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ABSTRACT

Slope stability prediction plays a significant role in landslide disaster prevention and mitigation. This paper’s
reduced error pruning (REP) tree and random tree (RT) models are developed for slope stability evaluation and
meeting the high precision and rapidity requirements in slope engineering. The data set of this study includes
five parameters, namely slope height, slope angle, cohesion, internal friction angle, and peak ground acceleration.
The available data is split into two categories: training (75%) and test (25%) sets. The output of the RT and REP
tree models is evaluated using performance measures including accuracy (Acc), Matthews correlation coefficient
(Mcc), precision (Prec), recall (Rec), and F-score. The applications of the aforementioned methods for predicting
slope stability are compared to one another and recently established soft computing models in the literature. The
analysis of the Acc together with Mcc, and F-score for the slope stability in the test set demonstrates that the
RT achieved a better prediction performance with (Acc = 97.1429%, Mcc = 0.935, F-score for stable class = 0.979
and for unstable case F-score = 0.935) succeeded by the REP tree model with (Acc = 95.4286%, Mcc = 0.896,
F-score stable class = 0.967 and for unstable class F-score = 0.923) for the slope stability dataset The analysis of
performance measures for the slope stability dataset reveals that the RT model attains comparatively better and
reliable results and thus should be encouraged in further research.
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1 Introduction

In geotechnical engineering, slope stability analysis and prediction are critical. Along with
earthquakes and volcanoes, slope instability has become one of the world’s three great geological
disasters. To decrease or prevent landslide damage, slope stability analysis and stabilization are
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required. Nevertheless, accurate slope stability prediction is difficult due to the complexity of slope
structures and the difficulty in identifying the relevant input data linked to significant geotechnical
parameters [1–3].

Several approaches have been proposed to analyze or predict slope stability, among which
are Limit Equilibrium Methods (LEMs) [4,5] and numerical methods (e.g., Finite-element Method
(FEM)) [6–8] are the most widely employed methods [9,10]. Empirical equations [11,12] and limit
analysis approaches based on lower and upper bound theorems [13] are other methods. All of the
methods discussed above, however, have some drawbacks. Limit equilibrium methods, for example,
cannot reflect the slip surfaces’ actual stress conditions [14], and as a result of simplifying assumptions,
their accuracy is compromised [1]. The numerical methods are time-consuming, and their accuracy is
strongly reliant on correct geotechnical and physical parameter estimation.

For the last few years, a recently developed approach based on data mining techniques has been
increasingly used to solve real-world problems, particularly in the field of civil engineering [15–35].
Several practical problems have already been successfully solved with machine learning algorithms,
paving the way for new prospects in civil engineering. Furthermore, a variety of machine learning
algorithms, for example, Artificial Neural Networks (ANNs) and Support Vector Machine (SVM)
have been developed for addressing technical issues, such as predicting slope stability [10,36]. Table 1
summarizes previous studies on slope stability prediction using soft computing techniques. ANN and
SVM are the most widely used soft computing methods for predicting slope stability because they do
not require prior knowledge of a specific model form and have flexible nonlinear modeling capabilities
[37]. They also outperform traditional analytical and regression methods when it comes to predicting
slope stability [38,39].

Table 1: Previous research on slope stability prediction using soft computing approaches

Model Input Data size Reference

FFNN γ , c, φ, β, H, ru 82 cases Feng [40]
BPNN γ , c, φ, β, H, ru 32 cases Lu et al. [41]
ANN and ANFIS γ , c, φ, β, H 59 cases Li [42]
CNN γ , c, φ, β, H, ru 64 cases Huang et al. [43]
BPNN γ , c, φ, β, H, ru 46 cases Sakellariou et al. [1]
BPNN γ , c, φ, β, H 27 cases Wang et al. [44]
SVM γ , c, φ, β, H, ru 46 cases Samui [45]
SVM γ , c, φ 10 cases Zhao [46]
ANN X, Y, Sr, c, φ, β, ah, av 36 cases Choobbasti et al. [47]
ANN γ , c, φ, β, H, ru 46 cases Das et al. [48]
ANN γ , c, φ, β, H 675 modeled cases Erzin et al. [38]
ELM γ , c, φ, β, H, ru 97 cases Liu et al. [9]
PSO–ANN c, φ, β, H, PGA 699 modeled cases Gordan et al. [36]
LS-SVC γ , c, φ, β, H, ru 168 cases Hoang et al. [49]
FNs, MARS, MGGP γ , c, φ, β, H, ru 103 cases Suman et al. [3]
FEM-ANN c, φ, β, pp 100 modeled cases Verma et al. [50]
PSO–ANN γ , c, φ, β, H, ru 83 cases Rukhaiyar et al. [51]
PSO–LSSVM γ , c, φ, β, H, ru 46 cases Xue [10]

(Continued)
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Table 1 (continued)

Model Input Data size Reference

NBC γ , c, φ, β, H, ru 82 cases Feng et al. [52]
GBM γ , c, φ, β, H, ru 221 cases Zhou et al. [53]
TAN γ , c, φ, β, H, ru 87 cases Ahmad et al. [54]
DT, RF, AdaBoost c, φ, β, H, PGA 700 modeled cases Asteris et al. [55]

Note: γ Unit weight, c Cohesion, φ Internal friction angle, β Slope angle, H Slope height, ru Pore pressure ratio, pp Pore pressure, X
X coordinate, Y Y coordinate, Sr Degree of saturation, ah Horizontal coefficient of earthquake, av Vertical coefficient of earthquake,
PGA Peak ground acceleration, FFNN Feed forward neural network, BPNN Back-propagation neural network, ANN Artificial Neural
Networks, ANFIS Adaptive neuro-fuzzy inference system, CNN Chaotic Neural Network, SVM Support vector machine, ELM Extreme
learning machine, PSO Particle swarm optimization, LS-SVC Least squares support vector classification, FNs functional networks, MARS
Multivariate adaptive regression splines, MGGP Multigene genetic programming, LSSVM least squares support vector machine, NBC
Naive-Bayes classifier, GBM Gradient boosting machine, TAN Tree augmented Naive-Bayes classifier, DT Decision tree, RF Random
forest, AdaBoost adaptive boosting.

As shown in Table 1, various researches classified slope FoS under static conditions using essential
factors such as slope height (H), cohesion (c), internal friction angle (φ), slope angle (β), and unit
weight (γ ). These studies presented novel ideas and methods for predicting slope stability. On the
other hand, this field is still being researched. According to a critical review of the existing literature,
despite the successful implementation of the reduced error pruning (REP) tree and random tree (RT)
in various domains, e.g., [19,56], their application to predict slope stability in dynamic situations is
scarcely explored. In the current study, the horizontal component of peak ground acceleration (PGA)
is included in the input parameters.

This study has significance in several ways:

1. Decision tree models are developed for analyze and early detection of slope stability that
able to learn the complex relationship between slope stability and its influencing factors
with reasonable precision. Furthermore, the proposed models provide easily interpretable
tree structures that can be used by geotechnical engineering professionals with the help of
spreadsheets to predict the slope stability for future seismic events without going into the
complexities of models development using RT and REP trees.

2. The performance of the proposed models is comparatively assessed with two commonly
used soft computing models (RF and AdaBoost) published in the literature to validate the
performance.

3. One of the major advantages of the presented models is the consideration and addition of
dynamic conditions—the horizontal component of peak ground acceleration (PGA) to the
database.

4. Data division for training and testing datasets was carried out with due regard for statistical
aspects such as dataset range, mean, and standard deviation. The datasets are split to determine
the predictive ability and generalization performance of developed models, which will and later
helps in evaluating them better.

The following summarizes the rest of the paper: The data catalog is shown in Section 2. Section 3
describes the applied DT techniques and performance measures. The results and discussion are
presented in Section 4. Finally, some concluding remarks are given.
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2 Data Catalog

In this study, 700 homogenous slope data (see Appendix A) were obtained from [55] and simulated
using GeoStudio, which utilizes the LEM approach for the most important FoS parameters. Many
homogenous slopes (in terms of material, γ = 18 kg/m3) with varied conditions were modeled to
achieve FoS in the study. The slopes were created with heights of 15, 20, 25, and 30 m with slopes
of 20°, 25°, 30°, and 35°. In terms of rigid behavior, all of the models were on bedrock. Furthermore,
all models were supposed to have a crest width of 8 m. The failure criterion of Mohr-Coulomb was
applied in this study’s analysis. Internal friction angles of 20°, 25°, 30°, 35°, and 40° were utilized in
the tests, with cohesions of 20, 30, 40, and 50 kPa. All models were assumed to have a soil density of
18 kg/m3. According to Kramer [57], peak ground acceleration (PGA) is a measurement of earthquake
acceleration on the ground. The PGA amplitudes were determined to be 0.1, 0.2, 0.3, and 0.4 g in this
investigation. FoS values were determined for several slope scenarios. As slip surfaces, all of the slope
models used thirty slices. This study used a grid and a radius slip surface to achieve FoS values. The
computed FoS in the grid and radius technique should be almost in the grid’s center. Previous studies
(e.g., [55]) show that slope stability under seismic excitation is a function of slope height (H), cohesion
(c), internal friction angle (φ), slope angle (β), and peak ground acceleration (PGA). Therefore, in
the current study, these input variables were used to develop the proposed models. Fig. 1 illustrates
a generic limit equilibrium model for the simulated slope. Table 2 shows the statistics for all five
input parameters (i.e., c, φ, β, H, and PGA) in the database, including their range, mean, standard
deviation (Std. Dev), and coefficient of variation (COV). Fig. 2 is a heat map of a correlation matrix
that highlights the correlation between parameters. It should be noticed that c, φ, and H have the
highest variations.

Figure 1: Limit equilibrium model for the stability analysis

Table 2: Input and output parameters for classifying slope stability

Parameter Unit Dataset Range Mean Std. Dev COV

Slope height, H m Training 15–30 19.848 4.095 0.206
Testing 25–30 29.800 0.983 0.033
Total 15–30 49.648 5.078 0.239

Slope angle, β ° Training 20–35 25.010 5.024 0.201
Testing 20–35 25.686 5.476 0.440
Total 20–35 50.696 10.5 0.641

(Continued)
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Table 2 (continued)

Parameter Unit Dataset Range Mean Std. Dev COV

Cohesion, c kPa Training 20–50 35.143 11.216 0.319
Testing 20–50 35.771 11.108 0.311
Total 20–50 70.914 22.324 0.630

Internal friction angle,
φ

° Training 20–40 33.981 5.906 0.174
Testing 20–40 34.371 5.814 0.169
Total 20–40 68.352 11.72 0.343

Peak ground
acceleration, PGA

m/s2 Training 0–3.924 1.211 1.084 0.895
Testing 0–3.924 1.087 1.022 0.940
Total 0–3.924 2.298 2.106 1.835

Factor of safety, FoS - Training 0.783–2.457 1.196 0.354 0.296
Testing 0.789–2.391 1.194 0.341 0.286
Total 0.783–2.457 2.39 0.695 0.582

Figure 2: Heat map displaying the correlation matrix between five input variables and one output
variable in the dataset

3 Methodology
3.1 Random Tree

Random trees comprise a forest of predictor trees. The random tree is an algorithm halfway
between a simple decision tree and a random forest. Random trees were initially proposed by Leo
Breiman and Adele Cutler. The algorithm can address both regression and classification tasks [58,59].
The classification mechanisms include the following: The random tree classifier classifies the input
vector of characteristics with each tree in the forest and then outputs the class label with the most
“votes” [60].
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A random tree is one that is randomly created from a set of possible trees, each of which has K
random attributes at each node. In this context, “at random” indicates that any tree in the set has an
equal chance of being chosen for sampling. Rapidly constructing random trees and integrating them
with large sets of random trees typically yields accurate models. In recent years, there has been extensive
research on random trees in the field of machine learning, e.g., [58]. The random tree approach is
employed in order to achieve the highest level of accuracy in its numerous classifier parameters such
as a minimum number of instances and the number of sets utilized for randomly chosen attributes. The
decision tree must be basic and compact for improved classification. Otherwise, the level of precision
will be diminished. To determine the maximum parameter value, one parameter was held constant
while the other was adjusted to determine the parameter with the highest accuracy.

3.2 Reduced Error Pruning Tree
The REP Tree is an ensemble model consisting of the decision tree, and reduced error pruning

(REP) approaches that are effective for classification and regression tasks [19]. One of the fastest
decision tree classifier algorithms is the REP tree. It builds the decision tree utilizing the attribute’s
entropy and information gain, as well as a reduced error pruning strategy. It generates many trees and
chooses the best one from the resulting list. The back fitting method is used by the REP tree to prune
the tree. The REP tree algorithm sorts all numeric fields in the dataset only once at the start and then
splits the attributes at each tree node using the sorted list. The numeric attributes are classified by
minimizing total variance. The non-numeric properties are categorized using a regular decision tree
and a reduced error pruning algorithm.

3.3 Performance Measures
The accuracy (Acc), Matthews correlation coefficient (Mcc), precision (Prec), recall (Rec), and F-

score were used to evaluate the model’s performance. Table 3 shows the performance metrics, together
with their formulations and definitions, based on the confusion matrix described in Table 4. Fig. 3
depicts the methodology used in the development of the proposed models.

Table 3: Confusion matrix of binary problem

Actual condition Predicted condition

Stable Unstable

Stable TP FN
Unstable FP TN
Note: TP: true positives; TN: true negatives; FP: false positives;
FN: false negatives.
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Table 4: Definition and formulation of performance measures

Parameter Definition Formulation

Acc Rate of correctly classified instances
from total instances

Acc = TP + TN
TP + TN + FP + FN

Mcc measure the difference between the
predicted classes and actual classes

Mcc = TP × TN − FN × FP√
(TP + FP) (TN + FP) (TN + FN) (TP + FN)

Prec Rate of correct predictions Prec = TP
TP + FP

or
TN

TN + FN

Rec True positive rate Rec = TP
TP + FN

or
TN

TN + FP

F-score Used to measure the accuracy of the
experiment

F − score = 2 × Prec×Rec
Prec + Rec

Note: Acc: accuracy; Mcc: matthews correlation coefficient; Rec: recall; Prec: precision.

Dataset of 700 slope stability cases obtained
using LEM method

Divid ing data into training and testing sets
based on statistical consistency

Model validation (25%)

Classififf cation algorithmsClassification algorithms

Slope stability classififf cationSlope stability classification

Output

Acc,cc Mcc,cc Prec,c Rec,cc anaa d F-FF scoreAcc, Mcc, Prec, Rec, and F-score

Performance validation
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Figure 3: Flowchart depicting the general DT methodology

4 Results and Discussion
4.1 Construction of Models

In this section, two models using a random tree and REP tree to predict slope stability experience
circular failure mode were developed. Researchers have used a different percentage of the available
data as the training set for different problems. For instance, Kurup et al. [61] used 63% of the data for
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training; Tang et al. [62] used 75%; while Padmini et al. [63] used 80%. In this study, 75% of the data
was for training. The models were developed using Waikato Environment for Knowledge Analysis
(WEKA) software [64]. WEKA is well-known and powerful data mining software developed at the
New Zealand’s University of Waikato. It is a set of open-source machine learning algorithms for data
mining tasks in the real world data mining tasks, including classification, regression, and clustering,
among others. For its prediction, the RT and REP tree algorithms were used. The minimum number
of instances per leaf (n) is a key effective parameter for the accuracy of RT and REP tree models. The
trial and error method is used in WEKA to get the best value for this parameter. It means that different
values of n are used to train the RT and REP tree models, and the value that yields the best accuracy
is chosen as the best. Fig. 4 depicts the RT and REP tree models. The RT and REP tree are 95 and
35, respectively. At each leaf node, the numbers in parentheses represent the total number of instances
and the number of incorrectly classified cases. It is clear that some instances are misclassified in some
leaves. The number of misclassified instances is specified after a slash. In order to create the most
accurate model, the optimal values for n in WEKA were obtained through trial and error. The RT
and REP tree models were trained using various values of n, with the best values for these parameters
being 2 and 3, respectively. The RT algorithm’s optimal value for K was 0.

4.2 Validation of Models
The performance of the models is validated using testing dataset that was not utilized during

the model construction process. Validation is used to determine whether developed models may be
generalized to conditions not experienced during the training phase. The results comparison of RT
and REP tree models is shown in Table 5. Comparing the Acc and Mcc, the RT and REP tree
models have the highest Acc and Mcc, whereas the RF model has the least value in the test phase.
However, only the Acc and the Mcc cannot be used as indicators to judge the predictive performance
for models. Therefore, stable and unstable classes are analyzed separately using Prec, Rec, and F-
score. In the cases of stable class, the RT model has the highest Prec, and F-score comparison to the
REPT model and the Rec values of RT and REP tree are at par, whereas the RF model presents the
least value. Similarly, in the cases of unstable class, the RT model has the highest Rec, and F-score
comparision to the REPT model and the Prec values of RT and REP tree are at par, whereas the RF
model presents the least value. There are 5 and 8 unmatched prediction cases in the RT and REP tree
models, respectively (see Fig. 4). In the test phase, the accuracy is 97.1429% and 95.4286%, respectively.
These findings demonstrate that the developed RT and REP tree classification methods are useful and
efficient in a practical point of view. Finally, the developed RT and REP tree models were compared to
recently developed soft computing models in the literature to assess their accuracy. Table 5 shows the
results of this comparison. Therefore, after comprehensive comparisons of the five measure indexes,
the RT achieved a better prediction performance with (Acc = 97.1429%, Mcc = 0.935, F-score for
stable class = 0.979 and for unstable case F-score = 0.935) succeeded by the REP tree model with
(Acc = 95.4286%, Mcc = 0.896, F-score stable class = 0.967 and for unstable class F-score = 0.923) for
the slope stability dataset in comparison to the AdaBoost (Acc = 93.1429%, Mcc = 0.830, F-score for
stable class = 0.952 and for unstable class F-score = 0.878) and RF (Acc = 91.4286%, Mcc = 0.794, F-
score = 0.939 and for unstable class F-score = 0.854) reported by Asteris et al. [55] for the test data. In
general, the generalization and reliability of the developed models perform well, and a more balanced
slope stability database can yield better prediction results. The primary advantage of the proposed
models is a “white box” that reveals the clear relationship between input and output parameters.
Consequently, using these models, the user (civil engineers) can easily compute slope stability.
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Figure 4: (a) REP tree and (b) part of RT
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Table 5: Comparison of results obtained from different models

Model Dataset Acc (%) Mcc Stable Unstable

Prec Rec F-score Prec Rec F-score

RT T 99.4286 0.987 0.994 0.997 0.996 0.994 0.988 0.991
T∗ 97.1429 0.935 0.960 1.000 0.979 1.000 0.911 0.935

REP tree T 96.9524 0.931 0.983 0.972 0.977 0.942 0.964 0.953
T∗ 95.4286 0.896 0.937 1.000 0.967 1.000 0.857 0.923

AdaBoost [55] T 100.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
T∗ 93.1429 0.830 0.945 0.960 0.952 0.896 0.860 0.878

RF [55] T 97.7143 0.949 0.986 0.980 0.983 0.960 0.971 0.966
T∗ 91.4286 0.794 0.951 0.928 0.939 0.830 0.880 0.854

Note: T: training; T∗: testing.

Fig. 5 compares the classification results of the RT, REP tree, AdaBoost, and RF models from
the testing phase to the FoS results obtained with the GeoStudio software for a better comparison.
As previously indicated, each model in the testing phase used 175 data samples, which constituted
for 25% of the total data. Fig. 4 shows that the RT and REP tree techniques were able to achieve
excellent results with the lowest number of unmatched cases. For RT, REP tree, AdaBoost, and RF, the
matched and unmatched numbers were 170 and 5,167 and 8, 163 and 12, and 160 and 15, respectively,
indicating the RT model’s superiority over the REP tree and other models reported in the literature
for slope stability classification. The error rate throughout the testing phase was low, illustrating the
RT model’s high performance. It was determined that the model with the best performance for slope
stability classification was the RT, and that it could be utilized in this field for the same purpose of
minimizing the associated risk.

Figure 5: Comparison of results obtained from different models

4.3 Rank Analysis
The rank analysis is the easiest and most extensively used method for evaluating and comparing

the effectiveness of developed models. In this study, the statistical parameters are employed to
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determine the score value, with their ideal values serving as a benchmark. It is dependent on the
number of models used. The best performing outcomes model receives the highest score, and vice
versa. Two models with the same outcomes may have the same ranking ratings.

Table 6 compares the testing stage results obtained by the indicators: i.e., Acc, Mcc, Prec, Rec,
and F-score. The score attained by RT is the highest in the testing phase (19), followed by the REP
tree (13) and AdaBoost (10), and RF attains the most negligible score value in the testing phase (7).
Except for the recall, RT achieved better accuracy and performance than the REP tree, AdaBoost, and
RF models. It can be inferred from the rank values that the RT model has performances superior to
the REP tree, AdaBoost, and RF and is the clear winner in terms of performance to the other applied
models.

Table 6: Rank analysis of the developed models for slope stability classification outcomes for testing
dataset

Model statistical
parameters

RT REP tree AdaBoost [55] RF [55]

Acc (%) Value 97.1429 95.4286 93.1429 91.4286
Rank 4 3 2 1

Mcc Value 0.935 0.896 0.830 0.794
Rank 4 3 2 1

Prec Value 0.960 0.937 0.945 0.951
Rank 4 1 2 3

Rec Value 1.000 1.000 0.960 0.928
Rank 3 3 2 1

F-score Value 0.979 0.967 0.952 0.939
Rank 4 3 2 1

Total 19 13 10 7

5 Conclusions

In this paper, a RT and REP tree models were applied to classify the stability of 700 slopes (464
stable slopes and 236 unstable slopes) under seismic conditions, which were modeled and analyzed
in GeoStudio software. The variables of H, β, c, φ, and PGA were set as model inputs for the
classification of slopes where FoS ≥ 1 and FoS < 1 were considered for stable and unstable slopes,
respectively. To quantify the performance of the RT and REP tree models, accuracy, Matthews
correlation coefficient, precision, recall, and F-score, performance indices were computed for both
training and testing stages.

The following are the main important findings of this study:

1. The outcome of the developed models is two slope stability graphs that are very easy to use and
do not require extensive training. Unlike most soft computing methods, these models explicitly
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indicate the relationship between input and output parameters. Based on the findings, these
relationships are consistent with intuition and engineering judgment.

2. The RT and REP tree models classification accuracy in the test phase is 97.1429% and
95.4286%, respectively, demonstrating that both models are useful and efficient in practice.
In addition, the Matthews correlation coefficient near to +1 indicates high values shows good
agreement between actual and predicted classes.

3. Comparing models’ performance reveals that the RT model gives more accurate classifications
than the REP tree model.

4. Compared to the random forest and AdaBoost models in the literature, the presented models
have a better ability for prediction, and their use is facilitated by a clear graphical output.

Future research should utilize a more balanced slope stability database to evaluate the models’
reliability in predicting slope stability. Although the proposed models produce desired predictions and
performed well with Acc greater than 95%, Additional rocks’ depth, soil type, and rainfall factors can
all be considered in these models to improve the generalization and reliability.
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Appendix A

Table A1: Dataset used to construct and validate the model

S. No. H/m β/° c/kPa φ/° PGA/ms−2 FoS

1 15 20 20 20 0 1.063
2 15 20 20 20 0.981 0.803
3 15 20 20 25 0 1.355
4 15 20 20 25 0.981 1.022
5 15 20 20 25 1.962 0.81
6 15 20 20 30 0 1.671
7 15 20 20 30 0.981 1.261
8 15 20 20 30 1.962 0.998
9 15 20 20 35 0 2.02
10 15 20 20 35 0.981 1.524
11 15 20 20 35 1.962 1.206
12 15 20 20 35 2.943 0.986
13 15 20 20 40 0 2.414
14 15 20 20 40 0.981 1.821
15 15 20 20 40 1.962 1.442
16 15 20 20 40 2.943 1.178
17 15 20 20 40 3.924 0.984
18 15 20 30 20 0 1.076
19 15 20 30 20 0.981 0.812
20 15 20 30 25 0 1.368
21 15 20 30 25 0.981 1.033
22 15 20 30 25 1.962 0.818
23 15 20 30 30 0 1.685
24 15 20 30 30 0.981 1.271
25 15 20 30 30 1.962 1.007
26 15 20 30 30 2.943 0.823

(Continued)
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Table A1 (continued)

S. No. H/m β/° c/kPa φ/° PGA/ms−2 FoS

27 15 20 30 35 0 2.034
28 15 20 30 35 0.981 1.535
29 15 20 30 35 1.962 1.216
30 15 20 30 35 2.943 0.994
31 15 20 30 40 0 2.43
32 15 20 30 40 0.981 1.883
33 15 20 30 40 1.962 1.452
34 15 20 30 40 2.943 1.186
35 15 20 30 40 3.924 0.991
36 15 20 40 20 0 1.087
37 15 20 40 20 0.981 0.821
38 15 20 40 25 0 1.38
39 15 20 40 25 0.981 1.042
40 15 20 40 25 1.962 0.826
41 15 20 40 30 0 1.698
42 15 20 40 30 0.981 1.282
43 15 20 40 30 1.962 1.015
44 15 20 40 30 2.943 0.83
45 15 20 40 35 0 2.048
46 15 20 40 35 0.981 1.546
47 15 20 40 35 1.962 1.224
48 15 20 40 35 2.943 1.001
49 15 20 40 35 3.924 0.837
50 15 20 40 40 0 2.443
51 15 20 40 40 0.981 1.844
52 15 20 40 40 1.962 1.46
53 15 20 40 40 2.943 1.194
54 15 20 40 40 3.924 0.998
55 15 20 50 20 0 1.097
56 15 20 50 20 0.981 0.829
57 15 20 50 25 0 1.391
58 15 20 50 25 0.981 1.051
59 15 20 50 25 1.962 0.833
60 15 20 50 30 0 1.71
61 15 20 50 30 0.981 1.291
62 15 20 50 30 1.962 1.023
63 15 20 50 30 2.943 0.837
64 15 20 50 35 0 2.061
65 15 20 50 35 0.981 1.556
66 15 20 50 35 1.962 1.233
67 15 20 50 35 2.943 1.008

(Continued)
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Table A1 (continued)

S. No. H/m β/° c/kPa φ/° PGA/ms−2 FoS

68 15 20 50 35 3.924 0.843
69 15 20 50 40 0 2.457
70 15 20 50 40 0.981 1.855
71 15 20 50 40 1.962 1.469
72 15 20 50 40 2.943 1.201
73 15 20 50 40 3.924 1.004
74 15 25 20 25 0 1.057
75 15 25 20 25 0.981 0.831
76 15 25 20 30 0 1.301
77 15 25 20 30 0.981 1.023
78 15 25 20 30 1.962 0.829
79 15 25 20 35 0 1.572
80 15 25 20 35 0.981 1.235
81 15 25 20 35 1.962 1.001
82 15 25 20 35 2.943 0.828
83 15 25 20 40 0 1.877
84 15 25 20 40 0.981 1.475
85 15 25 20 40 1.962 1.195
86 15 25 20 40 2.943 0.989
87 15 25 30 25 0 1.069
88 15 25 30 25 0.981 0.842
89 15 25 30 30 0 1.315
90 15 25 30 30 0.981 1.035
91 15 25 30 30 1.962 0.839
92 15 25 30 35 0 1.586
93 15 25 30 35 0.981 1.248
94 15 25 30 35 1.962 1.012
95 15 25 30 35 2.943 0.838
96 15 25 30 40 0 1.893
97 15 25 30 40 0.981 1.488
98 15 25 30 40 1.962 1.206
99 15 25 30 40 2.943 0.999
100 15 25 40 25 0 1.081
101 15 25 40 25 0.981 0.851
102 15 25 40 30 0 1.327
103 15 25 40 30 0.981 1.045
104 15 25 40 30 1.962 0.848
105 15 25 40 35 0 1.599
106 15 25 40 35 0.981 1.258
107 15 25 40 35 1.962 1.021
108 15 25 40 35 2.943 0.846

(Continued)
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Table A1 (continued)

S. No. H/m β/° c/kPa φ/° PGA/ms−2 FoS

109 15 25 40 40 0 1.907
110 15 25 40 40 0.981 1.5
111 15 25 40 40 1.962 1.216
112 15 25 40 40 2.943 1.007
113 15 25 40 40 3.924 0.847
114 15 25 50 25 0 1.091
115 15 25 50 25 0.981 0.859
116 15 25 50 30 0 1.338
117 15 25 50 30 0.981 1.054
118 15 25 50 30 1.962 0.856
119 15 25 50 35 0 1.612
120 15 25 50 35 0.981 1.268
121 15 25 50 35 1.962 1.029
122 15 25 50 35 2.943 0.853
123 15 25 50 40 0 1.919
124 15 25 50 40 0.981 1.51
125 15 25 50 40 1.962 1.225
126 15 25 50 40 2.943 1.015
127 15 25 50 40 3.924 0.854
128 15 30 20 30 0 1.054
129 15 30 20 30 0.981 0.851
130 15 30 20 35 0 1.272
131 15 30 20 35 0.981 1.026
132 15 30 20 35 1.962 0.843
133 15 30 20 40 0 1.517
134 15 30 20 40 0.981 1.223
135 15 30 20 40 1.962 1.006
136 15 30 20 40 2.943 0.838
137 15 30 30 30 0 1.068
138 15 30 30 30 0.981 0.862
139 15 30 30 35 0 1.287
140 15 30 30 35 0.981 1.038
141 15 30 30 35 1.962 0.854
142 15 30 30 40 0 1.534
143 15 30 30 40 0.981 1.237
144 15 30 30 40 1.962 1.018
145 15 30 30 40 2.943 0.849
146 15 30 40 30 0 1.08
147 15 30 40 30 0.981 0.872
148 15 30 40 35 0 1.299
149 15 30 40 35 0.981 1.049

(Continued)
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Table A1 (continued)

S. No. H/m β/° c/kPa φ/° PGA/ms−2 FoS

150 15 30 40 35 1.962 0.864
151 15 30 40 40 0 1.547
152 15 30 40 40 0.981 1.249
153 15 30 40 40 1.962 1.028
154 15 30 40 40 2.943 0.858
155 15 30 50 30 0 1.091
156 15 30 50 30 0.981 0.882
157 15 30 50 35 0 1.311
158 15 30 50 35 0.981 1.059
159 15 30 50 35 1.962 0.873
160 15 30 50 40 0 1.56
161 15 30 50 40 0.981 1.26
162 15 30 50 40 1.962 1.037
163 15 30 50 40 2.943 0.866
164 15 35 20 35 0 1.041
165 15 35 20 35 0.981 0.854
166 15 35 20 40 0 1.237
167 15 35 20 40 0.981 1.013
168 15 35 20 40 1.962 0.839
169 15 35 30 35 0 1.055
170 15 35 30 35 0.981 0.867
171 15 35 30 40 0 1.25
172 15 35 30 40 0.981 1.028
173 15 35 30 40 1.962 0.852
174 15 35 40 35 0 1.299
175 15 35 40 35 0.981 0.878
176 15 35 40 40 0 1.547
177 15 35 40 40 0.981 1.04
178 15 35 40 40 1.962 0.864
179 15 35 50 35 0 1.311
180 15 35 50 35 0.981 0.888
181 15 35 50 40 0 1.56
182 15 35 50 40 0.981 1.051
183 15 35 50 40 1.962 0.875
184 20 20 20 20 0 1.037
185 20 20 20 20 0.981 0.785
186 20 20 20 25 0 1.323
187 20 20 20 25 0.981 1.001
188 20 20 20 25 1.962 0.794
189 20 20 20 30 0 1.632
190 20 20 20 30 0.981 1.235
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Table A1 (continued)

S. No. H/m β/° c/kPa φ/° PGA/ms−2 FoS

191 20 20 20 30 1.962 0.979
192 20 20 20 35 0 1.973
193 20 20 20 35 0.981 1.493
194 20 20 20 35 1.962 1.184
195 20 20 20 35 2.943 0.968
196 20 20 20 40 0 2.359
197 20 20 20 40 0.981 1.785
198 20 20 20 40 1.962 1.415
199 20 20 20 40 2.943 1.157
200 20 20 20 40 3.924 0.966
201 20 20 30 20 0 1.048
202 20 20 30 20 0.981 0.793
203 20 20 30 25 0 1.334
204 20 20 30 25 0.981 1.01
205 20 20 30 25 1.962 0.801
206 20 20 30 30 0 1.644
207 20 20 30 30 0.981 1.244
208 20 20 30 30 1.962 0.987
209 20 20 30 35 0 1.987
210 20 20 30 35 0.981 1.504
211 20 20 30 35 1.962 1.192
212 20 20 30 35 2.943 0.975
213 20 20 30 40 0 2.373
214 20 20 30 40 0.981 1.796
215 20 20 30 40 1.962 1.424
216 20 20 30 40 2.943 1.165
217 20 20 30 40 3.924 0.973
218 20 20 40 20 0 1.057
219 20 20 40 20 0.981 0.801
220 20 20 40 25 0 1.344
221 20 20 40 25 0.981 1.018
222 20 20 40 25 1.962 0.808
223 20 20 40 30 0 1.654
224 20 20 40 30 0.981 1.253
225 20 20 40 30 1.962 0.994
226 20 20 40 35 0 1.988
227 20 20 40 35 0.981 1.512
228 20 20 40 35 1.962 1.2
229 20 20 40 35 2.943 0.981
230 20 20 40 40 0 2.385
231 20 20 40 40 0.981 1.806
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Table A1 (continued)

S. No. H/m β/° c/kPa φ/° PGA/ms−2 FoS

232 20 20 40 40 1.962 1.432
233 20 20 40 40 2.943 1.171
234 20 20 40 40 3.924 0.979
235 20 20 50 20 0 1.065
236 20 20 50 20 0.981 0.807
237 20 20 50 25 0 1.353
238 20 20 50 25 0.981 1.025
239 20 20 50 25 1.962 0.813
240 20 20 50 30 0 1.664
241 20 20 50 30 0.981 1.26
242 20 20 50 30 1.962 1
243 20 20 50 30 2.943 0.819
244 20 20 50 35 0 2.008
245 20 20 50 35 0.981 1.521
246 20 20 50 35 1.962 1.207
247 20 20 50 35 2.943 0.987
248 20 20 50 40 0 2.396
249 20 20 50 40 0.981 1.814
250 20 20 50 40 1.962 1.439
251 20 20 50 40 2.943 1.177
252 20 20 50 40 3.924 0.984
253 20 25 20 25 0 1.043
254 20 25 20 25 0.981 0.821
255 20 25 20 30 0 1.286
256 20 25 20 30 0.981 1.012
257 20 25 20 30 1.962 0.82
258 20 25 20 35 0 1.555
259 20 25 20 35 0.981 1.223
260 20 25 20 35 1.962 0.992
261 20 25 20 40 0 1.858
262 20 25 20 40 0.981 1.461
263 20 25 20 40 1.962 1.184
264 20 25 20 40 2.943 0.98
265 20 25 30 25 0 1.054
266 20 25 30 25 0.981 0.83
267 20 25 30 30 0 1.297
268 20 25 30 30 0.981 1.021
269 20 25 30 30 1.962 0.828
270 20 25 30 35 0 1.566
271 20 25 30 35 0.981 1.232
272 20 25 30 35 1.962 0.999
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Table A1 (continued)

S. No. H/m β/° c/kPa φ/° PGA/ms−2 FoS

273 20 25 30 40 0 1.87
274 20 25 30 40 0.981 1.472
275 20 25 30 40 1.962 1.193
276 20 25 30 40 2.943 0.988
277 20 25 40 25 0 1.063
278 20 25 40 25 0.981 0.837
279 20 25 40 30 0 1.308
280 20 25 40 30 0.981 1.03
281 20 25 40 30 1.962 0.835
282 20 25 40 35 0 1.577
283 20 25 40 35 0.981 1.241
284 20 25 40 35 1.962 1.007
285 20 25 40 35 2.943 0.834
286 20 25 40 40 0 1.881
287 20 25 40 40 0.981 1.48
288 20 25 40 40 1.962 1.201
289 20 25 40 40 2.943 0.994
290 20 25 50 25 0 1.072
291 20 25 50 25 0.981 0.845
292 20 25 50 30 0 1.317
293 20 25 50 30 0.981 1.037
294 20 25 50 30 1.962 0.842
295 20 25 50 35 0 1.587
296 20 25 50 35 0.981 1.25
297 20 25 50 35 1.962 1.014
298 20 25 50 35 2.943 0.84
299 20 25 50 40 0 1.892
300 20 25 50 40 0.981 1.489
301 20 25 50 40 1.962 1.208
302 20 25 50 40 2.943 1.001
303 20 25 50 40 3.924 0.842
304 20 30 20 30 0 1.056
305 20 30 20 30 0.981 0.851
306 20 30 20 35 0 1.275
307 20 30 20 35 0.981 1.027
308 20 30 20 35 1.962 0.843
309 20 30 20 40 0 1.522
310 20 30 20 40 0.981 1.225
311 20 30 20 40 1.962 1.006
312 20 30 20 40 2.943 0.838
313 20 30 30 30 0 1.067
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Table A1 (continued)

S. No. H/m β/° c/kPa φ/° PGA/ms−2 FoS

314 20 30 30 30 0.981 0.86
315 20 30 30 35 0 1.287
316 20 30 30 35 0.981 1.037
317 20 30 30 35 1.962 0.852
318 20 30 30 40 0 1.536
319 20 30 30 40 0.981 1.237
320 20 30 30 40 1.962 1.017
321 20 30 30 40 2.943 0.847
322 20 30 40 30 0 1.076
323 20 30 40 30 0.981 0.868
324 20 30 40 35 0 1.297
325 20 30 40 35 0.981 1.046
326 20 30 40 35 1.962 0.86
327 20 30 40 40 0 1.547
328 20 30 40 40 0.981 1.247
329 20 30 40 40 1.962 1.025
330 20 30 40 40 2.943 0.854
331 20 30 50 30 0 1.086
332 20 30 50 30 0.981 0.876
333 20 30 50 35 0 1.307
334 20 30 50 35 0.981 1.054
335 20 30 50 35 1.962 0.868
336 20 30 50 40 0 1.557
337 20 30 50 40 0.981 1.255
338 20 30 50 40 1.962 1.032
339 20 30 50 40 2.943 0.861
340 20 35 20 35 0 1.068
341 20 35 20 35 0.981 0.873
342 20 35 20 40 0 1.271
343 20 35 20 40 0.981 1.038
344 20 35 20 40 1.962 0.858
345 20 35 30 35 0 1.079
346 20 35 30 35 0.981 0.883
347 20 35 30 40 0 1.283
348 20 35 30 40 0.981 1.049
349 20 35 30 40 1.962 0.869
350 20 35 40 35 0 1.089
351 20 35 40 35 0.981 0.892
352 20 35 40 40 0 1.294
353 20 35 40 40 0.981 1.059
354 20 35 40 40 1.962 0.877
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Table A1 (continued)

S. No. H/m β/° c/kPa φ/° PGA/ms−2 FoS

355 20 35 50 35 0 1.1
356 20 35 50 35 0.981 0.902
357 20 35 50 40 0 1.305
358 20 35 50 40 0.981 1.068
359 20 35 50 40 1.962 0.887
360 25 20 20 20 0 1.037
361 25 20 20 20 0.981 0.784
362 25 20 20 25 0 1.322
363 25 20 20 25 0.981 1
364 25 20 20 25 1.962 0.793
365 25 20 20 30 0 1.633
366 25 20 20 30 0.981 1.235
367 25 20 20 30 1.962 0.979
368 25 20 20 35 0 1.975
369 25 20 20 35 0.981 1.494
370 25 20 20 35 1.962 1.184
371 25 20 20 35 2.943 0.968
372 25 20 20 40 0 2.362
373 25 20 20 40 0.981 1.786
374 25 20 20 40 1.962 1.416
375 25 20 20 40 2.943 1.157
376 25 20 20 40 3.924 0.966
377 25 20 30 20 0 1.046
378 25 20 30 20 0.981 0.791
379 25 20 30 25 0 1.342
380 25 20 30 25 0.981 1.008
381 25 20 30 25 1.962 0.799
382 25 20 30 30 0 1.643
383 25 20 30 30 0.981 1.243
384 25 20 30 30 1.962 0.985
385 25 20 30 35 0 1.986
386 25 20 30 35 0.981 1.502
387 25 20 30 35 1.962 1.191
388 25 20 30 35 2.943 0.973
389 25 20 30 40 0 2.374
390 25 20 30 40 0.981 1.795
391 25 20 30 40 1.962 1.423
392 25 20 30 40 2.943 1.163
393 25 20 30 40 3.924 0.972
394 25 20 40 20 0 1.053
395 25 20 40 20 0.981 0.797
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Table A1 (continued)

S. No. H/m β/° c/kPa φ/° PGA/ms−2 FoS

396 25 20 40 25 0 1.341
397 25 20 40 25 0.981 1.015
398 25 20 40 25 1.962 0.805
399 25 20 40 30 0 1.652
400 25 20 40 30 0.981 1.25
401 25 20 40 30 1.962 0.991
402 25 20 40 35 0 1.996
403 25 20 40 35 0.981 1.51
404 25 20 40 35 1.962 1.197
405 25 20 40 35 2.943 0.979
406 25 20 40 40 0 2.384
407 25 20 40 40 0.981 1.803
408 25 20 40 40 1.962 1.429
409 25 20 40 40 2.943 1.169
410 25 20 40 40 3.924 0.977
411 25 20 50 20 0 1.06
412 25 20 50 20 0.981 0.803
413 25 20 50 25 0 1.348
414 25 20 50 25 0.981 1.021
415 25 20 50 25 1.962 0.81
416 25 20 50 30 0 1.66
417 25 20 50 30 0.981 1.257
418 25 20 50 30 1.962 0.997
419 25 20 50 35 0 2.005
420 25 20 50 35 0.981 1.517
421 25 20 50 35 1.962 1.203
422 25 20 50 35 2.943 0.984
423 25 20 50 40 0 2.393
424 25 20 50 40 0.981 1.811
425 25 20 50 40 1.962 1.436
426 25 20 50 40 2.943 1.174
427 25 20 50 40 3.924 0.981
428 25 25 20 25 0 1.042
429 25 25 20 25 0.981 0.82
430 25 25 20 30 0 1.286
431 25 25 20 30 0.981 1.011
432 25 25 20 30 1.962 0.819
433 25 25 20 35 0 1.555
434 25 25 20 35 0.981 1.221
435 25 25 20 35 1.962 0.989
436 25 25 20 40 0 1.859
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Table A1 (continued)

S. No. H/m β/° c/kPa φ/° PGA/ms−2 FoS

437 25 25 20 40 0.981 1.46
438 25 25 20 40 1.962 1.182
439 25 25 20 40 2.943 0.978
440 25 25 30 25 0 1.052
441 25 25 30 25 0.981 0.827
442 25 25 30 30 0 1.296
443 25 25 30 30 0.981 1.019
444 25 25 30 30 1.962 0.826
445 25 25 30 35 0 1.565
446 25 25 30 35 0.981 1.231
447 25 25 30 35 1.962 0.997
448 25 25 30 40 0 1.87
449 25 25 30 40 0.981 1.47
450 25 25 30 40 1.962 1.191
451 25 25 30 40 2.943 0.985
452 25 25 40 25 0 1.06
453 25 25 40 25 0.981 0.834
454 25 25 40 30 0 1.305
455 25 25 40 30 0.981 1.026
456 25 25 40 30 1.962 0.832
457 25 25 40 35 0 1.575
458 25 25 40 35 0.981 1.238
459 25 25 40 35 1.962 1.004
460 25 25 40 35 2.943 0.831
461 25 25 40 40 0 1.88
462 25 25 40 40 0.981 1.478
463 25 25 40 40 1.962 1.198
464 25 25 40 40 2.943 0.992
465 25 25 50 25 0 1.067
466 25 25 50 25 0.981 0.84
467 25 25 50 30 0 1.313
468 25 25 50 30 0.981 1.033
469 25 25 50 30 1.962 0.838
470 25 25 50 35 0 1.583
471 25 25 50 35 0.981 1.246
472 25 25 50 35 1.962 1.01
473 25 25 50 35 2.943 0.837
474 25 25 50 40 0 1.889
475 25 25 50 40 0.981 1.486
476 25 25 50 40 1.962 1.204
477 25 25 50 40 2.943 0.997
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Table A1 (continued)

S. No. H/m β/° c/kPa φ/° PGA/ms−2 FoS

478 25 30 20 30 0 1.033
479 25 30 20 30 0.981 0.834
480 25 30 20 35 0 1.248
481 25 30 20 35 0.981 1.007
482 25 30 20 35 1.962 0.827
483 25 30 20 40 0 1.491
484 25 30 20 40 0.981 1.202
485 25 30 20 40 1.962 0.988
486 25 30 30 30 0 1.043
487 25 30 30 30 0.981 0.842
488 25 30 30 35 0 1.259
489 25 30 30 35 0.981 1.016
490 25 30 30 35 1.962 0.835
491 25 30 30 40 0 1.502
492 25 30 30 40 0.981 1.212
493 25 30 30 40 1.962 0.997
494 25 30 40 30 0 1.051
495 25 30 40 30 0.981 0.849
496 25 30 40 35 0 1.268
497 25 30 40 35 0.981 1.024
498 25 30 40 35 1.962 0.842
499 25 30 40 40 0 1.512
500 25 30 40 40 0.981 1.22
501 25 30 40 40 1.962 1.004
502 25 30 40 40 2.934 0.836
503 25 30 50 30 0 1.059
504 25 30 50 30 0.981 0.856
505 25 30 50 35 0 1.276
506 25 30 50 35 0.981 1.031
507 25 30 50 35 1.962 0.848
508 25 30 50 40 0 1.522
509 25 30 50 40 0.981 1.228
510 25 30 50 40 1.962 1.011
511 25 30 50 40 2.934 0.843
512 25 35 20 35 0 1.054
513 25 35 20 35 0.981 0.862
514 25 35 20 40 0 1.255
515 25 35 20 40 0.981 1.025
516 25 35 20 40 1.962 0.847
517 25 35 30 35 0 1.064
518 25 35 30 35 0.981 0.871
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Table A1 (continued)

S. No. H/m β/° c/kPa φ/° PGA/ms−2 FoS

519 25 35 30 40 0 1.266
520 25 35 30 40 0.981 1.035
521 25 35 30 40 1.962 0.856
522 25 35 40 35 0 1.074
523 25 35 40 35 0.981 0.879
524 25 35 40 40 0 1.276
525 25 35 40 40 0.981 1.044
526 25 35 40 40 1.962 0.864
527 25 35 50 35 0 1.082
528 25 35 50 35 0.981 0.887
529 25 35 50 40 0 1.285
530 25 35 50 40 0.981 1.052
531 25 35 50 40 1.962 0.871
532 30 20 20 20 0 1.036
533 30 20 20 20 0.981 0.783
534 30 20 20 25 0 1.322
535 30 20 20 25 0.981 0.999
536 30 20 20 30 0 1.632
537 30 20 20 30 0.981 1.234
538 30 20 20 30 1.962 0.977
539 30 20 20 35 0 1.975
540 30 20 20 35 0.981 1.493
541 30 20 20 35 1.962 1.182
542 30 20 20 35 2.934 0.966
543 30 20 20 40 0 2.363
544 30 20 20 40 0.981 1.786
545 30 20 20 40 1.962 1.414
546 30 20 20 40 2.943 1.155
547 30 20 20 40 3.924 0.965
548 30 20 30 20 0 1.043
549 30 20 30 20 0.981 0.789
550 30 20 30 25 0 1.33
551 30 20 30 25 0.981 1.006
552 30 20 30 25 1.962 0.797
553 30 20 30 30 0 1.641
554 30 20 30 30 0.981 1.241
555 30 20 30 30 1.962 0.983
556 30 20 30 35 0 1.985
557 30 20 30 35 0.981 1.501
558 30 20 30 35 1.962 1.189
559 30 20 30 35 2.943 0.972
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Table A1 (continued)

S. No. H/m β/° c/kPa φ/° PGA/ms−2 FoS

560 30 20 30 40 0 2.373
561 30 20 30 40 0.981 1.794
562 30 20 30 40 1.962 1.421
563 30 20 30 40 2.943 1.161
564 30 20 30 40 3.924 0.97
565 30 20 40 20 0 1.051
566 30 20 40 20 0.981 0.795
567 30 20 40 25 0 1.338
568 30 20 40 25 0.981 1.012
569 30 20 40 25 1.962 0.802
570 30 20 40 30 0 1.649
571 30 20 40 30 0.981 1.247
572 30 20 40 30 1.962 0.989
573 30 20 40 35 0 1.994
574 30 20 40 35 0.981 1.507
575 30 20 40 35 1.962 1.195
576 30 20 40 35 2.943 0.977
577 30 20 40 40 0 2.382
578 30 20 40 40 0.981 1.801
579 30 20 40 40 1.962 1.427
580 30 20 40 40 2.943 1.166
581 30 20 40 40 3.924 0.974
582 30 20 50 20 0 1.057
583 30 20 50 20 0.981 0.8
584 30 20 50 25 0 1.345
585 30 20 50 25 0.981 1.017
586 30 20 50 25 1.962 0.807
587 30 20 50 30 0 1.657
588 30 20 50 30 0.981 1.253
589 30 20 50 30 1.962 0.993
590 30 20 50 35 0 2.001
591 30 20 50 35 0.981 1.513
592 30 20 50 35 1.962 1.2
593 30 20 50 35 2.943 0.981
594 30 20 50 40 0 2.391
595 30 20 50 40 0.981 1.808
596 30 20 50 40 1.962 1.433
597 30 20 50 40 2.943 1.171
598 30 20 50 40 3.924 0.979
599 30 25 20 25 0 1.027
600 30 25 20 25 0.981 0.808
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Table A1 (continued)

S. No. H/m β/° c/kPa φ/° PGA/ms−2 FoS

601 30 25 20 30 0 1.266
602 30 25 20 30 0.981 0.997
603 30 25 20 35 0 1.532
604 30 25 20 35 0.981 1.206
605 30 25 20 35 1.962 0.977
606 30 25 20 40 0 1.831
607 30 25 20 40 0.981 1.441
608 30 25 20 40 1.962 1.168
609 30 25 20 40 2.943 0.966
610 30 25 30 25 0 1.035
611 30 25 30 25 0.981 0.815
612 30 25 30 30 0 1.275
613 30 25 30 30 0.981 1.004
614 30 25 30 30 1.962 0.815
615 30 25 30 35 0 1.541
616 30 25 30 35 0.981 1.213
617 30 25 30 35 1.962 0.984
618 30 25 30 40 0 1.841
619 30 25 30 40 0.981 1.45
620 30 25 30 40 1.962 1.175
621 30 25 30 40 2.943 0.973
622 30 25 40 25 0 1.042
623 30 25 40 25 0.981 0.821
624 30 25 40 30 0 1.283
625 30 25 40 30 0.981 1.011
626 30 25 40 30 1.962 0.82
627 30 25 40 35 0 1.55
628 30 25 40 35 0.981 1.221
629 30 25 40 35 1.962 0.99
630 30 25 40 40 0 1.851
631 30 25 40 40 0.981 1.457
632 30 25 40 40 1.962 1.182
633 30 25 40 40 2.943 0.978
634 30 25 50 25 0 1.048
635 30 25 50 25 0.981 0.826
636 30 25 50 30 0 1.29
637 30 25 50 30 0.981 1.017
638 30 25 50 30 1.962 0.825
639 30 25 50 35 0 1.557
640 30 25 50 35 0.981 1.227
641 30 25 50 35 1.962 0.996
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Table A1 (continued)

S. No. H/m β/° c/kPa φ/° PGA/ms−2 FoS

642 30 25 50 40 0 1.859
643 30 25 50 40 0.981 1.464
644 30 25 50 40 1.962 1.188
645 30 25 50 40 2.943 0.983
646 30 30 20 30 0 1.037
647 30 30 20 30 0.981 0.835
648 30 30 20 35 0 1.253
649 30 30 20 35 0.981 1.01
650 30 30 20 35 1.962 0.829
651 30 30 20 40 0 1.497
652 30 30 20 40 0.981 1.206
653 30 30 20 40 1.962 0.99
654 30 30 30 30 0 1.046
655 30 30 30 30 0.981 0.843
656 30 30 30 35 0 1.262
657 30 30 30 35 0.981 1.018
658 30 30 30 35 1.962 0.836
659 30 30 30 40 0 1.507
660 30 30 30 40 0.981 1.215
661 30 30 30 40 1.962 0.998
662 30 30 40 30 0 1.053
663 30 30 40 30 0.981 0.849
664 30 30 40 35 0 1.271
665 30 30 40 35 0.981 1.025
666 30 30 40 35 1.962 0.843
667 30 30 40 40 0 1.517
668 30 30 40 40 0.981 1.223
669 30 30 40 40 1.962 1.005
670 30 30 40 40 2.943 0.837
671 30 30 50 30 0 1.06
672 30 30 50 30 0.981 0.856
673 30 30 50 35 0 1.278
674 30 30 50 35 0.981 1.031
675 30 30 50 35 1.962 0.848
676 30 30 50 40 0 1.524
677 30 30 50 40 0.981 1.229
678 30 30 50 40 1.962 1.011
679 30 30 50 40 2.943 0.843
680 30 35 20 35 0 1.045
681 30 35 20 35 0.981 0.855
682 30 35 20 40 0 1.245
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Table A1 (continued)

S. No. H/m β/° c/kPa φ/° PGA/ms−2 FoS

683 30 35 20 40 0.981 1.017
684 30 35 20 40 1.962 0.84
685 30 35 30 35 0 1.055
686 30 35 30 35 0.981 0.863
687 30 35 30 40 0 1.255
688 30 35 30 40 0.981 1.026
689 30 35 30 40 1.962 0.848
690 30 35 40 35 0 1.063
691 30 35 40 35 0.981 0.87
692 30 35 40 40 0 1.264
693 30 35 40 40 0.981 1.034
694 30 35 40 40 1.962 0.855
695 30 35 50 35 0 1.07
696 30 35 50 35 0.981 0.877
697 30 35 50 40 0 1.272
698 30 35 50 40 0.981 1.041
699 30 35 50 40 1.962 0.861
700 30 35 50 40 1.962 0.861
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