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ABSTRACT

When building geotechnical constructions like retaining walls and dams is of interest, one of the most important
factors to consider is the soil’s shear strength parameters. This study makes an effort to propose a novel predictive
model of shear strength. The study implements an extreme gradient boosting (XGBoost) technique coupled with
a powerful optimization algorithm, the salp swarm algorithm (SSA), to predict the shear strength of various soils.
To do this, a database consisting of 152 sets of data is prepared where the shear strength (τ) of the soil is considered
as the model output and some soil index tests (e.g., dry unit weight, water content, and plasticity index) are set as
model inputs. The model is designed and tuned using both effective parameters of XGBoost and SSA, and the most
accurate model is introduced in this study. The prediction performance of the SSA-XGBoost model is assessed based
on the coefficient of determination (R2) and variance account for (VAF). Overall, the obtained values of R2 and VAF
(0.977 and 0.849) and (97.714% and 84.936%) for training and testing sets, respectively, confirm the workability of
the developed model in forecasting the soil shear strength. To investigate the model generalization, the prediction
performance of the model is tested for another 30 sets of data (validation data). The validation results (e.g., R2

of 0.805) suggest the workability of the proposed model. Overall, findings suggest that when the shear strength
of the soil cannot be determined directly, the proposed hybrid XGBoost-SSA model can be utilized to assess this
parameter.
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Nomenclature

ANN Artificial Neural Network
GEP Genetic Expression Programming
SVM Support Vector Machine
ANFIS Adaptive Neuro-Fuzzy Inference System
HGSO Henry Gas Solubility Optimization
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GA Genetic Algorithm
PSO Particle Swarm Optimization
SSA Salp Swarm Algorithm
VAF Variance Account For
τ Shear Strength
ϕ Internal Friction Angle
c Cohesion
γd Dry Unit Weight
PPS4 Percent Passing Sieves No 4
PPS40 Percent Passing Sieves No 40
Wn Water Content
PL Plastic Limit
LL Liquid Limit

1 Introduction

It is well established that soil failure generally occurs in the form of shearing. Hence, proper
determination of soil shear strength is crucial in designing geotechnical structures such as retaining
walls, and foundations. Although there is a direct method and standard procedure for determining
the soil shear strength, the feasibility of indirect methods in estimating the shear strength of soil is
also underlined in literature, which is mainly due to the fact that indirect methods are quick tools
and economic. Indirect methods include conventional empirical correlations between soil index tests
and shear strength parameters like cohesion and internal friction angle of the soil. For example,
Hatanaka et al. [1] reported an empirical correlation between penetration resistance and friction angle
of cohesionless soils. Nevertheless, in recent past years, the implementation of artificial intelligence and
reliability analysis-based methods in solving civil and geotechnical engineering problems has received
considerable attention [2–25]. It is worth mentioning that the implementation of soft computing
techniques is of interest when the contact nature between parameters is nonlinear.

On the other hand, the shear strength of the soil is a function of various parameters and the
relationship between these influential parameters and shear strength is complex and nonlinear. Hence,
the implementation of artificial intelligence techniques, is beneficial as suggested by many researchers.
For example, Khanlari et al. [26] investigated the feasibility of an artificial neural network (ANN)
in assessing the shear strength parameters of soil (i.e., cohesion and internal friction angle). Their
suggested predictive model comprised several input parameters including plasticity index (PI), soil
density, and the passing percentage of different sieves (i.e., No. 200, No. 40, and No. 4). They
used 200 sets of data for their model development. Their findings suggest (correlation coefficient of
0.91) that their proposed model can be implemented for estimating the shear strength parameters.
Kayadelen et al. [27] showed the workability of genetic expression programming (GEP) in estimating
the effective angle of shearing resistance of soils. Khan et al. [28] developed a new model called the
Functional Network (FN) to forecast the residual strength of the soil.

Das et al. [29] utilized ANN to assess the residual strength of clays. In another study, Das et al. [30]
used support vector machine (SVM) and ANN techniques to estimate the residual strength of the
soil. Ding et al. [31] developed an intelligent predictive model of soil shear strength. Their model
inputs comprise plastic and liquid limits, clay content, moisture content, void ratio as well as specific
gravity. Their recommended model was based on an adaptive neuro-fuzzy inference system (ANFIS)
improved with henry gas solubility optimization (HGSO). According to their results, the coefficient of
determination value of 0.954 shows the feasibility of the aforementioned hybrid model in estimating
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the shear strength of the soil. It should be mentioned that they used 127 sets of data for constructing
their models. In another study, Armaghani et al. [32] suggested that the neuro-imperialism method
can be implemented for the indirect estimation of shear strength parameters of sandy soils. According
to their study, the inputs of their proposed model were fiber length and percentage, deviatoric stress
as well as pore water pressure values. Their findings show that the predictive models which were made
with improved ANNs outperform conventional ANN models. It is worth mentioning that the utilized
sand in their study was reinforced with fibers and they tested the performance of the models using 30
sets of data. Kanungo et al. [33] implemented a regression tree and ANNs for assessing the unsaturated
soil shear strength parameters. Kiran et al. [34] proposed an ANN-based predictive model of soil
shear strength. Their model inputs were soil index properties including Atterberg limits, dry and bulk
densities as well as the percentages of gravel, sand, and clay, respectively. They used 300 sets of data
for establishing their proposed ANN-based predictive model.

In another study, Tizpa et al. [35] recommended an ANN-based predictive model of effective
friction angle of shearing. Overall, they compiled 105 sets of data. The inputs of their proposed model
were coarse content, fine content, liquid limit, soil bulk density, and shearing rate. According to their
sensitivity analysis, among the aforementioned input parameters, soil density was the most influential
parameter. Pham et al. [36] utilized machine learning techniques for assessing the shear strength
of soft soils. Using 188 clay soil samples, they compared the prediction performance of different
soft computing techniques including ANN, support vector regression (SVR), ANFIS improved with
Genetic algorithm (GA), and Particle Swarm Optimization (PSO) algorithm. Their findings showed
that the PSO-ANFIS-based predictive model of shear strength with an R-value of 0.60 is a relatively
good predictor. The input parameters of their recommended model were clay content, liquid limit,
plastic limit, moisture content, consistency index, and plastic index. In another study, Kaya [37]
compiled a dataset from another study (i.e., Stark et al. [38]) and showed that effective normal stress,
activity, clay fraction, liquid and plastic limits can form the inputs of the ANN-based predictive model
of residual friction angle of soil. The coefficient of determination value of 0.93 suggests the reliability
of their developed model.

Tien Bui et al. [39] implemented a least square support vector machine and cuckoo search
optimization algorithm for assessing the shear strength of soils. They used 332 sets of data for model
construction. The inputs of their model comprise moisture content, specific gravity, soil density, liquid
and plastic limits, liquid index, sample depth, sand, loam, and clay percentages, respectively. The R2

value of 0.885 suggests the workability of their proposed predictive model for predicting shear strength.
Hashemi Jokar et al. [40] proposed the use of ANFIS for predicting unsaturated soil shear strength.
According to their study, the conventional parameters in the empirical models can be used as inputs for
the intelligent-based predictive models. Therefore, the inputs of their ANFIS-based predictive model
include net normal stress, angle of frictional resistance, matric suction, and effective cohesion. They
used 95 sets of data for model development. Overall, their findings suggest that the ANFIS is a capable
tool for estimating the shear strength of unsaturated soils.

Ly et al. [41] mentioned that SVR is a useful tool in predicting the shear strength of the soil.
They used 500 sets of data for model construction. The input of their models consisted of void
ratio, specific gravity, clay and moisture contents as well as liquid and plastic limits. The R2 value
of 0.91 recommends the feasibility of their proposed SVR-based predictive model. Mousavi et al. [42]
proposed an ANN-based predictive model of friction angle using 27 sets of data. The input layer
of their proposed model comprises grain size distribution parameters as well as the relative density
of the soil. Chao et al. [43] conducted a comparative study using soft computing techniques for
estimating soil shear strength. Using 316 sets of data, they assessed the shear strength between the
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soil and the Geocomposite drainage layer. The input parameters for their developed models were
normal stress, soil density, moisture saturation of the soil, thickness and type of drainage core, soil type,
shearing surface, consolidation condition, and geotextile specifications. Jain et al. [44] utilized 198 sets
of experimental data for developing an ANN-based predictive model of shear strength parameters.
Compaction energy, degree of saturation, and dry density formed the input layer of their proposed
ANN-based predictive model. A regression coefficient equal to 0.94 recommends the feasibility of their
proposed models. Zhang et al. [45] utilized extreme gradient boosting to estimate the shear strength of
soft soils. They used five input parameters, including vertical effective stress, plastic and liquid limits,
preconsolidation stress, and natural water content.

Dutta et al. [46] proposed a soft computing-based predictive model of friction angle. They
compiled 60 sets of data for model construction. The input layer of their proposed model comprises
sand content, clay content, plastic limit, and liquid limit. The R2 value of 0.96 for their testing data
suggests the workability of their proposed ANN-based predictor. Mohammadi et al. [47] estimated
soil shear strength parameters using ANN and multivariate regression. They used 108 sets of data for
their modeling. The input parameters of their proposed models include percentages of gravel, sand,
silt, and clay, respectively, Atterberg limits, and density. The R2 values of 0.885 and 0.845 for the ANN-
based predictive model of cohesion and ANN-based predictive model of friction angle recommend the
feasibility of neural networks in assessing the engineering properties of soils. A number of works done
on the prediction of shear strength using soft computing techniques are presented in Table 1.

Table 1: Related soft computing-based predictive models of soil shear strength

References Techniques Input parameters Output Sets of
data

Performance
indices

Besalatpour et al. [48] ANN, ANFIS SOM, Clay content, FS,
CCE, NDVI

τ 165 RANN = 0.86
RANFIS = 0.60

Kakarla et al. [49] ANN GP, SP, STP, Clay content,
γd, PI

c, ϕ - Rc = 0.73
Rϕ = 0.86

Richard et al. [50] ANN Wn, LL, PL, LI, τ 10 R = 0.926
Lin et al. [24] ANN Wn, γd, e, PL τ 161 R2 = 0.606

MSE = 4.742
Zhu et al. [51] ANN Wn, γd, R, P c, ϕ 83 R2

c = 0.89,
R2

ϕ
= 0.87

PLSR R2
c = 0.76,

R2
ϕ
= 0.82

SVR R2
c = 0.85,

R2
ϕ
= 0.83

Al-zubaidy et al. [52] ANN Sampling depth, Gypsum
content, LL, PL, PI, Sieve
#200, γd, Wn, e

c, ϕ 50 R2
c = 0.95

R2
ϕ
= 0.98

Note: Wn water content; γd dry unit weight; PL plastic limit; LL liquid limit; PI plasticity index; LI liquidity index; SOM soil organic matter;
CCE calcium carbonate equivalent; NDVI normalized difference vegetation index; FS fine sand content; GP gravel; SP sand; STP silt; e
void ratio; c cohesion; ϕ internal friction angel; τ shear strength; R cone tip resistance; P cone side pressure; PLSR partial least squares
regression; SVR support vector regression.

This study aimed to propose a novel intelligent predictive model of soil shear strength, i.e., extreme
gradient boosting-salp swarm algorithm (XGBoost-SSA). The proposed model is based on the 152
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experiments performed by authors. The point that in this study XGBoost technique is coupled with
the salp swarm algorithm for assessing the soil shear strength differentiates the presented work from
other related studies. From the authors’ perspective, publishing the results of new laboratory tests for
this problem and verifying the previously proposed techniques with various datasets for the same type
of prediction problems are advantageous. Additionally, repetition of this type of study can establish
common sense and provide broad observation chance about the relation between the problem of
interest and predictive methods. Nevertheless, in this study, after the introduction and reviewing the
related works in Section 1, the materials, experimental methods, and the implemented database are
discussed in Section 2. Section 3 deals with the soft computing-based methodology and the relevant
modeling procedure, respectively. In Section 4, results and discussion are presented and in Section 5
conclusion remarks are discussed.

2 Materials, Experimental Methods, and Implemented Database

In this study, shear strength values were assessed using a database consisting of 152 datasets.
For this purpose, different soil specimens were gathered from both subsurface and surface resources
in Zanjan Province in the West of Iran (Fig. 1). Next, the soil samples were characterized in terms
of engineering properties such as dry unit weight (γd), percent passing sieve No 4 (PPS4), percent
passing sieve No 40 (PPS40), shear strength (τ), water content (Wn), and plasticity index (PI). Table 2
indicates the engineering properties of some samples which were utilized in this work. A summary of
the statistical values of the inputs and output is also presented in Table 3. All tests were carried out in
accordance with ASTM D3080 [53] in the laboratory of Hamedan Sinab-Gharb Consulting Engineers.
In this study, the shear strength is set as the output variable. Furthermore, the input variables comprise
γd, PPS4, PPS40, Wn, and PI.

Figure 1: The location of the sampling sites in Zanjan Province
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Table 2: The engineering properties of some tested samples

Sample No. γdry (gr/cm3) Wn (%) PPS4 (%) PPS40 (%) PI (%) τ (kg/cm2)

S1 1.55 27.60 99.61 95.17 14.30 0.518
S2 1.32 23.71 99.00 90.57 12.20 0.441
S3 1.45 22.42 98.68 90.74 10.00 0.474
S4 1.85 16.41 74.12 57.43 8.50 0.811
S5 1.75 16.54 76.09 54.81 6.10 0.810
S6 1.50 20.57 95.20 87.56 10.50 0.724
S7 1.97 7.34 41.23 28.82 5.40 1.280
S8 1.86 12.68 68.04 54.81 6.60 0.817
S9 1.93 6.51 33.41 23.55 1.56 1.250
S10 1.61 4.07 54.22 65.32 4.10 0.754
S11 1.82 4.83 67.27 34.87 7.40 0.985
S12 1.89 4.27 69.09 37.54 6.20 1.019
S13 1.33 7.25 61.04 37.25 3.60 0.835
S14 1.36 5.77 71.49 45.84 5.50 0.645
S15 1.87 10.45 56.90 33.05 4.90 0.912
S16 1.77 12.74 66.13 51.23 2.70 0.908
S17 1.65 20.22 98.18 91.65 15.20 0.573
S18 1.67 12.43 71.08 93.49 6.20 0.837
S19 1.69 9.85 71.00 87.39 8.20 0.841
S20 1.42 8.24 88.88 63.13 3.60 0.892

Table 3: Typical characteristics of collected data in this study

Variables Symbol Unit Type Min Mean Max Std. Dev.

Water content Wn % Input 1.27 10.864 27.60 5.331
Dry unit weight γdry gr/cm3 Input 1.26 1.726 1.99 0.165
Percent passing sieve No 4 PPS4 % Input 33.41 79.672 99.65 17.262
Percent passing sieve No 40 PPS40 % Input 23.55 61.549 97.13 16.851
Plasticity index PI % Input 0.9 8.874 24.1 5.001
Shear strength τ kg/cm2 Output 0.39 0.844 1.33 0.187

2.1 Shear Strength
Shear strength of a soil mass, as the output variable of this study, is the internal resistance of each

unit area of the soil against sliding and failure along any plane inside it [54]. This parameter is of prime
importance in bearing capacity and slope stability analyses. The soil failure is attributed to a critical
combination of normal and shearing stress. Therefore, the relationship between these two types of
stress on a failure surface of a soil mass is expressed by Eq. (1):
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τ = c + σn tan ϕ (1)

where σ n denotes the normal stress on the failure plane (kg/cm2), c shows cohesion (kg/cm2), and ϕ (°)
represents the soil’s internal friction angle.

Soil shear strength parameters (i.e., c and ϕ) can be determined using three common tests:
torsional ring shear, triaxial, and direct shear tests [54,55]. Generally, direct determinations of these
parameters are either relatively difficult or expensive. Nevertheless, for predictive model construction,
in the present research, the shear strength was computed using the values of c and ϕ which were
obtained through direct shear test. It should be mentioned that the normal stress was set to be
1.5 kg/cm2. The shear strength values were determined in the range of 0.39 to 1.33 kg/cm2 (Table 3).

2.2 Water Content
Water content (Wn) is the ratio of the water weight to the solids’ weight in a specific volume of soil.

This parameter influences the soil’s shear strength by lowering the cohesive forces between soil solids.
Water content also causes the soil’s saturation. The shear strength of soils declines with increasing the
water content [56]. Hence, we considered this parameter in estimating the shear strength of the studied
soil samples. In the laboratory, Wn is determined by oven drying the soil specimen. On the other hand,
field testing of Wn is carried out using the alcohol-burning method. This parameter is calculated using
Eq. (2) as follows [54,55]:

Wn = (Ww/Ws) ∗ 100 (2)

where Ws and Ww are the weights of soil sample solids and soil’s water, respectively. The Wn of a soil
sample is determined by weighing soil sample and placing it in an oven at 110°C ± 5°C until the weight
of the sample reaches a constant state. In this condition, all water content of the soil is released. For
most soils, a constant weight is achieved at about 24 h. The soil sample is removed from the oven,
cooled, and weighed. As shown in Table 3, the Wn values of the studied soil range from 1.27% to
27.60%.

2.3 Plasticity Index
The plasticity index (PI) is the range of water content over which the soil deforms in a plastic

form. Soil’s PI is positively correlated with its shear strength. Mathematically, PI is expressed as the
difference between the plastic limit (PL) and liquid limit (LL), as follows:

PI = LL − PL (3)

where LL and PL are determined using the Atterberg tools [54]. In this study, the PI values vary from
0.90% to 24.10% (Table 3).

2.4 Dry Unit Weight
Dry unit weight (γd) is the weight of a dry soil per unit volume. Dry unit weight can be calculated

using the following equation:

γd = Ws/V (4)

where Ws is considered as the weight of solids of the soil sample, and V is the total volume of the soil
sample. The increase in dry unit weight can enhance the shear strength of soil. As shown in Table 3,
the dry unit weight values of soil samples vary from 1.26 to 1.99 gr/cm3.
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2.5 The Particle Size Distribution Analysis
The sieve analysis was performed to determine grain size distribution. In this research, percent

passing sieves No 4 (PPS4), and percent passing sieves No 40 (PPS40) were used to predict soils’ shear
strength using the hybrid SSA-XGBoost technique. As shown in Table 3, the values of PPS4 and PPS40
are 33.41–99.65 and 23.55–97.13, respectively.

To estimate the linear relationship among variables used in this study, a correlation matrix was
produced. Based on this, the correlation matrix was created by applying the bivariate correlation
method. In this analysis, Pearson’s correlation coefficients between τ, being the dependent variable, and
the other utilized soil parameters, being independent variables, were investigated. In Table 4, Pearson’s
correlation coefficients (R values) are presented.

Table 4: Correlation matrix for the original data set

Parameter τ Wn γd PI PPS4 PPS40

τ 1 −0.55 0.65 −0.40 −0.51 −0.70
Wn 1 −0.54 0.38 0.28 0.54
γd 1 −0.15 −0.18 −0.46
PI 1 0.29 0.43
PPS4 1 0.55
PPS40 1

To expound on the correlations between these variables, the scatter plot matrix was also employed.
It contains all the pair-wise scatter plots of the variables on a single page in a matrix format, as
depicted in Fig. 2. The results show that only the input variable, γdry, positively correlates with the
shear strength. For the input variables such as Wn, PPS4, PPS40, and PI, negative correlations with
the shear strength were observed. Overall, the five input variables do not show a strong correlation
with shear strength. Pearson’s R value of 0.699 between PPS40 and shear strength suggests the
aforementioned conclusion. Additionally, as expected the mutual correlations between input variables
(i.e., Wn, γdry, PPS4, PPS40, and PI) were weak. Note that in this section, only a simple linear
relationship between these five variables and shear strength is discussed.

3 Soft Computing-Based Methodology
3.1 Extreme Gradient Boosting

Extreme gradient boosting (XGBoost), a multi-threaded implementation of the gradient boosting
decision tree (GBDT), is a highly efficient machine learning algorithm that evolved from the traditional
machine learning classification and regression tree (CART) [57]. Fig. 3 shows that XGBoost is an
ensemble tree-based model and it has a highly scalable end-to-end tree boosting system. The basic idea
of XGBoost is the stacking strategy as well as parallel and distributed computing [58,59]. XGBoost
concatenates multiple CARTs and then inputs the original training set into the first regression tree to
generate a weak learning model; after that, XGBoost collects the training errors generated by the first
weak learning model to build a new data set with the error. Next, the new data set is considered as new
training data which is utilized for training the second regression tree. The above steps continuously
repeat and the loop ends until the value of the objective function is less than the desired threshold.
Ultimately, the predicted results can be obtained by summing the results of multiple trees.
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Figure 2: Scatters plot matrix of the data samples

Figure 3: Structure of the XGBoost model

The mathematical model of XGBoost is as follows:

3.1.1 Objective Function

For the dataset D with n samples and m features D = {(xi, yi)} (|D| = n, xi ∈ R
m, yi ∈ R), the

objective function of XGBoost can be expressed as:

ŷi =
∑K

k=1
fk(xi), fk ∈ F (5)

where F = {
f (x) = wq(x)

} (
q: Rm → T , w ∈ R

T
)

denotes the domain space of the CARTs, q denotes
the structure of every single CART, T is the number of leaf nodes and each fk signifies the weight of
the leaf nodes in a CART with structure q.

In Eq. (5), the prediction results for sample i after the t-th iteration is:

ŷ(0)

i = 0 (6)

ŷ(1)

i = f1 (xi) = ŷ(0)

i + f1 (xi) (7)
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ŷ(2)

i = f1 (xi) + f2 (xi) = ŷ(1)

i + f2 (xi) (8)

· · ·
ŷ(t)

i =
∑t

k=1
fk (xi) = ŷ(t−1)

i + ft (xi) (9)

Based on Eq. (9), the objective function can be transformed into the following form:

ζ (t) =
∑n

i=1
l
(
yi, ŷ(t−1)

i + ft (xi)
) + � (ft) (10)

Then, the Taylor expansion of the objective function is performed and the first three terms are
taken (removing the higher-order infinitesimal terms). The new objective function takes the following
form:

ζ (t) ≈
∑n

i=1

[
l
(
yi, ŷ(t−1)

) + gift (xi) + 1
2

hif 2
t (xi)

]
+ � (ft) (11)

gi = ∂ŷ(t−1) l
(
yi, ŷ(t−1)

)
(12)

hi = ∂2
ŷ(t−1) l

(
yi, ŷ(t−1)

)
(13)

where gi and hi are the first-order derivative and second-order derivative of the loss function,
respectively, �(ft) is the regularization term. To train a XGBoost model, the necessary work is to
minimize the abovementioned objective function.

3.1.2 Hyperparameters Tuning

For an XGBoost model, determining the optimal hyperparameters is a crucial task because it can
significantly affect the performance of the constructed XGBoost model. The dominant hyperparam-
eters of the XGBoost model in the present research are elaborated as follows:

The number of estimators: The maximum number of gradient boosted trees. In general, if this
value is too low, the model will underfit, and if the value is too high, the computation cost will be
considerably increased.

Learning rate: Step size shrinkage is used in each iteration. To avoid overfitting, step size shrinking
was implemented in the update because it can shrink the feature weights to make the boosting process
more conservative.

Subsample: Subsample ratio of the training instances when growing trees. This hyperparameter
can help the XGBoost model to prevent overfitting.

3.2 Salp Swarm Algorithm
The salp swarm algorithm (SSA) is a swarm intelligence optimization algorithm that mimics the

locomotion and foraging behavior of the salp swarm [60]. In deep oceans, a swarm formed by salps
is called a salp chain. This “chain” shape keeps the salp moving in a certain order. According to the
position of individual salp, the salps are divided into the leader and followers. As the name implies,
the leader has the best judgment of the surrounding environmental situation and ranks at the head
of the chain. However, unlike other swarms’ behavior, the leader in SSA no longer directly dominates
the movement direction of the entire salps, but only directly guides the position update of the salps
immediately next to it. In this case, the leader’s guidance to the subsequent salps decreases sharply step
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by step, which helps the subsequent salps to retain their diversity rather than only moving towards the
leaders. The mathematical model of the SSA is as follows.

3.2.1 Initialize the Population

The search domain space is assumed to be an D-dimensional space with N salps, where N is
the population size of the salps and D is the spatial dimension. In a search space, the position
of the target food is defined as F = [F1F2 · · · FD]T , and the positions of the salps are defined
as Xn = [xn1xn2 · · · xnD]T , n = 1, 2, . . . , N. The upper bound of the search space is defined as
ub = [ub1ub2 · · · ubD], while the lower bound of the search space is defined as lb = [lb1lb2 · · · lbD].
Thus, the randomly initialized populations can be characterized as:

XN×D = rand (N, D) × (ub − lb) + lb (14)

where XN×D signifies the population of the salps.

3.2.2 Update of the Leader’s Position

The first leader (salp) is responsible for searching for food (in the search domain) and guiding the
movement of the subsequent salps. The following equation is used to update the position of the leader:

X 1
d =

{
Fd + c1 ((ubd − lbd) c2 + lbd) c3 ≥ 0.5
Fd − c1 ((ubd − lbd) c2 + lbd) c3 < 0.5

(15)

where X 1
d denotes the position of the leader in the d-th dimension, Fd denotes the position of the target

food, ubd and lbd indicate the upper and lower bounds, respectively, and c2 and c3 are random values
in the interval of [0, 1]. For c1, it is a vital parameter in SSA because it can balance exploration and
exploitation when searching. The equation used for characterizing c1 is shown as follows:

c1 = 2e−(4l/lmax)2 (16)

where l and lmax denote the current and maximum iterations, respectively.

3.2.3 Update the Followers’ Positions

In the SSA, the followers in a chain follow the leader sequentially. The positions of followers are
related to their initial positions, movement speed, and acceleration. Moreover, their motion follows
Newton’s law [60,61]. The movement distance of the followers can be determined as follows:

R = 1
2

at2 + v0t (17)

where R denotes the movement distance of the followers, a denotes the acceleration and its calculation

formula is a = vfinal − v0

t
where vfinal = X i−1

d − X i
d

t
. Here, X i

d signifies the position of i-th follower in

d-th dimension, vo indicates the initial speed and its value is 0, and t indicates the discrepancy between
iterations and it is equal to 1. Therefore, Eq. (17) can be expressed as follows:

R = 1
2

(
X i−1

d − X i
d

)
(18)

Then, the updated positions of the followers can be expressed as follows:

X i′
d = X i

d + R = 1
2

(
X i−1

d + X i
d

)
(19)



2538 CMES, 2023, vol.136, no.3

where X i′
d denotes the updated positions of the followers. The flowchart of the SSA is depicted in

Fig. 4.

Figure 4: Flowchart of the salp swarm algorithm (SSA)

3.3 Optimized XGBoost-Based Models
Owing to the parameters involved in the XGBoost model with highly unknown space domains,

tuning its hyperparameter is more complicated compared to other tree-based models such as the
random forests model. Generally, the results of manual tuning are unsatisfactory. Therefore, in this
section, the metaheuristic optimization algorithm SSA is used to capture the best hyperparameters
of the XGBoost model. Before constructing the hybrid model, the dataset including 152 samples is
randomly split into two parts, i.e., 80% for the training set (121 samples) and 20% for the testing set (31
samples). Then, the SSA is utilized to optimize the XGBoost model. The main steps for constructing
the hybrid SSA-XGBoost model are shown as follows:
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Step 1: Determine the objective function that needs to be optimized by SSA. First, the primary
XGBoost model is established and the hyperparameters, i.e., learning rate and subsample, are set as
the optimization objectives in the XGBoost model. It should be mentioned that the SSA algorithm is
generally used to solve minimization problems. Hence, the objective function is defined as the function
of the root mean squared error (RMSE), which presents the difference between the target values and
the values predicted by the XGBoost model. In this way, the SSA will optimize the XGBoost model
to seek the minimum RMSE value (the optimal values of the hyperparameters). During the process, a
5-fold cross-validation method was used to reduce the likelihood of accidental results.

Step 2: Determine the range of the hyperparameters. In the present study, the range of learning
rate was set to [0.01, 0.50], the range of subsample was set to [0.2, 0.8], and the number of estimators
was set to 50.

Step 3: Optimize the hyperparameters. When SSA searches the hyperparameters, the next hyper-
parameter set is chosen by minimizing the RMSE value in the optimization process. At the same time,
the iteration results of each set of candidate hyperparameters are recorded, including the values of
each hyperparameter and the corresponding RMSE. Finally, the loop continues till the predefined
number of iterations is reached. In this study, the number of iterations of the SSA was set to 100 and
the population sizes of the SSA were set to 20, 40, 60, 80, and 100, respectively.

Additionally, a method called the random search cross-validated method (RS) was implemented to
optimize the hyperparameters of the XGBoost model. Details on this method are beyond the scope of
this study and can be found elsewhere [62]. Nevertheless, for the RS method, the selected distributions
are sampled for a predetermined number of parameter adjustments, and the number of iterations
specifies the number of parameter sets that will be attempted. Similar to the SSA, the RS method
also uses 5-fold cross-validation for performing the optimization task. Nevertheless, the number of
iterations in the RS method was set to 100, and the solution sizes were set to 20, 40, 60, 80, and 100,
respectively.

3.4 Evaluation Criteria
To evaluate the accuracy and robustness of the established hybrid XGBoost models (i.e., SSA-

XGBoost and RS-XGBoost models). Four evaluation metrics, i.e., the coefficient of determination
(R2), the variance account for (VAF), the root mean squared error (RMSE), and the mean absolute
error (MAE). These four metrics are commonly used for regression problem [63–67]. The following
equations were utilized to calculate R2, the VAF, the RMSE, and the MAE.

R2 = 1 −
∑n

i=1

(
τmea − τpre

)2∑n

i=1 (τmea − τmea)
2 (20)

VAF =
(

1 − var
(
τmea − τpre

)
var (τmea)

)
× 100% (21)

RMSE =
√

1
n

∑n

i=1

(
τmea − τpre

)2
(22)

MAE = 1
n

∑n

i=1

∣∣τmea − τpre

∣∣ (23)

where τmea, τpre, τmea denote the actual, predicted, and average values of the shear strength, respectively.
An excellent model can be captured when R2 is 1, VAF is 100%, and the RMSE and MAE are 0.
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4 Results and Discussion
4.1 Performance of the Hybrid XGBoost Models

To explore the developed machine learning models that can accurately predict shear strength,
the results of the hybrid XGBoost models (i.e., SSA-XGBoost model and RS-XGBoost model) are
presented and discussed in this section. The goal of the optimization algorithms (i.e., SSA and RS) is
to capture the optimum values of the two hyperparameters of the XGBoost model (i.e., learning rate
and subsample). Additionally, it is important to underline that the testing dataset was not involved in
the construction process of the hybrid XGBoost models. Hence, the testing data can also be used to
evaluate the generalization abilities of the developed models.

Fig. 5 presents the calculation results of the SSA-XGBoost model with different sizes (i.e., 20, 40,
60, 80, and 100 swarms) on the training data. It can be seen that the final fitness values calculated by
the SSA-XGBoost models with different swarm sizes are relatively close. On the other hand, Fig. 6
presents the calculation results of the RS-XGBoost model with different sizes (i.e., 20, 40, 60, 80,
and 100 swarms) on the training data. Unlike the SSA-XGBoost model, the results of the fitness
values calculated by the RS-XGBoost model are more significantly influenced by the swarm sizes.
For example, the fitness values obtained by RS-XGBoost are smaller when the population size is 80
and 100 compared to the fitness values when the population size is 20. In this regard, the robustness
of the SSA-XGBoost model is better than that of the RS-XGBoost model.

Figure 5: Various SSA-XGBoost models with different swarm sizes

Figure 6: Various RS-XGBoost models with different swarm sizes

To more clearly identify the performance of the SSA-XGBoost and RS-XGBoost models, four
evaluation metrics (i.e., the values of R2, RMSE, MAE, and VAF) were utilized to assess the accuracy
and error of the hybrid XGBoost models. Note that the performance of a machine learning model
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should not only be considered on the training set but also the testing dataset plays an important role
in assessing the prediction performance of the developed model. Based on this, the evaluation results
of four evaluation metrics on the training and testing sets are summarized in Table 5. According to
these four metrics, an excellent model has higher R2 and VAF, as well as lower RMSE and MAE.
Consequently, based on the results in Table 5, it can be inferred that the SSA-XGBoost model with 40
swarms shows the best performance compared to other models. The R2 values of 0.977 and 0.849, the
VAF values of 97.714 and 84.936, the RMSE values of 0.026 and 0.094, and the MAE values of 0.019
and 0.073 for the training and testing sets, respectively, confirm the feasibility of the SSA-XGBoost
predictive model. In addition, the hyperparameters that were employed by the optimal model (i.e.,
the SSA-XGBoost model with 40 swarms) are the learning rate of 0.18 and the subsample of 0.41,
respectively. Here, to visualize the actual position of the optimal solution in the domain space, the
possible solutions in the domain space is displayed in Fig. 7 using a three-dimensional plot. In Fig. 7,
the x-axis represents the learning rate, the y-axis represents the subsample, and the z-axis represents
the fitness value. The red point indicates the best solution (i.e., the optimal hyperparameters), whose
coordinates are (0.18, 0.41). The remaining points are the fitness values calculated on the intervals
[0.01, 0.5] and [0.2, 0.8]. Intuitively, when the learning rate is too small, the value of the fitness is large,
which means that the trained model suffers from underfitting.

Table 5: Results of the hyperparameters selection and performance evaluation of the hybrid XGBoost
models

Hyperparameters Evaluation metrics
Models Swarm Sizes Training set Testing set

Learning rate Subsample R2 RMSE MAE VAF R2 RMSE MAE VAF

SSA-XGBoost

20 0.13 0.40 0.959 0.034 0.025 95.867 0.843 0.096 0.076 84.561
40 0.18 0.41 0.977 0.026 0.019 97.714 0.849 0.094 0.073 84.936
60 0.10 0.36 0.915 0.049 0.037 91.618 0.828 0.101 0.080 82.835
80 0.13 0.37 0.945 0.039 0.029 94.52 0.834 0.099 0.080 83.558
100 0.11 0.31 0.912 0.050 0.040 91.374 0.813 0.105 0.082 81.339

RS-XGBoost

20 0.12 0.37 0.943 0.040 0.030 94.361 0.846 0.095 0.078 84.659
40 0.13 0.37 0.943 0.040 0.029 94.372 0.838 0.098 0.078 83.833
60 0.16 0.26 0.911 0.050 0.037 91.154 0.799 0.109 0.083 79.884
80 0.17 0.25 0.915 0.049 0.038 91.536 0.832 0.100 0.081 83.373
100 0.18 0.26 0.918 0.048 0.036 91.889 0.752 0.121 0.091 75.177

To have a better understanding about the differences among these models (see Table 5), the
evaluation metrics were categorized into two groups. The first category considers the 100 × R2 and
VAF values of the models. Needless to say, in this category, a model with larger coordinate performs
best. In the second category, the focus is on the MAE and RMSE values. Hence, a model with smaller
coordinates indicates smaller errors (see Fig. 8).



2542 CMES, 2023, vol.136, no.3

Figure 7: Optimal solution in the search space

Figure 8: Performance of the proposed hybrid XGBoost models on the training set

Based on the above discussion, Fig. 8 (left side) suggests that SSA-XGBoost predictive model with
40 swarms outperforms other models in terms of VAF as well as R2 values. On the other hand, Fig. 8
(right side) also suggests that SSA-XGBoost predictive model with 40 swarms has the lowest error and
works better in terms of MAE and RMSE values. In general, the SSA-XGBoost model outperforms
the RS-XGBoost model for the training dataset. Similarly, Fig. 9 shows the prediction performances of
the developed models for testing data. This figure also recommends that, in general, the SSA-XGBoost
predictive model with 40 swarms outperforms the RS-XGBoost model for testing datasets. Overall,
based on the prediction performances of the models for training and testing datasets, one can assert
that the SSA-XGBoost model with 40 swarms is a feasible tool for assessing the shear strength of
the soil.
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Figure 9: Performance of the proposed hybrid XGBoost models on the testing set

Finally, to visualize the difference between the predicted and true values, the measured and
predicted shear strength by the SSA-XGBoost model with 40 swarms on both training and test sets
are depicted, in Fig. 10. For the training set, it can be found that the proposed SSA-XGBoost model
can predict the shear strength well enough because the data points are concentrated near the y = x
line, while for the testing set, the distribution of data points around y = x line is not as good as the
training set. This is because only 152 data samples were available in the present study. Hence, the
presented database does not fully reflect the true scenario of the “real world”. Thus, the developed
model does not perform very well on the testing (unknown) data set, which indicates that the model
is overfitted. Although some measures such as tuning the subsample ratio were utilized to remedy the
issue of overfitting, the number of available data is only 152 samples. This can lead to the relatively
weak generalization ability of the XGBoost. Hence, to refine the prediction power of the model, an
expanded and comprehensive database with additional samples should be employed. Alternatively,
data augmentation techniques, such as generative adversarial network or variational autoencoder, can
also be utilized to augment the data size.

Figure 10: Predicted and measured shear strength of the SSA-XGBoost on the training (left one) and
testing (right one) sets
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4.2 Validation of Model Performance
In this section, another 30 data samples (named validation data) were prepared from the same

project to verify the generalization ability of the developed XGBoost model. Table 6 shows the
statistical index of the validation data. A subtle discrepancy between the original data and validation
data is the difference between the variable’s variance, for example, for variables Wn, PPS4, PPS40, and
PI. Besides, the range of each variable was in good agreement with the range of the validation data.
This can provide promising anticipation that the XGBoost model may show a favorable performance
on the validation data.

Table 6: Typical characteristics of the validation data

Variables Symbol Unit Type Min Mean Max Std. Dev.

Water content Wn % Input 3.41 10.738 18.88 4.391
Dry unit weight γdry gr/cm3 Input 1.50 1.722 1.94 0.116
Percent passing sieve No 4 PPS4 % Input 52.70 74.266 96.99 12.938
Percent passing sieve No 40 PPS40 % Input 40.73 58.113 80.06 10.015
Plasticity index PI % Input 2.03 7.644 15.37 3.013
Shear strength τ kg/cm2 Output 0.62 0.870 1.13 0.133

Similar to the training and testing sets, the input variables in the validation phase include Wn,
γdry, PPS4, PPS40, and PI. Then, the performance of the proposed XGBoost model on the validation
data set was investigated and prediction results were checked against target values. According to the
predictive result in Table 7, it can be seen that the values of RMSE and MAE (0.058 and 0.048,
respectively) on the validation data set are smaller than the corresponding values (0.094 and 0.073,
respectively) on the testing data set. On the other hand, the values of R2 and VAF (0.849% and
84.936%, respectively) on the testing set are higher compared to the validation data (0.805% and
83.379%, respectively). As we know, RMSE and MAE represent the predictive bias of a machine
learning model, and R2 and VAF represent the predictive variance of a machine learning model.
Thus, the above result reflects that the XGBoost model has a low predictive bias and a high predictive
variance for the validation data set (in comparison with testing data set). This phenomenon implies
that the proposed XGBoost model may have encountered overfitting on the validation set. Further,
we provide a visualization of the predicted and measured soil strength from the validation data set, as
shown in Fig. 11. Intuitively, most of the predicted and measured data samples are approximate, but
some individual data samples show obvious differences which cause relatively high variance on the
prediction performance of the XGBoost model for the validation data set. As mentioned previously,
one feasible way to solve this problem (overfitting) is to supplement more data samples to the current
data set.

Table 7: Results of the proposed XGBoost model for the validation stage

Dataset Performance index

R2 RMSE MAPE VAF (%)

Validation data 0.805 0.058 0.048 83.379
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Figure 11: Predicted and measured shear strength values during the validation data

4.3 Sensitivity Analysis of Predictor Variables
A sensitivity analysis was conducted to identify the most influential input variables on the model

output. As previously stated, five variables, i.e., moisture content, dry unit weight, percent passing
sieve No 40, plasticity index, and percent passing sieve No 4, were used to construct the SSA-XGBoost
predictive model of soil shear strength. The XGBoost model has the ability to filtrate the feature as the
split node based on the gain of the structure score. In other words, more implementation of a feature
for building a decision tree indicates its higher importance. The importance of a feature is the sum
of its occurrences in all trees. Details on the theoretical background of the aforementioned sensitivity
analysis are beyond the scope of this study and can be found elsewhere [59]. Nevertheless, on this
basis, the importance of the input variables that were used to predict shear strength can be obtained
(see Fig. 12). Overall, the related correlation of the Wn with shear strength is 0.376, the significant
correlation of the γdry with shear strength is 0.164, the significant correlation of the PPS40 with shear
strength is 0.160, the significant correlation of the PI with shear strength is 0.150, and the significant
correlation of the PPS4 with shear strength is 0.149. Hence, for the considered dataset in this study,
the most important input variable is the Wn, whereas the γdry, PPS40, PI, and PPS4 show a similar
correlation with the shear strength. It is worth mentioning that for the multivariate problem of interest
with unknown and complicated contact nature between dependent and independent variables, one
input variable cannot heavily affect the model output (soil shear strength). In other words, the amount
of PPS4 parameter (or Wn) alone is not a good index for assessing the soil shear strength as the latter is
the function of several parameters. Especially for the problem of interest where the input parameters
should be determined easily. Hence, it is not surprising that the mutual correlations between input
parameters (e.g., γdry) and shear strength are not strong enough. However, when the multivariate
problem is coupled with artificial intelligence using a prepared training set of data, a reliable predictive
model can be developed. Nevertheless, the reliability of the developed models depends on the reliability
of the feeding data (training data) and their ranges. Therefore, it is always recommended to practice
the methods with different datasets.
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Figure 12: Significant correlation of the input variables with shear strength

5 Conclusion and Recommendation

This paper exploited the novel hybrid XGBoost models to predict shear strength. A total of 152
shear strength instances were used to develop the hybrid XGBoost models. The input parameters
used for modeling included Wn, γdry, PPS40, PI, and PPS4, while the output was the shear strength.
Then, two novel hybrid XGBoost models, i.e., the SSA-XGBoost model and the RS-XGBoost model,
were constructed. The results confirmed that the SSA-XGBoost models outperform the RS-XGBoost
models. This is attributed to the fact that in this study, the SSA was able to capture the hyperparameters
of the XGBoost models more efficiently compared to the RS algorithm. The performance evaluation
results of the SSA-XGBoost model showed the workability of the proposed model (the R2 values of
0.977 and 0.849, the VAF values of 97.714% and 84.936%, the RMSE values of 0.026 and 0.094, and
the MAE values of 0.019 and 0.073 on the training and testing sets, respectively).

Future research in this area with different sets of data is highly recommended as the size of the
dataset is of importance in model generalization. The broader range of input data can increase the
prediction power of the future predictive models of soil shear strength. Although this study focused
on the workability of the hybrid SSA-XGBoost predictive model, the implementation of other theory-
guided machine learning techniques for the problem of interest and other soil mechanic problems is
recommended.
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