylinder at (a/2, b/2)
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Figure 9: Benchmark four, displacement components and stress components for a moderately thick
cylinder embedding two isotropic Aluminium/Titanium (Al2024/Ti22) layers (Rα/h = 10) investigated
via the 3D full coupled model (3D-u-θ ). Maximum values: w, σββ in (a/2, b /2); v and σβz in (a/2, 0)

The fifth benchmark analyses an isotropic one-layered cylindrical panel having simply supported
sides (see Fig. 1). The mechanical and thermal properties Ei, νij, Gi, μi and ki are shown in the column
Titanium of Table 3. The geometrical data can be visualized in Table 2, under the column B5. The four
temperature profiles in Fig. 10 are formally the same for thin shells because only one isotropic layer
is embedded. For the thick structure cases, the calculated temperature profiles by means of the (θc,
3D) model and the u-θ model are coincident. They are not like the linear behaviour due to the effect
connected with the thickness layer. This behaviour is also proved by the results shown in Table 11
for several thickness ratio values: the results obtained via the four three-dimensional theories are
closely associated for thin structures. For this specific case, the imposed temperature has a cylindrical
behaviour. Therefore, displacement v and stresses σαβ and σβz are zero at each coordinate through the
thickness direction. Fig. 11 discusses the displacement and stress components that are different from
zero for the thick (Rα/h = 10) structure. The typical behaviors related to the presence of a single layer in
isotropic material and a very thick structure are distinctly demonstrated (continuity for displacements
and in-plane normal stress σαα). Stress σαz also fulfils the outside boundary load requirements.

The benchmark number six analyses the thermal stress investigation of a sandwich cylindrical
panel (in Fig. 1 is represented the specific geometry). The geometrical data of the case are presented
in Table 2. The skins material is made of Aluminium and the core material is PVC (the mechanical
properties are written in Table 3, both for skins and core). Results of Fig. 12 show how the calculated
temperature behaviour is mandatory for both thick and thin sandwich shells. The sovra-temperature
evaluation is always different from the linear behaviour and it has a typical zigzag form because the
thermal properties of the faces are different from those of the core. When a thick sandwich panel is
considered, the sovra-temperature evaluation obtained from the 3D(θc, 1D) model is not adequate to
capture the effects connected with the thickness layer. In this benchmark, the use of the 3D(θc, 3D)
model or the 3D-u-θ model is mandatory. The differences between the four proposed temperature
profiles are evident displacement and stress results at different thickness positions for several thickness
ratios are presented in Table 12. The two models, based on the 3D Fourier heat conduction relation,
provide the same results. The 3D(θc, 1D) model gives the same results of 3D(θc, 3D) and 3D-u-θ models
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for thin shells. However, 3D(θc, 1D) results are not correct for thick shell structures because the effect
connected with the thickness layer has been discarded. Results proposed via the 3D(θa) model are
always wrong because the sovra-temperature evaluation is not linear in any case. Displacement u
and stresses σαβ and σβz are zero because the half-wave number m in the applied sovra-temperature
evaluation is zero. Fig. 13 for thick sandwich panel (Rα/h = 10) gives the classical zigzag behaviour for
displacement and stress components in the case of sandwich structures. In-plane normal stress shows
discontinuities between each skin/core interface. Transverse normal stress components continuously
vary at each interface because the equilibrium requirements have been correctly implemented. They
also satisfy the conditions connected with the external boundary loads.

0 0.2 0.4 0.6 0.8 1 1.2

 [K]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z/
h

Temperature profile (R /h = 2)

(u- )
(

c
,3D)

(
c
,1D)

(
a
)

0 0.2 0.4 0.6 0.8 1 1.2

 [K]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z/
h

Temperature profile (R /h = 100)

(u- )
(

c
,3D)

(
c
,1D)

(
a
)

Figure 10: Benchmark five, temperature profiles for two different Rα/h ratios (thick and thin) of
the cylindrical shell embedding one isotropic Titanium (Ti22) layer. Maximum value of θ(α, β, z) is
investigated in the centre of the cylindrical shell at (a/2, b/2)
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Figure 11: (Continued)
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Figure 11: Benchmark five, displacement components and stress components for a moderately thick
cylindrical shell embedding one isotropic Titanium (Ti22) layer (Rα/h = 10) investigated via the 3D
full coupled model (3D-u-θ ). Maximum values: w, σαα in (a/2, b/2); u and σαz in (0, b/2)
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Figure 12: Benchmark six, temperature profiles for two different Rα/h ratios (thick and thin) of
the sandwich cylindrical shell with Aluminium faces and PVC core. Maximum value of θ(α, β, z) is
investigated in the centre of the cylindrical shell at (a/2, b/2)
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Figure 13: Benchmark six, displacement components and stress components for a moderately thick
sandwich cylindrical shell with Aluminium faces and PVC core (Rα/h = 10) investigated via the 3D
full coupled model (3D-u-θ ). Maximum values: w, σαα and σzz in (a/2, b/2); u in (0, b/2)

The benchmark seven proposes an isotropic one-layered spherical panel having simply-supported
sides (see Fig. 1). Table 2 contains the geometrical data and the column Steel of Table 3 contains
the mechanical and thermal properties. Sovra-temperature profiles in Fig. 14 demonstrate how their
behaviours are linear in the thickness direction for a thin structure. The temperature has to be defined
via the 3D-u-θ model or via the 3D(θc, 3D) solution in the case of a thick structure because taking
into account the effect connected with the thickness layer is mandatory to obtain exact results. These
conclusions are attested by the displacement and stress components discussed in Table 13; in it, 3D(θc,
1D) and 3D(θa) theories are always very similar for each Rα/h and explored quantity. 3D-u-θ and
3D(θc, 3D) are always in accordance for each thickness ratio and they always give exact results. Fig. 15
gives the classical displacement and stress behaviors in the thickness direction of a thick spherical panel
made of a single isotropic layer.
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Figure 14: Benchmark seven, temperature profiles for two different Rα/h ratios (thick and thin) of the
spherical shell embedding one isotropic Steel layer. Maximum value of θ(α, β, z) is investigated in the
centre of the spherical shell at (a/2, b/2)
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Figure 15: Benchmark seven, displacement components and stress components for a moderately thick
spherical shell embedding one isotropic Steel layer (Rα/h = 10) investigated via the 3D full coupled
model (3D-u-θ ). Maximum values: w and σαα in (a/2, b/2); u and σαz in (0, b/2)

The last and eighth benchmark shows an isotropic three-layered spherical panel having simply-
supported sides (consult Fig. 1 to visualize the structure). The geometrical characteristics are con-
tained in Table 2 and the properties for the three used materials are written in Table 3: Aluminium,
Titanium and Steel (from bottom to top of the structure). The global thickness h is equally divided
in three portions. Fig. 16 confirms that the temperature profile has to be calculated with 3D-u-θ or
3D(θc, 3D) model for each possible thickness ratio because of the changing thermal properties of
the three physical layers. For the thick structures cases, both the effects connected with the thickness
layer and the embedded material are shown and the applications of the three-dimensional Fourier
heat conduction relation is fundamental for exact results. These features are further verified by
displacement and stress results in Table 14. The (θa) profile is always inappropriate and the (θc, 1D)
profile has several limitations for very thick structures. Only the 3D-u-θ and the 3D(θc, 3D) models
always guarantee satisfactory results for each Rα/h, lamination stacking sequence, material layer and
analyzed quantity. The results obtained from the thick structure (Rα/h = 10) in Fig. 17 highlight
the classical zigzag behaviour of obtained variables in the thickness direction, connected with high
transverse anisotropy. In addition, congruence conditions in terms of displacement components and
equilibrium conditions in terms of transverse shear/normal stress components have been appropriately
introduced in the proposed theory.
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Figure 16: Benchmark eight, temperature profiles for two different Rα/h ratios (thick and thin) of the
spherical shell embedding three isotropic layers (Al2024/Ti22/Steel). Maximum value of θ(α, β, z) is
investigated in the centre of the spherical shell at (a/2, b/2)
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Figure 17: Benchmark eight, displacement components and stress components for a moderately thick
spherical shell embedding three isotropic layers (Al2024/Ti22/Steel) (Rα/h = 10) investigated via the
3D full coupled model (3D-u-θ ). Maximum values: w, σαα and σzz in (a/2, b/2); v in (a/2, 0)

4 Conclusions

An overall full coupled thermo-elastic 3D shell model in closed-form solution for the thermal
stress investigation of single-and multi-layered isotropic, sandwich and composite plate and shell
geometries has been discussed. The sovra-temperature maximum values have been directly applied
at the highest and lowest point of outer faces in static conditions. The temperature profile is then
evaluated through the thickness direction. The temperature profile is a primary variable as the
displacements thanks to the coupling between the 3D Fourier heat conduction equation and the 3D
equilibrium equations for shells. This sovra-temperature profile considers both the effects connected
with the thickness layer and the embedded material for each possible case, without the necessity to
separately solve the 3D or 1D form of the Fourier heat conduction equation. The global coupled
system given by the three-dimensional equilibrium equations for shells and the three-dimensional
Fourier heat conduction relation for shells is exactly solved via the exponential matrix methodology.
Different results, given as displacement components, in-plane and out-of-plane stress components
and sovra-temperature evaluations have been discussed for several thickness ratio values, geometrical
properties, lamination sequences, temperature impositions and materials. These analyses showed a
complete match between the 3D uncoupled model that uses the 3D Fourier heat conduction relation
and the 3D full coupled one. This last new method has the advantage that takes into account both
the thickness and the material layer effects using a mathematical formulation that is simpler and
more elegant because the three-dimensional Fourier heat conduction relation is not separately solved.
Moreover, a reduced number of artificial layers M is requested in comparison with the uncoupled 3D
model.
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