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ABSTRACT

For the randomness of crane working load leading to the decrease of load spectrum prediction accuracy with time,
an adaptive TSSA-HKRVM model for crane load spectrum regression prediction is proposed. The heterogeneous
kernel relevance vector machine model (HKRVM) with comprehensive expression ability is established using
the complementary advantages of various kernel functions. The combination strategy consisting of refraction
reverse learning, golden sine, and Cauchy mutation + logistic chaotic perturbation is introduced to form a
multi-strategy improved sparrow algorithm (TSSA), thus optimizing the relevant parameters of HKRVM. The
adaptive updating mechanism of the heterogeneous kernel RVM model under the multi-strategy improved sparrow
algorithm (TSSA-HKMRVM) is defined by the sliding window design theory. Based on the sample data of the
measured load spectrum, the trained adaptive TSSA-HKRVM model is employed to complete the prediction of the
crane equivalent load spectrum. Applying this method to QD20/10 t × 43 m × 12 m general bridge crane, the results
show that: compared with other prediction models, although the complexity of the adaptive TSSA-HKRVM model
is relatively high, the prediction accuracy of the load spectrum under long periods has been effectively improved,
and the completeness of the load information during the whole life cycle is relatively higher, with better applicability.
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1 Introduction

The hoisting machinery is widely available for equipment manufacturing, transportation,
aerospace, nuclear power construction, and other pillar industries of the national economy. It plays
a vital role in economic development. The safety of its product service process is crucial to ensure
the smooth implementation of the project [1]. Using the obtained load characteristics information,
accurately portraying the load spectrum is a prerequisite for exploring whether its design scheme is
reasonable and whether the service process is safe or not. Currently, in the world, there is no uniform
standard for the compilation method and principle of load spectrum. The load data and compilation
rules belong to the scope of confidentiality and intellectual property protection. In China, due to
insufficient investment in software and hardware facilities for the collection, treatment, and excavation
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of the crane load information, the researches on load spectrum compilation methods and standards
are less [2].

In the field of mechanical equipment, the load spectrum description methods generally include
three categories: the method based on measured load information, based on simulation, and based on
intelligent optimization algorithm and machine learning prediction technology [3].

The description method based on the measured load information is a simple, efficient, and
intuitionistic load spectrum acquisition method. This method directly uses sensors to measure
generalized load information, such as load changes and stress changes, which is widely available for
the life assessment of various structures. In [4], the processing method of random load signals for
uncertainty is proposed to predict the fatigue life of mechanical structures more accurately, which lays a
foundation for load signals processing and fatigue life prediction of parts. The novel compiling method
of the dynamic cutting load spectrum of the MC spindle is proposed in [5]. And it is applied to fatigue
life prediction, which improves the accuracy of the load spectrum because of the mixture Weibull
distribution instead of single distribution, and the complete load spectrum compilation process also
improves the life prediction accuracy. As described in [6], the non-proportional loading path and the
additional hardening effect lead to a sharp decrease in life. For this, the fatigue life model can consider
non-proportional paths, and additional hardening effects are proposed. And the model uses multiaxial
fatigue test data to verify the validity and adaptability of the new model. The life prediction accuracy
and material application range are satisfactory. In [7], the load signal of the suspension lower control
arm is acquired by the collection test for the road load spectrum of an all-terrain vehicle. And a fatigue
life analysis method of the suspension lower control arm is established in line with the load spectrum,
which can accurately predict the residual fatigue life of the control arm in the actual driving process.
In [8], the stress spectrum at local nodes of the jacket platform structure is determined through strain
gauges. And the hot spot stress method is employed to calculate the fatigue life. The vibration data
are combined to realize the health monitoring and maintenance of the structure in service. However,
because the resistance strain gauge is subject to the limitation on its life, it can only monitor the
stress change of short-term measuring points. Moreover, the sticking process of the strain gauge is
complex and time-consuming, so it is not suitable for occasions with narrow patch space and limited
operation. The distributed optical fiber sensor is arranged on the outer wall of the cast iron pipe to
obtain the stress spectrum at the initial defect of the pipe in case of severe corrosion, thus studying
the crack propagation law in [9]. However, the fiber grating sensor being vulnerable and expensive, it
needs to cooperate with the heavier demodulation equipment to complete the optical-electrical signal
conversion, which does not apply to the long-period load spectrum collection.

The description method based on simulation is the theory or finite element simulation to simulate
the actual working state of equipment, which is easy to operate. The load spectrums of diversity speed
levels, line conditions, fault conditions, and tread conditions are analyzed in [10] by dynamic simulation
under the same working condition. And the fatigue damage degree of the car body under various
working conditions is obtained through load spectrum application and damage assessment on the test
platform. As described in [11], the principal component analysis method is adopted to establish the
mathematical model of the multi-parameter load spectrum of the engine. And the model is employed
to simulate the load spectrum of normal, non-normal, and measured related multi-parameter. The
results show that the simulation method can not only ensure the correlation between the load spectrum
parameters being unchanged but also that the cumulative frequency distribution of the simulated load
spectrum is consistent with the original spectrum. The method of generating load spectrum data for
dynamic load simulation is proposed in [12]. Based on the single load spectrum data for vehicles on the
test road, the original load spectrum data of the test road is acquired by extrapolating the single load
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spectrum data to a preset multiple. The single load spectrum is segmented in the time domain to analyze
and compare the damage values after segmentation. The pavement segments with greater contributions
are selected, and the corresponding cycle times are calculated according to the equal damage principle
to obtain the accelerated load spectrum data. This method will not generate additional dynamic
load, nor change the failure mechanism of parts, and ensure the equivalent damage before and after
reduction, with high reliability. It is suitable for dynamic load simulation. The above methods have
shown good applicability in their respective application fields. But there are a lot of simplifications
in the simulation process of complex working conditions, and it is impossible to truly restore the
actual working cycle process, which leads to the credibility of the simulation results being questionable.
Moreover, when the model has a high degree of nonlinearity, the accuracy of the simulation results is
seriously lost, and singular values are easy to appear.

The description method based on intelligent optimization algorithm and machine learning
prediction technology is a technology integrating mathematical statistics, machine learning, intelligent
optimization, etc. And it is applicable to the implementation scheme with few measured load samples,
obviously data nonlinearity, and good popularization. The prediction method of the crane load
spectrum is constructed in [13] based on the drosophila correlation vector machine with adaptive
step size. But the mixed kernel function is directly selected, which leads to poor precision of the
prediction results due to greater subjective dependence. The load spectrum of tower crane based on
radial basis function neural network is predicted in [14], which minimizes the model error by modifying
the number of neurons in the middle layer. Although the approximation ability and learning speed of
radial basis function neural network are better than BP network, the model has a poor interpretation,
large demand for data samples, and data morbid phenomenon occurs in the optimization process.
In [15], the improved drosophila algorithm and the penalty function are applied to the parameter
optimization of the v-SVRM model to achieve the construction of the load spectrum of the bridge
crane, but the SVRM model is too sensitive to parameters and kernel functions, which reduces the
prediction stability. As given in [16], the least squares support vector machine (LSSVM) is used as
the prediction model to analyze the main factors that affect its regression prediction performance.
The LSSVM prediction model is improved by the independently improved beetle antennae search
algorithm (IBAS) to build the model for IBAS-LSSVM load spectrum prediction. The measured load
spectrum data of small samples is employed to complete the training of the prediction model. Then,
the expansion of the load spectrum is handled by Latin hypercube sampling in the regular inspection
cycle of the general bridge crane. The large sample load spectrum with high accuracy is determined
and conforms to the actual project. However, due to the lack of sparsity of LSSVM, the computational
complexity is increased.

Thus, it can be seen that, with the rapid development of computer technology and the contin-
uous expansion of the field of artificial intelligence, machine learning technology combined with
intelligent optimization algorithms has been widely used in various fields of target prediction. The
former excavates the potential laws between data through data statistics and learning and gives a
mapping mechanism between input and output. The latter solves the nonconvex optimization and
combinatorial optimization problems in machine learning. The combination of the two has higher
accuracy and robustness for nonlinear data processing and has gradually become a new hotspot in
load spectrum and other related prediction research fields [17]. Among machine learning algorithms,
the relevance vector machine (RVM) is a model based on the sparse Bayesian probability learning
theory of the Gaussian process, which is proposed by introducing the kernel function. This model uses
the kernel function mapping method to overcome the problems of poor nonlinearity, underfitting, and
high-dimensional disasters for the traditional regression model. At the same time, a priori probability is
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introduced to solve the problems of the difficulty in determining the regularization coefficient of SVM
and the restriction of the Mercer condition of the kernel function. In [18], a prediction method for the
transmission line icing fault probability is proposed based on an adaptive correlation vector machine.
This method is based on the RVM model and combines the quantum particle swarm optimization
algorithm with K-fold cross-validation to optimize model parameters. The weight vector of the icing
prediction model is corrected through repeated training to acquire accurate prediction results of ice
thickness with its probability distribution. In light of the high nonlinearity and randomness of natural
gas load and the challenge of accurate prediction by conventional regression models, the hybrid
prediction model that integrates the improved whale algorithm and correlation vector machine is
proposed in [19] to improve the prediction accuracy of smaller and larger data sets. The above RVM
has achieved excellent results in different prediction occasions. If it is to be successfully applied in crane
load spectrum prediction, the following problems still exist:

1) For the kernel function, subjective selection based on experience tends to lead to errors in kernel
function selection, which is too random and limited, and the single-core and multi-core selection mech-
anisms are fuzzy. 2) For kernel parameter optimization, the intelligent algorithm has few parameters
and is simple to operate, which can achieve rapid optimization of RVM kernel function parameters.
However, diversity optimization algorithms have different applications. Inappropriate optimization
algorithms will lead to premature convergence in the later iteration, resulting in reduced reliability of
RVM parameters and affecting the optimization accuracy. 3) For load spectrum prediction, the load
spectrum describing the whole life cycle of the equipment is predicted by relying on the measured load
information of the equipment in a fixed period, which will lead to the difference between the prediction
results and the actual load conditions being larger with time. And the accuracy of long-term prediction
decreases.

Given the above problems, if a prediction method of crane equivalent load spectrum with high
prediction accuracy and a good fit with the actual working process can be created, it is of great
significance to judge whether the equipment can be used safely from the perspective of fatigue life.
Therefore, this paper proposes the adaptive TSSA-HKRVM model for load spectrum regression
prediction of the crane. Firstly, four frequently-used kernels are adopted to analyze the performance
of single or mixed kernels. And the complementary advantages of various kernels are used to build
HKRVM with comprehensive expression ability. Secondly, the combination strategy of ‘refraction
reverse learning, golden sine, and Cauchy variation + logistic chaotic perturbation’ is introduced to
form the multi-strategy improved sparrow algorithm (TSSA), thus obtaining relevant parameters of
the HKRVM prediction model through optimization. Then, the TSSA-HKMRVM model is defined.
Thirdly, an adaptive updating mechanism of the prediction model is designed by the sliding window
design theory from the standpoint of ‘prediction + monitoring’. Finally, using the QD20/10 t × 43 m
× 12 m general bridge crane as an example, the applicability and validity of the proposed method are
confirmed by comparison.

2 Equivalent Load Spectrum Prediction Based on Adaptive TSSA-HKRVM
2.1 Equivalent Load Spectrum Prediction Model

It is difficult to carry out large-scale load spectrum tests of equal-scale cases in the whole life
cycle of general bridge cranes, which will reduce the accuracy of prediction results to predict large
samples only through fixed measured small samples over time. Considering this, the adaptive TSSA-
HKRVM model for the load spectrum regression prediction of the crane is constructed from the
aspects of the construction of HKRVM (see Section 2.2), the optimization of kernel parameters and
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weight parameters (see Section 2.3), and the definition of the adaptive mechanism (see Section 2.4).
The specific process is shown in Fig. 1.

Figure 1: Equivalent load spectrum prediction model based on adaptive TSSA-HKRVM

As given in Fig. 1a, the load information acquisition system is employed to collect the sample data
of load spectrum characteristic parameters, such as lifting load, whether the trolley passes through the
mid-span position or not, and the corresponding number of working cycles. And the sample data are
compiled into the measured load spectrum of small samples. The linear kernel function, polynomial
kernel function, Gaussian kernel function, and sigmoid kernel function are adopted to examine the
performance of single and mixed kernels. And the heterogeneous kernel RVM (HKRVM) model with
complete expression capabilities is built on the complementary benefits of diverse kernel functions. The
TSSA algorithm with global search ability is designed based on the SSA optimization algorithm by
introducing the combination strategy of ‘refraction back learning, golden sine, and Cauchy variation
+ logistic chaotic perturbation’. And the optimization results of the relevant parameters of the
HKRVM model are determined. The adaptive updating mechanism of the HKRVM model is defined
by the sliding window design to create an adaptive TSSA-HKRVM model from the standpoint of
‘prediction + monitoring’. In line with the distribution characteristics of sample data of load spectrum
characteristic parameters, the equivalent load spectrum prediction of the crane under the regular
inspection cycle is completed by LHS sampling and the trained TSSA-HKRVM model, as presented
in Fig. 1b.

2.2 Construction of HKRVM
In the description of the crane load spectrum, the machine learning algorithm is an emerging

technology to solve regression prediction problems at present, mainly including BP neural network,
support vector machine (SVM), and correlation vector machine (RVM) [20]. RVM is a model for
learning probabilities sparsely. Its generalization and approximation abilities for small sample data are
greater than those of the BP neural network built on conventional statistical theory. In addition, while
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maintaining the properties of SVM, RVM gets around issues with estimating the penalty coefficient
of SVM and the need for the kernel function to satisfy Mercer’s theorem. It is easier to use and makes
predictions more accurate [21]. In choosing the optimal RVM kernel function, as compared to the
single kernel learning approach, the use of multiple kernel functions may prevent blind selection. And
it allows for the simultaneous processing of the heterogeneous information present in the data and
improves prediction performance [22].

RVM model defines that under the condition of the input vector x, the form of the conditional
probability distribution p of target variable t is:⎧⎨
⎩

p
(
t|x, ω, σ 2

) = N [f (x, ω) , σ 2]

f (x, ω) =
n∑

i=1

ωigi (x) + ω0
(1)

where N [f (x, ω) , σ 2] is the normal distribution function. f (x, ω) is the mapping function. σ 2 is the
variance of target variable t. gi (x) is the ith basis function, i = 1, 2, . . . , n. n is the number of base
functions. ωi is the ith weight corresponding to gi (x). t follows the normal distribution with mean
f (x, ω) and variance σ 2.

RVM model has m independent input vector sets X = {
xj

}
, (j = 1, 2, . . . , m) and corresponding

target vectors T = {
tj

}
. The maximum likelihood function pml of T is:

pml (T) = m

Π
j=1

p
(
tj|xj, ω, σ 2

)
(2)

To solve the weight vector, the prior probability distribution with the mean value of 0 and variance
of α2

i is introduced. The posterior probability of ωi can be obtained after inputting the vector set X
and T. Through the maximum likelihood boundary, it is found that most of αi approach 0, that is, the
corresponding basis function has no effect on the RVM model prediction, which is converted into a
sparse model, greatly simplifying the prediction calculation. When the input vector of the RVM model
is x∗, its predicted output is t∗, and the relationship between the two is:⎧⎪⎪⎨
⎪⎪⎩

p (t∗) = N
[
σ −2TG

∑T�g (x∗) , ζ 2
]

ζ 2 =
[

m −
n+1∑
i=1

(
1 − ∑

ii

)] [∥∥T − σ −2G
∑

GTT
∥∥2

]−1

+ �g (x∗)T ∑�g (x∗)
(3)

where ζ 2 is the variance of predicted results of RVM model.
∑

is a covariance matrix,
∑ =[

diag (α1, α2, . . . , αi) + σ −2GTG
]−1

. diag (α1, α2, . . . , αi) is the diagonal matrix with diagonal element
αi. G is the kernel function matrix, G ji = gi

(
xj

)
, G jn = 1. �g (x)

T = [1, g1 (x) , . . . , gn (x)].∥∥T − σ −2G
∑

GTT
∥∥ is the modulus. t∗ obeys the normal distribution with mean σ −2TG

∑T�g (x∗) and
variance ζ 2.

∑
ii is the diagonal elements of the covariance matrix.

In RVM, as a bridge from low-dimensional to high-dimensional space, the kernel function is
the pivot of transforming the nonlinear relationship into the linear relationship, which is the critical
link affecting its regression prediction performance. As described in [23], RVM is more relaxed in
the selection of kernel functions, but some more basic kernel functions are often applied in practical
applications, such as: linear kernel function KPoly, polynomial kernel function KPoly_n, Gaussian kernel
function KGauss, and Sigmoid kernel function KSigmoid. For any kernel function, it has applicability
and limitations. The linear kernel function is simple and efficient, only applicable to linear and low-
degree nonlinear prediction. The Gaussian kernel function has strong nonlinear approximation and
generalization ability, which takes a long time and has poor global characteristics. For the Sigmoid
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kernel function, the global performance is better. The parameters are limited, and the nonlinear
fitting degree of the complex problem is lower. The polynomial kernel function has good global
characteristics. But it has too many parameters and lower performance of nonlinear fitting. Therefore,
in practical engineering applications, for the single kernel function, the limitation is obvious, the fitting
accuracy is lower, and there are problems such as inappropriate selection of the best kernel function.
Based on the kernel function theory, the multi-core model is designed, and several common kernel
functions are complementary according to different characteristics of the kernel functions to construct
heterogeneous kernel functions with comprehensive expression ability, as shown in Eq. (4).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

KPoly

(
xi, xj

) = xi · xT
j

KPoly_n

(
xi, xj

) = [(
cxi · xT

j

) + 1
]d

KGauss

(
xi, xj

) = exp
(− ∥∥xi − xT

j

∥∥ /2σ 2
)

σ > 0

KSigmoid

(
xi, xj

) = tanh
(
γ xi · xT

j + θ
)

γ > 0, θ < 0

K̃
(
xi, xj

) =
z∑

q=1

wqKq

(
xi, xj

)
(4)

where, c, d are the coefficients of the Polynomial function. σ is the width factor of the Gaussian
function, which controls the scope of the function. γ and θ are the parameters of the Sigmoid function.
z is the number of kernel functions, z = 2, 3, 4. wq is the corresponding weight parameter and

z∑
q=1

wq = 1, 0 ≤ wq ≤ 1, q = 1, 2, . . . , z.

Based on the regression prediction theory of RVM (see Eqs. (1)∼(3)) and following the hetero-
geneous principle of the kernel function (see Eq. (4)), the HKRVM with comprehensive expression
ability is constructed by the test on the sample data of crane load spectrum. And Section 4.2.1 gives
the results.

2.3 Optimization of Kernel Parameters and Weight Parameters
The type of kernel function and the value of the kernel parameter have an influence at different

levels on the prediction performance of HKRVM. The kernel parameters determine the ability of
kernel function mapping, which indirectly affects the prediction performance to a greater extent. The
traditional generalized root means square method, subjective assignment method, cross-validation
method, and gradient descent method all have problems, such as higher calculation cost, greater
training error, and stronger human interference in the optimization of kernel parameters and weight
parameters. Therefore, the combination strategy is introduced to improve the sparrow optimization
algorithm (SSA [24]), thus forming the TSSA algorithm to automatically optimize the kernel and
weight parameters. The prediction accuracy of the HKRVM model is improved and the influence of
subjective factors and other random factors is eliminated effectively.

2.3.1 Basic Principles of SSA

SSA is a novel intelligent optimization algorithm that mimics sparrow hunting and anti-hunting
operations. Discoverers, followers, and scouters are the population members. The basic principle is to
abstract the foraging and anti-predation processes of sparrows, such as discoverers searching for food,
followers joining foraging, and scouts deciding whether to change the safe area [25].
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In SSA, the position of the sparrow population corresponds to the effective solution of the search
space. The sparrow population position X i and the fitness of all sparrows F (X i) can be expressed as:{

X i = [x1, . . . , xd]

F (X i) = [f (x1) , f (x2) , . . . , f (xd)]
(5)

where, i = 1, . . . , n and n is the number of sparrow population. d is the spatial dimension. f (xi) is the
fitness function.

When the energy reserve of the discoverer is higher, the corresponding fitness value of the
individual is larger, and the updated equation is:

X t+1
i,j =

{
Xi,j

t exp (−i/(α · Max_iter)) , R2 < ST

Xi,j
t + QL, R2 ≥ ST

(6)

where, t is the current iteration number. Max_iter is the maximum number of iterations. Xi, j is the
position of the ith sparrow in j-dimensional space, and α is a random number. Q is a random number,
satisfying the normal distribution. L is d-dimensional full 1 matrix. R2 is the position warning value
0 ≤ R2 ≤ 1. ST is the position safety value, which meets 0.5 ≤ ST ≤ 1.

The remaining individuals of the sparrow population are followers, and the updated equation is:

X t+1
i,j =

{
Xi,j exp

(
(Xworst − X t

i,j)/i2
)

i > n/2

X t+1
p + ∣∣Xi,j − X t+1

p

∣∣ A+L i ≤ n/2
(7)

where, Xp is the global optimal location of the discoverer for iteration t+1. Xworst is the worst global
location in the current iteration. A+ = AT

(
AAT

)−1
and A is the matrix with each element being

randomly values 1 or −1.

For i > n/2, the ith follower is starving and is unable to eat enough food and it will fly to other
secure locations for feeding. For i ≤ n/2, it indicates that the ith follower is an ordinary or competitive
member. The competitive members serve as scouter to enable food competition and early warning,
making up typically 10% to 20% of the whole population, while the ordinary members follow the
followers to collect sufficient energy. The equation for updates is:

X t+1
i,j =

⎧⎪⎨
⎪⎩

X t+1
best + β

∣∣∣X t
i,j

− X t
best

∣∣∣ fi �= fg

X t+1
p + K

(∣∣∣X t
i,j

− X t
worst

∣∣∣ / ((fi − fw) + ε)
)

fi = fg

(8)

where Xbest is the global optimal position. K is random step size, −1 ≤ K ≤ 1. β is the control parameter
for step size, being the normal distribution. ε is a minimum constant. fi is the fitness value of the
ith individual. fg is the optimal fitness value of the population. fw is the worst fitness value of the
population.

For fi �= fg , the sparrow is on the edge of the sparrow population and is vulnerable to predators.
For fi = fg, the individual in the inner part of the population is aware of the threat of predators and
approaches the surrounding sparrows in time to avoid being attacked.

2.3.2 Combination Strategy of Improving SSA

Although SSA has a fast convergence speed and strong search ability, as a swarm intelligence
optimization algorithm, its global search ability is poor, and it is easy to fall into local optimization.
The following improvement strategies are introduced to overcome these disadvantages.
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1) Refraction reverse learning strategy

For the refraction reverse learning strategy [26], the reverse solution is constructed through reverse
learning to improve the quality and diversity of the population of SSA. Meanwhile, based on the
reverse solution, the refraction theorem of light is introduced to reduce the probability of falling into
the local extreme value.

Assuming that the current feasible solution is X i = (x1, x2, . . . , xm), the current optimal solution
is X i

best = (x1best, x2best, . . . , xmbest). Using reverse learning, the reverse optimal solution is:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X i′
best (t) = b + r · (

a − X i
best

)
X i

best = (a + b)/2 + (a + b)/2λ − Xbest/λ

λ = 2π
(
1 − sinc

[
(Max_iter − t)2

/Max_iter2
])

xt+1
i,j = Xbest

′
(t) + r ⊕ [

Xbest (t) − Xbest
′
(t)

]
(9)

where, b and a are the upper and lower bounds of the search space. X i′
best (t) is the reverse solution of

the current optimal solution. λ is the scaling factor. r is the dynamic random coefficient, 0 ≤ r ≤ 1.

2) Golden sine strategy

In Eq. (6), the discoverer will walk randomly according to the normal distribution. This random-
ness affects the search trend of the entire population, resulting in poor optimization performance,
slower convergence speed, and an increased probability of falling into the local optimum. The golden
sine strategy [27] has the characteristics of good robustness and fast convergence. It can be introduced
into the discoverer update formula, and the oscillation change characteristics of the sine model can
be applied to the location change of the discoverer, thus improving the diversity of the discoverer
population and increasing the optimization area. At the same time, the golden section number can
reduce the search space and accelerate the convergence speed, to achieve a good balance between
‘local search’ and ‘global development’. The improved equation is as follows:

X t+1
i,j =

{
Xi,j

t exp [−i/(αMax_iter)] R2 < ST

Xi,j
t| sin (C1) | + R sin (C2)

(
C3Xp − C4Xi,j

t
)

R2 ≥ ST
(10)

where, C1 is the distance control parameter, 0 ≤ C1 ≤ 2π . C2 is the direction control parameter,
0 ≤ C2 ≤ π . C3 is the golden section coefficient, C3 = −π + 2π (1 − u). u is the number of golden
sections, u = (

√
5 − 1)/2. C4 is the golden section coefficient, C4 = −π + 2πu.

3) Cauchy variation + logistic chaotic perturbation strategy

In the algorithm iteration process of SSA, the early-stage deviates from the target value, and
various local optimizations in the later stage are nearly invalid. The simple and high-sensitive logistic
chaotic map [28] is adopted to adjust Cauchy perturbation [29], which gives full play to the fine
performance of the original Cauchy perturbation and has good chaotic ergodicity. The improved
formula is as follows:

X t+1
i,j = τXbest (t) + (1 − τ) cauchy (0, 1) ⊕ Xbest (t) (11)

where, cauchy (0, 1) follows the typical Cauchy distribution. τ conforms to logistic chaotic mapping,
τi+1 = κτi (1 − τi), taking κ = 4. ⊕ is the operator.

The combination strategy of ‘refraction reverse learning, golden sine, and Cauchy variation +
logistic chaotic perturbation’ is introduced to improve SSA, thus forming TSSA. With the kernel
parameters and weight parameters as the design variables and the root mean square error of HKRVM
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prediction results as the objective function, the optimization of parameters is completed through TSSA
within the range of corresponding parameter settings. On this basis, the TSSA-HKMRVM model is
constructed to forecast the crane load spectrum.

2.4 Definition of Adaptive Mechanism
The existing crane load prediction methods based on machine learning all predict large samples

with fixed small samples. The optimization of relevant parameters of the machine learning model
is realized by an intelligent optimization algorithm, which reflects the adaptability of the model
parameters. But the increase in prediction steps for the long-term prediction process makes it difficult
to ensure prediction accuracy. The reason is the diversity, randomness, and uncertainty of the load
of the general bridge crane in the working cycle. Under various working cycle processes (as shown
in Fig. 2), the lifting load will change unpredictably, namely that its probability density function will
also be inconsistent. Therefore, from the standpoint of ‘prediction + monitoring’, the sliding window
design [30] is employed to provide an adaptive update mechanism of the TSSA-HKRVM prediction
model. The particular implementation approach is presented in Fig. 3.

Figure 2: Load characteristic description

As illustrated in Fig. 3, the adaptive updating mechanism of the prediction model of the crane
load spectrum includes three stages: 1© TSSA-HKRVM construction, 2© using the constructed model
to predict, and 3© new TSSA-HKRVM construction.

In 1© stage, the measured load spectrum of small samples is as the sample data set {(Xi, Yi)}N
i=1.

The total sample data is N = X 1+X 2, in which X 1 groups are randomly selected for TSSA-HKRVM
model training, and the remaining X 2 groups are applied for model testing.

In 2© stage, the TSSA-HKRVM model constructed in 1© stage is employed to predict the n-step
load spectrum, and the first l-step of n-step prediction is applied for monitoring, n ≥ l. In l-step
monitoring, the root mean square test is performed on the prediction results to determine whether the
test result δ is under the given constraint condition δ∗ (the threshold value set according to the actual
load measurement accuracy requirements). For δ < δ∗, the model has good prediction performance
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and can continue to predict, by analogy, δ ≥ δ∗ appears for the first time in the kth n-step, indicating
that continuous prediction will lead to significant errors.

Figure 3: Adaptive update mechanism of prediction model

In 3© stage, since δ ≥ δ∗ occurs in the kth n-step of 2© stage, the sliding window design should be
introduced at the end of the (k−1)th n-step, and the TSSA-HKRVM model should be re-established

using the new sample data set
{(

ÙXi, ÙYi

)}N

i=1
. So, the adaptive update of the TSSA-HKRVM model can

be achieved by updating the measured samples of the load spectrum.

3 Implementation Process of Equivalent Load Prediction

The definition of crane load spectrum currently refers to the relationship between the load on the
metal structure and the cumulative frequency of the load under the corresponding working cycle in
the actual service process [31]. However, for general bridge cranes, one working cycle is a complete
process from lifting one object on the ground to lifting the next, including the operation and regular
stop of cranes and trolleys, as shown in Fig. 3. From the perspective of fatigue life, one of the critical
parameters to judge whether the crane bridge structure can safely serve is the stress amplitude spectrum
at the dangerous points of the structure during the working cycle. The main factors affecting the stress
amplitude include the load size and the range of the loaded trolley movement. Namely, the damage to
the bridge structure caused by the loaded trolley ‘passing through the middle of the main beam’ and
‘not passing through the middle of the main beam’ is different during the working cycle. Therefore,
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for the crane load spectrum, it is limited to only using the load size and the corresponding frequency
to characterize.

Given this, through structural fatigue life analysis from the aspect of safe service of the crane bridge
structure, in accordance with ‘GB/T30024-2020 cranes—proof of competence of steel structures’ [32]
and in combination with the stress changes at dangerous points, it is determined that the characteristic
parameters affecting the stress amplitude are ‘lifting load x1’, ‘whether the loaded trolley passes the
mid-span position x2’ and the corresponding ‘number of working cycles y’. So, the relationship among
x1, x2, and y is defined as the equivalent load spectrum.

Before forecasting the crane equivalent load spectrum under the periodic inspection cycle, the
load information collection system has been built as shown in Fig. 4, according to the process of
‘collected objects→sensor layout→data acquisition→data processing→data presentation’ to obtain
the characteristic parameter data of the load spectrum and compile it into the small samples measured
load spectrum {x1i, x2i, yi}N

i=1.

Figure 4: Crane load information acquisition system

As illustrated in Fig. 4, the crane load information acquisition system consists of a general bridge
crane, information data acquisition module, AD conversion module, field data processing module,
wireless communication module, remote data platform, and power supply module. 1) The information
data acquisition module is composed of load sensors and cross-limiters. The load sensors are fixed at
the drum support position of the crane trolley. The reading on the load sensor changing from 0 to
0 again corresponds to a complete working cycle of the crane. The load sensor measures the size of
the current lifting load. The cross-limiters are installed near the left and right wheels of the trolley,
the striker is mounted at the mid-span position of the main beam, and they are employed to record
whether the trolley passes the mid-span section of the main beam in every working cycle. When the
cross-limiter contacts the striker, it is recorded as 1, indicating that the loaded trolley passes the mid-
span position. Otherwise, it is recorded as 0, implying that the loaded trolley does not go through
the mid-span position. 2) The AD conversion module receives the low-level signals collected by each
sensor, outputs them as digital signals, and transmits them to the field data processing instrument. 3)
The field data processing module displays the collected data and sends it to the wireless communication
module after completing the protocol conversion. 4) The wireless communication module transmits
and stores the load information data to the remote data platform, and completes the collection of
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small sample load information clusters after data preprocessing. 5) The power supply module converts
AC220V into DC24V and provides it to all instruments and modules on site.

Based on the measured load spectrum of the small sample {x1i, x2i, yi}N
i=1, the TSSA-HKRVM

model (Sections 2.2 and 2.3) and its adaptive update mechanism (Section 2.4) are utilized to predict
the equivalent load spectrum of the general bridge crane under the regular inspection cycle (1 year) in
combination with Latin hypercube sampling. The process is described in Fig. 5, and the specific steps
are as follows:

1) Sample data without rigid quantification processing.

Normalize the small sample measured load spectrum {x1i, x2i, yi}N
i=1, divide the processed sample

into two parts, and randomly select group X 1 as one part, and the remaining group X 2 as the other
part, so as to complete the data preparation.

2) TSSA-HKRVM construction, including HKRVM construction and parameter optimization.

Step 1. Based on the linear kernel function KPoly, polynomial kernel function KPoly_n, Gaussian
kernel function KGauss, and Sigmoid kernel function KSigmoid, according to the characteristics of comple-
mentary advantages of kernel functions, mixed kernel functions are established by linear combination,
and single and mixed kernel functions are tested with the prepared data to obtain the optimal kernel
function, so as to complete the construction of HKRVM model and determine the required optimal
kernel parameters and weight parameters.

Step 2. Initialization of population position and parameters of TSSA, such as population number
N, maximum iterations Max_iter, error accuracy e, discoverer-follower ratio Rf and Rg, and safety
value ST .

Step 3. According to the refraction reverse learning strategy (see Section 2.3.2, Part 1)), the initial
position of the population members is modified by Eq. (9), and the fitness function is constructed
through the root mean square error of the predicted results of the HKRVM model to calculate the
fitness of the population individuals and determine the optimal individual position.

Step 4. Determine the number of discoverers, followers, and scouts in the population. According
to the golden sine strategy (see Section 2.3.2, Part 2)), update the position of discoverers with Eq. (10),
and update the positions of followers and scouts with Eqs. (7) and (8), respectively.

Step 5. Calculate the fitness of the individual population, determine the location of the best
individual, and compare it with the fitness of the first five times. If the fitness does not change at
this time, it is judged that it has fallen into the local optimum, and Step 6 is executed. If the fitness
is optimal at this time, the iteration termination condition shall be judged. For the error accuracy or
the maximum number of iterations meeting the requirements, output the specific values of the core
parameters and weight parameters. For the iteration termination conditions being not met, execute
Step 3.

Step 6. In case of falling into local optimum, Step 3 shall be executed after generating a new
individual position with Eq. (11) according to Cauchy mutation and logistic chaotic perturbation
strategy (see Section 2.3.2, Part 3).

3) Equivalent load spectrum prediction based on adaptive TSSA-HKRVM.

Step 1. The sample distribution information with ‘lifting load x1’ and ‘whether the trolley passes
the mid-span position x2’ as the input variables are obtained by analyzing the sample data of the
characteristic parameters of the load spectrum. According to the distribution characteristics, the input
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variables for the load spectrum to be predicted are generated through LHS sampling. And the trained
TSSA-HKRVM model is used to predict the equivalent load spectrum.

Step 2. The accuracy of prediction results is checked by the root mean square error. For δ < δ∗,
the prediction results are feasible, and the equivalent load spectrum under the regular inspection cycle
is given through the inverse normalization processing. Otherwise, execute Step 2.

Step 3. For δ ≥ δ∗, according to the adaptive updating mechanism of the prediction model (see
Section 2.4), update the small sample measured load spectrum of and execute 1), analogously, to
complete the prediction of the equivalent load spectrum of the crane under each periodic inspection
cycle.

Figure 5: Flow chart of crane equivalent load spectrum

4 Engineering Examples

Taking the QD20/10 t × 43 m × 12 m general bridge crane as the research object, the equivalent
load spectrum prediction of the crane under the regular inspection cycle (one year) is completed by
the above method.

4.1 Equivalent Load Spectrum under Regular Inspection Cycle
Using the crane load information acquisition system (see Fig. 4), the 60-day working processes

of the crane in an enterprise are tracked in real-time. ‘lifting load x1’ and ‘whether the trolley passes
through the mid-span position or not x2’ is taken as the input variables, that is, the characteristic
parameters of the load spectrum. And taking the number of working cycles as the feedback object,
the small sample measured load spectrum is compiled, as shown in Table 1. The heterogeneous kernel
function is composed of KGauss and KPoly_n, the reason is given in Section 4.2.1. The kernel parameters
σ , d, c and the weight parameters w1, w2 are determined.
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Table 1: Sample set 1 of measured load spectrum (sample data 1)

No. P/t k nc No. P/t k nc No. P/t k nc No. P/t k nc No. P/t k nc

1 0.3 0 1 7 2.7 1 3 13 4.1 1 10 19 6.0 1 16 25 7.7 1 25
2 1.3 1 1 8 3.1 1 6 14 4.5 1 10 20 6.4 1 15 26 7.8 0 26
3 1.4 1 1 9 3.2 0 4 15 5.1 0 11 21 6.5 1 15 27 8.0 1 27
4 1.9 1 3 10 3.4 1 7 16 5.4 1 13 22 6.9 0 17 28 8.1 0 28

5 2.2 1 4 11 3.7 1 5 17 5.7 1 12 23 7.1 1 20
...

...
...

...
6 2.7 0 5 12 3.9 0 8 18 6.0 0 15 24 7.5 1 18 73 19.8 1 37
Notes: 1) P is the lifting load. k is whether the trolley passes through the mid-span section of the main beam or not. nc is the corresponding
number of working cycles. 2) 0 indicates that the trolley has not crossed the mid-span, and 1 indicates that the trolley has crossed the mid-span.

After normalizing the data in Table 1, 58 groups of samples are randomly selected to complete the
TSSA-HKRVM model training, and the remaining 15 groups are utilized for the model testing. The
initial parameters of the model are as follows: the population number of TSSA is 20, the maximum
number of iterations N is 100, the error accuracy e is 0.1, the ratio values Rf and Rg of the discoverer
and the follower are 0.7 and 0.2, and the safety ST is 0.6. After the relevant parameters are set, the
model is repeatedly trained for 20 times to obtain the mean value of the kernel parameters {σ , d, α} =
{0.096, 0.121, 0.1208} and the mean value of the weight parameters {w1, w2} = {0.1235, 0.8765} to form
TSSA-HKRVM (0.096, 0.121, 0.1208, 0.1235, 0.8765). The relevant test results are shown in Fig. 6.

Figure 6: (Continued)
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Figure 6: Test results of TSSA-HKRVM

Note: Relative error E =
∣∣∣(YA − ÛYA)/YA
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It can be seen from Fig. 6 that, based on the trained TSSA-HKRVM (0.096, 0.121, 0.1208, 0.1235,
0.8765) model, 15 groups of test samples are used to test the model. The maximum relative error
between the predicted result and the real value is 0.0918, the root mean square relative error is 0.0566,
and the goodness of fit is 0.9905.

The distribution of each input variable is obtained by analyzing the data in Table 1. The ‘lifting
load’ meets the uniform distribution X ∼ U (0.6, 19.9), and ‘whether the trolley passes through the
mid-span position or not x2’ meets the 0–1 distribution X ∼ B (x, 0.6933). After inverse normalization,
the prediction results of the number of corresponding working cycles y can be obtained by combining
LHS sampling with the trained TSSA-HKRVM model, taking 10-steps as the prediction cycle and
5-steps as the monitoring cycle (set the root mean square relative error threshold δ∗ = 0.1), as shown
in Fig. 7.

It can be seen from Fig. 7 that based on the TSSA-HKRVM (0.096, 0.121, 0.1208, 0.1235, 0.8765)

model trained and tested by sample data 1. When the prediction steps reach 80∼85, the root mean
square relative error of the prediction results under the monitoring cycle is δ = 0.178 > δ∗ (0.1).
At this time, at the end of the 8th prediction cycle, the adaptive update mechanism is adopted (see
Section 2.4). Combined with data sample 2 (see Table 2), the TSSA-HKRVM is retrained and tested,
and a new TSSA-HKRVM (0.048, 0.513, 0.3911, 0.3609, 0.6391) model is determined. By analogy,
the equivalent load spectrum of the QD20/10 t–43 m general bridge crane is obtained under the regular
inspection cycle, as shown in Fig. 8. The load spectrum for the subsequent regular inspection cycles is
determined in the similar way, which will not be repeated here.
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Figure 7: Prediction results of TSSA-HKRVM under adaptive update

Table 2: Sample set 2 of measured load spectrum (sample data 2)

No. P/t k nc No. P/t k nc No. P/t k nc No. P/t k nc No. P/t k nc

1 0.4 0 1 7 2.7 1 3 13 4.0 1 10 19 6.1 1 16 25 7.6 1 18
2 1.2 1 1 8 3.0 1 5 14 4.4 1 10 20 6.4 0 14 26 7.8 1 20
3 1.3 1 1 9 3.2 0 5 15 5.1 0 12 21 6.5 1 15 27 8.0 1 21
4 1.8 0 3 10 3.5 1 8 16 5.5 0 13 22 6.8 1 18 28 8.1 0 22

5 2.2 1 3 11 3.7 1 5 17 5.6 1 12 23 7.1 1 20
...

...
...

...
6 2.5 0 4 12 3.9 0 9 18 6.0 0 15 24 7.4 1 19 73 19.8 1 37

Notes: 1) P is the lifting load. k is whether the trolley passes through the mid-span section of the main beam or not. nc is the corresponding
number of working cycles. 2) 0 indicates that the trolley has not crossed the mid-span, and 1 indicates that the trolley has crossed the mid-
span.

Figure 8: Equivalent load spectrum under regular inspection cycle
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4.2 Result Analysis and Discussion
The applicability of the method proposed in this paper is verified by discussing the influence of

various influencing factors on the prediction results from four aspects, including the construction of
kernel function, optimization of kernel parameters and weight parameters, adaptive control methods,
and load spectrum prediction methods.

4.2.1 Construction of Kernel Function

To demonstrate the reasonableness of the selection of kernel function of the TSSA-HKRVM
model, a single kernel function, two heterogeneous kernel functions and three heterogeneous kernel
functions are contrasted and studied. The uniformity of the comparison test is considered and the
TSSA algorithm is employed for relevant parameter optimization of any kernel function. The data in
Table 2 are taken as samples. Among them, 58 groups of samples are randomly selected for the training
of the TSSA-HKRVM model, and the remaining 15 groups are used for model testing. On this basis,
the influence of the above kernel functions on the load spectrum prediction results is quantitatively
analyzed and discussed. The relevant results are given in Fig. 9 and Table 3.

Figure 9: Prediction effect of TSSA-HKRVM under various kernel functions
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It can be seen from Fig. 9 and Table 3 that:

1) For a single kernel function, the results for the goodness of fit of KPoly_n and KGauss are higher and
remain above 0.93. Due to the complex operation of KGauss, the training time of the model is longer.
The operation costs of KSigmoid and KPoly are smaller, and the accuracies of the models are lower, which
do not reach 0.9. Because of the limited value of parameters of KSigmoid, there are relatively few practical
applications.

2) For the binomial heterogeneous kernel functions, the model accuracies have been significantly
improved. For the heterogeneous combination of KPoly_n and KGauss, the fitting accuracy is controlled
above 0.99, and the root mean square error is within 0.1. The prediction accuracy and error deviation
of the model are better than the other two heterogeneous kernel functions, and the model operation
efficiency is higher than the original KGauss model. It has the comprehensive expression ability of the
KPoly_n model and the KGauss model.

3) For the trinomial heterogeneous kernel functions, the increase in the number of kernel functions
leads to an increase in the model complexity. The fitting performance after mixing is considerably
enhanced when compared to the original single kernel function, but not when compared to the two
heterogeneous kernel functions.

Table 3: Comparison of kernel function test results

Kernel function Training time/s Testing Times/s Maximum relative
error Emax

Root mean square
error Rmes

Goodness of
fit R2

KGauss 66.089 0.00326 6.4375 1.6636 0.9327
KPoly 5.0679 0.000867 7.7555 1.2581 0.7600
KSigmoid 6.730 0.00062 3.9111 1.0545 0.8830
KPoly_n 14.108 0.000614 3.2052 0.8570 0.9550
KGauss + KPoly 20.344 0.000658 0.4581 0.1638 0.9638
KGauss + KSigmoid 23.777 0.001216 1.0367 0.3244 0.9270
KGauss + KPoly_n 17.798 0.000665 0.0897 0.0784 0.9921
KPoly + KSigmoid 13.433 0.000688 4.6671 1.2129 0.9158
KPoly + KPoly_n 16.155 0.001568 0.1093 0.1217 0.9488
KPoly_n + KSigmoid 13.1414 0.00319 4.7664 1.2676 0.8663
KGauss + KPoly +
KPoly_n

18.006 0.000843 0.2809 0.1046 0.9880

KGauss + KPoly +
KSigmoid

23.965 0.000696 0.5214 0.1782 0.9667

KGauss +KPoly_n +
KSigmoid

18.411 0.000797 0.45048 0.1382 0.9896

KPoly + KPoly_n +
KSigmoid

13.923 0.000795 0.4937 0.3624 0.9271

To sum up, the heterogeneous kernel function benefits from diverse kernel functions, higher
learning capacity, and better promotion ability. Considering the complexity, fitting degree, and
calculation efficiency of the model comprehensively, the heterogeneous kernel function composed of
KGauss and KPoly_n is selected to be the best in load spectrum prediction effect.
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4.2.2 Acquisition Methods of Kernel Parameters and Weight Parameters

The effectiveness of the TSSA algorithm in parameter optimization of the HKRVM prediction
model is verified by comparing TSSA with SSA, ISSA1 (the refraction inversion improved SSA),
ISSA2 (the refraction inversion + golden sine hybrid improved SSA), ISSA3 (the refraction direction
+ golden sine + Cauchy strategy hybrid improved SSA).

The initial parameter settings are consistent, and the prediction model is HKRVM. On this basis
and in combination with sample data 2 (Table 2), the influence of the above parameter acquisition
methods (SSA-HKRVM, ISSA1-HKRVM, ISSA2-HKRVM, ISSA3-HKRVM, and TSSA- HKRVM)
on the load spectrum prediction results is analyzed. The relevant results are shown in Fig. 10 and
Table 4.

Figure 10: Prediction effect of HKRVM model based on different optimization algorithms

Table 4: Comparison of results of parameter acquisition methods

Prediction model SSA-
HKRVM

ISSA1-
HKRVM

ISSA2-
HKRVM

ISSA3-
HKRVM

TSSA-
HKRVM

Maximum relative error 0.29059 0.2712 0.6099 0.5304 0.0897
Root mean square error 0.1055 0.1092 0.1750 0.1701 0.0784
Goodness of fit 0.9730 0.9820 0.9854 0.9901 0.9920
Running time/s 15.8048 16.1192 16.8429 17.4715 17.7981

As can be seen from Fig. 10 and Table 4, the prediction abilities of ISSA1-HKRVM, ISSA2-
HKRVM, ISSA3-HKRVM, and TSSA-HKRVM models have been significantly improved by the
comparing with the SSA-HKRVM model. And the prediction accuracy, dispersion, and offset of
the TSSA-HKRVM model are the best. The TSSA-HKRVM algorithm has a slight decrease in
computational efficiency due to its high structural complexity, but its convergence speed and accuracy
have been significantly improved. For sample data 2, the single optimization running times of SSA-
HKRVM, ISSA1-HKRVM, ISSA2-HKRVM, ISSA3-HKRVM, and TSSA-HKRVM are 15.8048,
16.1192, 16.8429, 17.4715, and 17.7981 s, respectively. Compared with the parameter optimization
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of the TSSA-HKRVM model, the running time of ISSA2-HKRVM and ISSA3-HKRVM decreases
by 5.3% and 1.83%, but the model dispersion increases by 1.23 times and 1.16 times. It can be seen
that TSSA method is more excellent in parameter optimization of the HKRVM model.

4.2.3 Adaptive Control Methods

The feasibility of the adaptive mechanism proposed in this paper is validated in the prediction of
the equivalent load spectrum of general bridge cranes by comparing it with the traditional adaptive
predictive control methods [33,34], such as the adaptive predictive control method based on neural
network [35] and the generalized predictive adaptive control algorithm [36]. For ‘whether the trolley
passes through the mid-span position or not x2’, it is processed according to the 0–1 distribution. And
only the case of the load is considered here. The neural network NNI hierarchy is 2–5–1, taking load
samples under 3000 working cycles (one year) and learning 5000 times offline. The relative error of
the root means square is less than 0.1. The forgetting factor of online training is 0.99. In the implicit
generalized predictive control algorithm. The prediction length is 10, the control length is 10, the
control weighting coefficient is 0.98, the softening coefficient is 0.4, the forgetting factor in the least
squares parameter estimation is 0.98, and the matrix is 105I. The load prediction control process is
described in Fig. 11.

Figure 11: Load curve under working cycle based on adaptive control method

In the load prediction control curve in Fig. 11, mathematical statistics technology is employed to
transform the curves into 80 groups of loads and their corresponding frequencies, namely 80 groups of
load spectrums based on the two traditional adaptive predictive control methods. And the 80 groups
of load spectra based on the TSSA-HKRVM model are given. The relevant results are given in Fig. 12.

In Figs. 11 and 12, for the prediction method based on adaptive TSSA-HKRVM, the number of
equivalent load spectra with a relative error of more than 10% within one year of the regular inspection
cycle is 5, the relative error of root mean square is 0.0577, and the goodness of fit is 0.9895. For the
adaptive predictive control algorithm based on neural network, the number of results with relative
error exceeding 10% is 11, the root mean square relative error is 0.1883, and the goodness of fit is
0.9775. For the implicit generalized predictive control algorithm, the number of results with a relative
error of more than 10% is 18, the root mean square relative error is 0.4172, and the goodness of fit is
0.9663.
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Figure 12: Load spectrum based on adaptive control methods

The reason for the above phenomenon is that:

1) The predictive control method based on neural network is composed of neural unit adaptive
PID controller and Smith predictor based on neural network. The predictor performs multi-step
prediction on the output. And the controller acts ahead to eliminate the impact of time delay on
the system. The adaptive PID controller realizes its weight adjustment through the supervised Hebb
learning algorithm, and the adaptive control is achieved through the online adjustment of the weight
coefficient. The degree of nonlinearity is good, and the robustness is high. However, there is no uniform
standard for the selection of the neural network hierarchy. The designer makes a tentative choice
according to his own experience. The subjective interference factors are stronger, and the prediction
efficiency and accuracy are greatly affected by the network hierarchy.

2) The implicit generalized predictive control (IGPC) algorithm does not need to identify the
model parameters of the object. And it uses input/output data to directly identify the controller
parameters to solve the optimal control increment, which has the characteristics of small computation
and high real-time performance. But its degree of nonlinear description is poor.

3) TSSA-HKRVM is based on small measured samples, directly controlling the prediction of load
spectrum rather than the traditional control of the load change process. It is combined with the TSSA
algorithm to carry out rolling optimization of relevant parameters of HKRVM. It uses the sliding
window design and the sample update to carry out adaptive feedback correction from the perspective
of ‘prediction + monitoring’. The load information is complete and the method has strong robustness,
high prediction accuracy, and strong adaptive ability.

4.2.4 Load Spectrum Prediction Methods

The adaptive TSSA-HKRVM in the equivalent load spectrum prediction of general bridge
cranes is demonstrated by comparing the method in the paper with the current swarm intelligence
optimization algorithm improved relevance vector machine prediction technology (ILON-RVM [37])
and the LSSVM model (IBAS-LSSVM [16]) of crane load spectrum regression prediction.

Table 5 displays the parameter settings for each model, and Table 2 lists all the samples. Following
the completion of the setup, 58 sets of samples are randomly selected from the total sample number
as training samples. The remaining 15 sets of samples are used as test samples to verify the prediction
accuracy of the model. The training and testing phases of each prediction model are performed 20
times separately to confirm the stability and dependability of the training results. The average results
for the goodness of fit of each prediction model are then determined. On this basis, the advantages and
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disadvantages of the above models are qualitatively discussed in the prediction of crane load spectrum.
Relevant results are shown in Fig. 13 and Table 6.

Table 5: Parameter settings of model

Population
size

Number of
hunters

Nomadic
lion ratio

Number of
settled lions

Ratio of settled
female lions

30 10 0.2 10 0.8
ILOA-
RVM

Migration
ratio

Territory
wandering
ratio

Mating
probability

Mutation
probability

Iterations

0.4 0.2 0.8 0.3 20

Initial value
of step size

Step end
value

Iterations Adjustment
coefficient

Step size of jumping
out of local solution

3 7.9 × 10−5 100 6 0.03
IBAS-
LSSVM

G Iteration
accuracy

k Parameter δ Parameter γ

10−4 10−4 0 0.036 6.985

Figure 13: Test results of different prediction models

Table 6: Model evaluation for load spectrum prediction

Prediction model Model
complexity

Time
consuming
degree

Accuracy of
results

Completeness
of load
information

Update
mechanism

Adaptive
situation

Subsequent
prediction steps

TSSA-HKRVM High Long Higher Strong Possess Have Long
IBAS-LSSVM Low Low High Weak Defect Defect Short
ILOA-RVM Medium Medium High Weak Defect Defect Short
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It can be seen from Fig. 13 that for ILOA-RVM, IBAS-LSSVM, and TSSA-HKRVM prediction
models, the number of relative errors exceeding 10% is 7, 6 and 0. The root means square errors are
0.14916, 0.12455, and 0.0566. The results for the goodness of fit are all in the range of 0.979∼0.983.

According to Table 6, IBAS-LSSVM uses the least square method to transform the non-equality
constraints in the quadratic programming optimization problem of SVM into equality constraints for
solving linear equations and takes the sum of squares of errors as the loss function of training samples,
which reduces the complexity of sample points in the training process, but its kernel function must meet
Mercer’s theorem. However, ILOA-RVM overcomes the issue that the specified kernel function must
meet the Mercer criterion. It gives logistic chaotic mapping principles and advances the dynamic search
interval approach, which makes the original lion individual more random and ergodic after chaotic
transformation. It eliminates the drawbacks generated by the changeable length of the search interval.
Compared with ILOA-RVM and IBAS-LSSVM, TSSA-HKRVM has the highest model complexity,
longest time consumption, and the greatest prediction accuracy. The causes are as follows: from the
angle of ‘prediction + monitoring’, TSSA-HKRVM uses the sliding window design to provide an
adaptive update mechanism of the prediction model through sample updating. The load information
is relatively complete. It addresses the problem that ILOA-RVM and IBAS-LSSVM forecast huge
samples with fixed small samples, resulting in low accuracy in the process of long-term prediction.

5 Conclusions

An adaptive TSSA-HKRVM model for the regression prediction of crane load spectrum is
proposed in the paper. It overcomes the problem that the randomness of the crane working load
leads to the reduction of load spectrum prediction accuracy over time, which provides a basis for
the compilation of load spectrum for crane matching design and retirement mechanism. The specific
conclusions are as follows:

1) For the adaptive TSSA-HKRVM prediction model, single and mixed kernel functions are tested
with load spectrum samples based on RVM to obtain the optimal combination of the heterogeneous
kernel function

(
KPoly_n + KSigmoid

)
. By making full use of the complementary advantages of different

kernel functions, the prediction performance of the model is improved, thus overcoming the limitation
of single kernel function and increasing the multi-core heterogeneous computing efficiency. A strategy
consisting of ‘refraction reverse learning, golden sine, and Cauchy mutation + logistic chaotic
perturbation’ is introduced into the SSA algorithm to form TSSA. And it overcomes the sensitivity of
the manual setting of core parameters and weight parameters and improves the global search ability
of the algorithm in each time domain during parameter rolling optimization. Through the way of
‘prediction + monitoring’, the adaptive updating mechanism of the model is given by the sliding
window design, which also ensures the adaptability of the load prediction model throughout the life
cycle of the crane.

2) The proposed method is applied to QD20/10 t × 43 m × 12 m general bridge crane. The
results show that: compared with the traditional adaptive predictive control method, when the load
samples are based on 3000 working cycles (one-year regular inspection cycle), the TSSA-HKRVM
prediction has a higher fitting degree, a smaller root mean square error and higher predictive control
performance of the model. Compared with the existing load spectrum prediction methods (ILOA-
RVM and IBAS-LSSVM), TSSA-HKRVM has a higher model complexity, but it provides an adaptive
update mechanism of the prediction model by updating samples, which improves the prediction
accuracy of long periods, ensures the completeness of load information throughout the life cycle of
the crane and has strong applicability and popularization.
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