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ABSTRACT

The data in Mobile Edge Computing (MEC) contains tremendous market value, and data sharing can maximize the
usefulness of the data. However, certain data is quite sensitive, and sharing it directly may violate privacy. Vertical
Federated Learning (VFL) is a secure distributed machine learning framework that completes joint model training
by passing encrypted model parameters rather than raw data, so there is no data privacy leakage during the training
process. Therefore, the VFL can build a bridge between data demander and owner to realize data sharing while
protecting data privacy. Typically, the VFL requires a third party for key distribution and decryption of training
results. In this article, we employ the consortium blockchain instead of the traditional third party and design a
VFL architecture based on the consortium blockchain for data sharing in MEC. More specifically, we propose a
V-Raft consensus algorithm based on Verifiable Random Functions (VRFs), which is a variant of the Raft. The V-
Raft is able to elect leader quickly and stably to assist data demander and owner to complete data sharing by VFL.
Moreover, we apply secret sharing to distribute the private key to avoid the situation where the training result cannot
be decrypted if the leader crashes. Finally, we analyzed the performance of the V-Raft and carried out simulation
experiments, and the results show that compared with Raft, the V-Raft has higher efficiency and better scalability.
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1 Introduction

In the Internet of Things (IoT), the massive amount of data collected by devices has to be analyzed,
processed, and stored. Mobile Edge Computing (MEC) [1] pushes the manipulation of data in the IoT
from the centralized cloud server to the network edges, so as to reduce network latency and increase
the corresponding speed of IoT devices. At the same time, the devices in the edge network transmit
the filtered data to the cloud server for analysis. The data can improve and optimize its own MEC
services, and it also contains tremendous market value. Data owners share data through trading or
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collaboration which can maximize the usefulness of the data. However, data sharing is not as easy as it
seems. The data in MEC is vast and diverse [2], and some of it is quite sensitive, such as home addresses,
driving routes, and people’s behaviors or even physical characteristics. As a result, direct data sharing
is not allowed in some cases because it violates privacy. Prohibiting data circulation and sharing will
diminish the value and impact of the data, which in turn limits the development and application of the
MEC. Therefore, data sharing should be done in a way that ensures that people’s privacy is not leaked,
and that is an element that system developers must consider [3]. Federated learning is a distributed
machine learning framework with privacy protection [4–6], which can transfer encrypted intermediate
results to complete model training without leaking the raw data during the training process. That is,
federated learning indirectly shares data to build a better machine learning model and the data is kept
in the local context. According to the distribution characteristics of the data, federated learning is
classified into Horizontal Federated Learning (HFL) and Vertical Federated Learning (VFL) [7]. The
VFL is applicable to the case that two training participants have their own data sets, and there are many
overlapped samples, but few overlapped features in their data sets. With the assistance of a trusted third
party, the two participants use encryption model training schemes [8,9] to combine different features
from the common samples, and a more accurate model can be obtained by expanding the features
of samples. Thus it can be seen the VFL can build a bridge between data demander and owner to
complete data sharing while protecting data privacy.

In the training process of the VFL, the third party plays an important role. It generates a
public-private key pair, in which the public key is distributed to the participants for homomorphic
encryption [10] of the data, and then the private key will be used to decrypt the training results.
Therefore, we request that the third party is credible and reliable. Blockchain [11] is a kind of
distributed ledger, which has the features of decentralization, tamper-resistance, and security. Based
on these advantages, blockchain is often used in privacy protection [12,13] and identity authentication
[14,15]. Depending on the degree of openness of the network, blockchain can be divided into public
blockchain, consortium blockchain, and private blockchain. The consortium blockchain is usually
composed of various institutions, which is suitable for building a distributed network with fewer
nodes. Because of the access mechanism, the consortium blockchain is highly reliable. In this article,
we employed consortium blockchain as the third party and proposed a VFL architecture based
on consortium blockchain for data sharing in MEC. The consortium blockchain uses consensus
algorithm to selected leader and committee, which assist data demander and owner to complete data
sharing through the VFL approach. Moreover, the leader and committee will record the relevant
information about the data sharing. When the sharing is completed, the leader will pack the data
records into a block and upload it to the consortium blockchain.

Consensus algorithm is the core of blockchain, which can ensure the consistency of distributed
nodes. Raft [16] is a common consensus algorithm in the consortium blockchain. The working
mechanism of Raft is to elect a leader from the distributed cluster, the leader accepts the request from
the client and forwards it to other nodes in the form of logs. When receiving the response from most
nodes, the request is submitted to the local state machine, and in this way, the distributed nodes can
reach consensus. However, Raft has some issues that can be improved upon. The Raft uses voting for
leader election, which is susceptible to network partitioning, and as the number of nodes increases.
The communication overhead increases. Moreover, if the leader crashes, Raft will re-elect a new leader
from the followers to replace it. But in the scenario of VFL, the leader holds the private key and we
need the new leader can recover the private key to continue the model training. In this article, we have
optimized and tackled the above issues, and our main contributions are as follows:
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• We modify the Raft based on verifiable random functions and propose a new consensus
algorithm, V-Raft. The V-Raft utilizes a method of sortition for leader election, which enhances
the election speed and scalability. In addition, the V-Raft adds the committee state, which
reduces node consensus time and replacement time.

• We introduce secret sharing to distribute the private key to avoid data sharing failure due to
the leader crashes. The leader assists the data demander and owner in VFL and decomposes
the private key into subkeys to send to the committee. If the leader crashes, the committee can
collect the subkeys to recover the private key and ensure that the data sharing is completed
smoothly.

• We design simulation experiments to compare Raft and V-Raft. The experimental results show
that V-Raft has better efficiency and performance than Raft.

2 Related Work

In recent years, with the increased awareness of privacy protection, a variety of privacy protection
schemes have been proposed [17–19]. As an important technology of privacy computing, the focus
on federal learning continues to grow [20,21]. In 2019, more than 50 scholars from Google, Stanford,
CMU and other institutions have come together to summarize the advances and problems in the field
of federated learning and published a review paper [22]. In this paper, federated learning is classified
into cross-device federated learning and cross-silo federated learning. Among them, the cross-silo
federated learning corresponds to VFL proposed by Yang et al. [7]. The VFL has a wide range
of applications in intelligent transportation and personalized recommendation [23]. For example,
The work in [24] used VFL to train the traffic flow prediction model, since the participants’ traffic
flow datasets have the same sample space and different spatial characteristics, and VFL can share
parameters while ensuring privacy. In [25], a cloudlet-based recommender model was proposed for
electric vehicles to find the most relevant charging station, and the model utilizes the VFL technique
so that the data does not leave the local. The cloudlets are data aggregators, and blockchain creates a
secure network composed of only trusted cloudlets, as the third party in VFL.

Blockchain was born in 2008 with the emergence of Bitcoin [26]. Even to this day, blockchain
technology is still very popular and has produced some rich research results. For example, blockchain
technology has been introduced to improve security in mobile crowdsourcing [13], unmanned aerial
vehicle [27], and healthcare [28]. Game theory [29] is a scientific analysis tool, which is often applied
to the computer field [30]. In [31], using common concepts in game theory to address the rational
behaviours in blockchain, and to achieve some desired conclusions. Selfish mining is an attack method
in the blockchain, and the study in [32] proposed an improved selfish mining based on hidden Markov
[33] decision processes to maintain the benefit from selfish mining. For the attack method mentioned
above, [34] indicates that the semi-selfish mining attacks will be detected, and semi-selfish mining is
impossible in practice. In the field of consensus algorithm, there is also a lot of research. Traditional
consensus algorithms include PoW [35] and PoS [36], which are usually used in public blockchain
with a large number of nodes. In consortium blockchain without Byzantine nodes, the Raft consensus
algorithm is widely used. Verifiable Random Functions (VRFs) [37] is a low-energy, high-efficiency
random number algorithm and provides an asymmetric key verification mechanism. Some current
blockchain projects use VRFs to select nodes, such as Algorand [38], Dfinity [39].
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3 Preliminaries
3.1 Vertical Federated Learning

VFL [7] is also known as feature-based federated learning. Let Di denote the dataset held by each
data owner i, X denotes the feature space, Y denotes the label space, and I denotes the sample ID
space. VFL is expressed as:

Xi �= Xj, Yi �= Yj, Ii = Ij, ∀Di, Dj, i �= j (1)

That is, the two datasets in VFL have a large number of overlapping samples, and these same
samples each have different features. In addition, usually only one side of the dataset has sample
labels. In VFL, a typical assumption is that the training participants and a third-party collaborator are
honest-but-curious, that is, they will abide by the agreement but will try to get additional information
from the training process. Moreover, the third-party collaborator does not collude with participants.
The VFL consists of two parts. Part 1 is encrypted sample alignment, which is to find common samples
of training participants by Private Set Intersection (PSI). The PSI can calculate the intersection of
samples held by both parties without revealing additional information. Part 2 is encrypted model
training. Training participants combine features of the common samples to train the machine learning
model.

3.2 Raft Consensus Algorithm
Raft [16] decomposes the consensus problem into three relatively independent subproblems:

• Leader election: Raft has three states, which are follower, candidate and leader. Initially, all
nodes are followers. When the cluster is started up or the leader crashes, a new leader will be
elected. Each follower is set with a random timer, and when the timer times out, the follower
converts to the candidate and sends a message requesting voting to other nodes. When more
than half of the votes in the cluster are received, the candidate converts to leader, and the leader
regularly sends heartbeat messages to other nodes to maintain its state.

• Log replication: The leader receives a request from the client and copies it as a log entry to
followers in the cluster. When the leader receives the entry replication response sent back from
a majority of the followers, the leader submits the log entry to the state machine and returns the
execution result to the client. Once a follower receives a new log replication message or heartbeat
message from the leader, it will commit the log entry to its local state machine, thus ensuring
the log consistency between the leader and followers.

• Safety: Raft ensures that all nodes in the cluster execute the same instructions in the same order
through relevant restrictions and rules.

3.3 Verifiable Random Functions
Verifiable Random Functions (VRFs) [37] means that the owner of the private key can calculate

a hash value, while others can verify the correctness of the hash value through the public key
corresponding to the private key, and the verification process will not expose the private key.

The VRFs constructed based on RSA is as follows:

< hash, proof >= VRF_hash(sk, m) (2)

True/False = VRF_verify(pk, m, hash, proof ) (3)
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Using the private key sk and an arbitrary value m as input to the VRF_hash function, a hash
value and a proof value can be generated. The VRF_verify function is used to verify the correctness of
the hash value. If the output is true, it means that the hash value is generated by sk and m, and the sk
corresponds to the pk. In addition to the above verifiability, VRFs also has the following properties:

• Uniqueness: For any hash value generated by VRF_hash function, there is a unique proof value
that can be proved to be valid.

• Collision resistance: Like any secure hash function, the hash value output by the VRFs is
collision-resistant. More precisely, it should be computationally infeasible for two different
inputs to get the same output.

4 Model
4.1 Model Structure

The VFL architecture based on consortium blockchain is shown in Fig. 1. Firstly, data demander
and owner as training participants A and B, respectively. They send an assistance request of VFL to
the consortium blockchain. After receiving the request, the consortium blockchain uses the V-Raft
consensus algorithm to elect leader and committee. Then, as a third-party collaborator, the leader and
committee assist the participants to start VFL. When the training is completed, the leader records
the relevant parameters of the training process to form a block and uploads it to the consortium
blockchain. The goal and assumption of our proposed structure are as follows.

Figure 1: VFL architecture based on consortium blockchain
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• Goal: Our goal is that the consortium blockchain can respond quickly to training assistance
requests sent by training participants. The elected leader first generates a public-private key
pair for homomorphic encryption. The public key is used to encrypt the data of the training
participants. After a series of encryption operations, the training participants send the encrypted
gradients GA, GB to the leader, which decrypts the gradients using the private key and returns
them to the participants. Through multiple rounds of gradient calculation, until the model
training is completed. And as a third party, the nodes elected by the consortium blockchain
will not leak the privacy of the participants in the training process. In addition, when the leader
crashes, it can be replaced in time.

• Assumption: We assume that the consortium blockchain is composed of data owners such as
government, banks, hospitals, enterprises and other institutions. The access mechanism of the
consortium blockchain will audit and verify the identity of nodes, so this model sets the nodes in
the consortium blockchain to be honest-but-curious and not colluding with the training parties.
According to the VFL setting, the third party does not collude with training participants.

4.2 V-Raft Consensus Algorithm
There are several problems with the current Raft algorithm: (1) Raft uses a voting mechanism for

the leader election, which may fail due to network partitioning so that no node can get more than half
of the votes. (2) In Raft, as the number of nodes in the consortium blockchain increases, the time of
leader election, leader replacement and consensus increases. In response to the above problems, we
propose an improved consensus algorithm based on the VRFs, called the V-Raft. Firstly, V-Raft uses
a sortition algorithm based on VRFs, which can stably elect the leader and improve the election speed
at the same time. And according to the characteristics of VRFs, the selected nodes are random and
verifiable. In addition, we add the consensus committee node role, which can improve the consensus
speed. If the leader crashes, select the qualified nodes in the committee to replace, which can improve
the leader replacement speed.

4.2.1 Node States and Transitions

V-Raft sets four node states: follower, candidate, committee, and leader. Some nodes of 5 are a
typical setting in Raft, which allows the system to tolerate two crash nodes. In a practical scenario,
the probability of three nodes crashing simultaneously in a cluster containing five nodes is very
small. Therefore, we set the number of committee nodes to 5 in V-Raft. Initially, all nodes in the
consortium blockchain are followers. When receiving the assistance request of VFL sent by the training
participants, followers execute sortition algorithm and generate a hash. If the hash matches the
condition, follower is converted to candidate. Then, sorting the hash of candidates, the five candidates
with the smallest hash value are elected as committee and the smallest hash value is selected as leader.
The node states and their transitions are shown in Fig. 2.

4.2.2 Leader Election

Suppose that training participants A and B want to start VFL, and A and B send a request to the
consortium blockchain. The request contains the public keys of A and B and a seed. The public key is
issued by the consortium blockchain, which can be used for node identity authentication. The seed is
a random number jointly generated by A and B using the Diffie-Hellman algorithm.
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Figure 2: Node states and transitions

When followers in the consortium blockchain receive the request, they use the sortition algorithm
to select candidate. As shown in Algorithm 1, a follower uses its private key and the seed in the request
as the input of the VRFs function and outputs a hash value and a proof value. It then compares the size
of hash/2hashlen and λ, where hashlen is the bit-length of hash, thus is essentially uniformly distributed
between 0 and 1, and λ is the sortition threshold, which is set by the consortium blockchain. If hashlen is
less than λ, then the follower changes to candidate. Under the control of λ, usually, at least 5 nodes will
be selected as candidates each time, but there is a very small probability that the number of candidates
is less than 5, which cannot meet the minimum number of the committee. In this case, the consortium
blockchain can appropriately raise the threshold to increase the number of candidates selected. The
candidate generates m_candidate[u_pk, hash, proof , seed] message and broadcast.

Algorithm 1: Sortition
Input: u_sk, seed
Output: hash, proof , seed, true/false
1: < hash, proof >← VRF_hash(u_sk, seed)

2: if if hash/2hashlen < λ then
3: return hash, proof , seed, true
4: else
5: return hash, proof , seed, false
6: end if

After all candidates receive the message m_candidate, Algorithm 2 is used to select the committee
and leader. First, a candidate uses the VRF_verify function to verify the hash and proof sent by the
other candidates. If the verification result is true, put the hash value and its corresponding public key
u_pk into the list. Next, the candidate uses the sorted function to sort the elements in the list. The
sorting rule is to compare the hash values and sort them from smallest to largest. The sorted function
will return a committee_list, which contains the 5 nodes with the lowest hash value. These 5 nodes
constitute the consensus committee, and the node with the smallest hash value is elected as the leader.
The leader generates m_committee[committee_list, seed] message and broadcast.

Algorithm 2 : Sort
Input: hash, proof , seed
Output: committee_list, true/flase
1: list ← {}
2: while VRF_verify(u_pk, hash, proof , seed) = true do

(Continued)
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Algorithm 2 (Continued)
3: list∪ = {[u_pk, hash]}committee_list ← sorted(list)
4: end while
5: if hash=committee_list[i].hash, i = {0, . . . , 4} then
6: return committee_list, true
7: else
8: return committee_list, false, false
9: end if

When the m_committeemessage is received, the committee will compare the committee_list with its
own sorted list. If it is the same, it will respond to the message of the leader. When the leader receives
a response from more than half of the committee, the leader will regularly send a periodic heartbeat
to the committee to maintain its authority. Furthermore, the leader establishes a connection with A
and B to start VFL.

If the election fails due to network or other reasons, the candidates do not receive the heartbeat
message from the leader within the specified time, then the leader election will be repeated and the
qualified candidate will broadcast the message containing its own public key and hash again.

4.2.3 Leader Replacement

In Raft, time is divided into terms of arbitrary length, and each term elects a leader. Index is the
log entry number of each node, and the Raft uses term number and log index to check the consistency.
In V-Raft, the term of each elected leader is one VFL from start to finish, so the term of each federation
learning is the same, and we only consider the index to maintain consistency. If the leader crashes, the
committee cannot receive the heartbeat of leader, then the leader will be replaced. The replacement
node that meets the conditions is elected from committee, and this condition is that the log index
number of the node is the maximum. If the index is the same, the node with the smallest hash value is
elected as the leader. The node replacement process is shown in Algorithm 3.

Algorithm 3: Replace
Input: hash, index
Output: replace_list, true/flase
1: list ← {}
2: list∪ = {[index, hash]}replace_list ← compare(list)
3: if hash=replace_list[0].hash then then
4: return replace_list, true, true
5: else
6: return replace_list, false
7: end if

4.3 VFL Based on Consortium Blockchain
The consortium blockchain uses the V-Raft consensus algorithm to select a leader and committee

to assist the training participants A and B to start joint model training. First, leader generates a public-
private key pair, and the public key is sent to A and B for encryption and decryption of the intermediate
parameters. In order to avoid the leader crashing during the training process and the gradient cannot
be decrypted, the leader sends the private key to the committee node by secret sharing method. If the
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leader crashes, the replacement node can collect the subkeys to recover the private key to continue the
model training. When the training is completed, the leader will chain up the training gradient and loss.
The VFL based on consortium blockchain is shown in Fig. 3. The committee node stores the hash and
index of the message in the list and uses the compare function to sort the index in the list from largest
to smallest. If the index is the same, the committee node sorts the hash in the list from smallest to
largest.

Figure 3: VFL based on consortium blockchain

4.3.1 Key Distribution

The leader generates a public-private key pair and sends the public key to the training participants
A and B as a homomorphic encryption key. Homomorphic encryption allows the calculation of the
encrypted data, and the calculation process will not disclose the plaintext information. The calculation
result is still encrypted, and the result obtained after decryption is the plaintext after processing. This
paper uses the homomorphic encryption scheme [9], which has the following properties:

[[u + v]] = [[u]] · [[v]] (4)

The leader uses secret sharing [40] to distribute the private key to the committee node. Secret
sharing can divide the secret S into n-member secrets, and any t-share can reconstruct the secret S.
More specifically, the leader uses the private key to construct a 2-order polynomial f (x), selects 4 pairs
(x, f (x)) and distributes them to the committee nodes, and any 3 of the 4 committee nodes can solve the
polynomial coefficients by combining (x, f (x)) to reconstruct the private key. The formal definition
of secret sharing is as follows:

S(s, t, n)− > {< s0 >, < s1 >, ..., < sn >} (5)

If the leader crashes, the committee uses Algorithm 3 to select the replacement leader. The new
leader collects subkeys from the committee and reconstructs the private key. We stipulate that three
subkeys can recover the private key. And then, the new leader establishes a connection with the training
participants and continues VFL.
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4.3.2 Encrypted Model Training

In this article, we use linear regression model training based on homomorphic encryption as an
example. Suppose that the features of the common samples of A and B are xA

i , xB
i , respectively, θA, θB

are model parameters corresponding to features, and B has label data yi, the objective loss function is:

loss =
∑

i

||θAxA
i + θBxB

i − yi||2 + α

2
(||θA||2 + ||θB||2

) (6)

Let uA
i = θAxA

i , uB
i = θBxB

i , [[·]] denotes homomorphic encryption, then the encrypted loss
function is:

[[loss]] = [[
∑

i

(uA
i )

2 + α

2
||θA||2]] + [[

∑

i

(uB
i )

2 + α

2
||θB||2]] + 2[[

∑

i

uA
i (u

B
i − yi)]] (7)

Let [[lA]] = [[
∑

i (u
A
i )

2 + α

2
||θA||2]], [[lB]] = [[

∑
i (u

B
i )

2 + α

2
||θB||2]], [[lAB]] = 2[[

∑
i uA

i (u
B
i − yi)]], then:

[[loss]] = [[lA]] + [[lB]] + [[lAB]] (8)

Let [[di]] = [[θAxA
i + θBxB

i − yi]], and calculate the partial derivatives of A and B, respectively, then:

[[GA]] = [[
∂l
∂θA

]] = [[di]]x
A
i + [[αθA]] (9)

[[GB]] = [[
∂l
∂θB

]] = [[di]]x
B
i + [[αθB]] (10)

The training process is as follows:

1) A uses the public key as homomorphic encryption key to calculate [[uA
i ]], [[lA]] and sends them

to B. B calculates [[di]] to send to A, and calculates [[loss]] to send to leader.

2) According to Eq. (5), A and B calculate [[GA +RA]], [[GB +RB]] and send to leader, respectively.
The RA and RB are additional mask.

3) Leader uses private key to decrypt encrypted gradient and sends GA + RA, GB + RB and loss to
A and B. A and B remove mask to get the gradient GA and GB, and use it to update the model,
respectively. Repeat the above process until the training is completed.

4) When the training is completed, the leader packages each round of training logs to form a
block and uploads it to the consortium blockchain, and other nodes synchronize the block.

5 Analysis of Algorithm
5.1 Safety Analysis

Election safety means that at most one leader can be elected in a given term. In V-Raft, leader
election is based on VRFs. The nodes in the consortium blockchain use their own private keys and the
seed of the training participants as inputs of VRFs, and output hash value and proof value. The VRFs
in this article is constructed based on the sha-256 algorithm. The sha-256 is a secure hash algorithm,
which has strong collision resistance, that is, the probability that different inputs get the same output
is extremely low. The private key of node is unique and confidential, and the seed of the training
participants is variable. Therefore, the output hash value is unique. The V-Raft sorts the hash values
to elect leader, so the elected leader is also unique. Similarly, when the leader crashes and a replacement
node is selected from the committee, the committee will compare the index and the hash value, and
since the hash value is unique, the new leader selected is also only one.

State machine safety: if a node has applied a log entry at a given index to its state machine, no other
node will ever apply a different log entry for the same index. That is, the state machines of more than



CMES, 2023, vol.137, no.1 355

half of the committee nodes store the same log entries under the same term. The leader forwards the
message sent by the training participant to the committee in the form of a log entry. When receiving
the reply from more than 2 committee nodes (The number of committee nodes is 5), the leader submits
the log entry to its own state machine, and this operation is included in the next heartbeat. When the
committee nodes receive the heartbeat, they update their local state machines, so that more than half
of the committee nodes reach a consensus to store the same log entries.

5.2 Liveness Analysis
Liveness is defined as a transaction being completed in a limited time. In the leader election stage

of the V-Raft, the probability and number of selected nodes are controlled by the sortition threshold
λ, and the appropriate λ value ensures that the leader and the committee can be successfully elected
within a limited time in each VFL task. In addition, the timeout retransmission mechanism ensures
that a new round of leader election is performed when the election fails. In the node replacement stage,
if the leader crashes, the qualified nodes will be selected from the committee for replacement to ensure
the completion of the model learning.

6 Experimental Results
6.1 Sortition Threshold λ Setting

In V-Raft, the number of committee nodes is 5, so at least 5 candidates need to be selected for
each sortition. The number of candidates is related to the sortition threshold λ, and the appropriate
λ can ensure the success of the election. We conducted 1000 sortition tests with the total number of
nodes n = 50 and n = 100, respectively, and at least 5 nodes selected by each sortition are denoted as
success. The experimental results are shown in Figs. 4 and 5, with the sortition threshold λ increases,
the probability of sortition success increases. When the number of nodes n = 100, λ = 0.15, the success
rate of 1000 sortition is 100%. When the number of nodes n = 50, λ = 0.3, the success rate of 1000
sortition is 100%.

Figure 4: n=50, node sortition success rate
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Figure 5: n=100, node sortition success rate

In addition, we tested the success rate when the λ = 15/n, and the number of nodes is different, as
shown in Table 1. The experimental results show that the sortition threshold λ is dynamically adjusted
as the total number of nodes in the consortium blockchain increases. When the λ is set to 15/n, the
election success rate is high, that is, at least 5 nodes can be elected more stably in each sortition.

Table 1: λ=50, node sortition success rate

Number of nodes n Sortition threshold λ Number of
sortition

Number of selected
node < 5

Success rate (%)

50 0.30 1000 0 100
100 0.15 1000 0 100
150 0.10 1000 1 99.9
200 0.075 1000 1 99.9
250 0.06 1000 0 100

6.2 Latency
6.2.1 Leader Election

In the experiment of this section, we compare the leader election latency of Raft, KRaft [41] and
V-Raft as the number of nodes increases. Raft uses voting for leader elections. To begin an election, a
follower is converted to candidate when the local timer times out, and then the candidate broadcasts a
request vote message to other nodes. The timeout time is usually set to [150–300] ms, and the broadcast
time is usually set to 15 ms. When the candidate receives votes from a majority of the nodes, it is elected
as the leader. KRaft implements leader election based on Kademlia protocol. It establishes a DHT
topology for the nodes in the system and prioritizes the node with the least latency as a candidate node
to send a request vote message. While V-Raft uses a VRFs-based sortition algorithm to elect leader,
the experimental results are shown in Fig. 6. When the number of nodes in the consortium blockchain
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is small, the leader election latency of KRaft and V-Raft are close and both are significantly lower
than Raft. In different cases where the number of nodes in the consortium blockchain is incremented
from 50 to 250, the leader election latency of V-Raft is significantly lower than Raft. In Raft, the leader
election latency will increase as the number of nodes in the consortium blockchain increases. While the
latency of V-Raft is only related to the sortition threshold λ and not to the number of nodes. Therefore,
V-Raft has higher efficiency and better scalability.

Figure 6: Leader election latency

6.2.2 Consensus

In Raft, When the leader receives the client request, it will forward the request to the follower.
When the leader receives a reply from more than half of the followers, it indicates that the nodes in the
consortium blockchain have reached a consensus on the request. Instead of a single leader forwarding
the logs in Raft, in KRaft the leader and the candidate jointly forward the logs. While V-Raft adds
committee state, the leader only needs to reach consensus with fewer and fixed committee members.
The experimental results are shown in Fig. 7. For the speed of nodes reaching consensus, V-Raft is
higher than KRaft and Raft.

6.2.3 Replacement

In Raft and KRaft, leader election is restarted if the leader crashes. Due to the committee being
elected in advance in V-Raft, the V-Raft will select a qualified node from the committee to replace it.
The experimental results of the three algorithms are shown in Fig. 8. Obviously, V-Raft spends less
time than Raft and KRaft.
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Figure 7: Nodes replacement and consensus latency

Figure 8: Nodes replacement and consensus latency

7 Conclusions

In this article, we propose a VFL architecture based on consortium blockchain for data sharing in
MEC. Firstly, we improve the popular consensus algorithm in the consortium blockchain, Raft, and
propose a new consensus algorithm based on VRFs, V-Raft. In addition, we compare the performance
of the two algorithms through experiments. The experimental results show that compared with Raft,
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the V-Raft has higher efficiency and better scalability in leader election, leader replacement and log
replication. Also, we apply secret sharing to ensure that even if the leader crashes, the new leader
can still recover the private key and continue to complete the joint model training. Therefore, the
consortium blockchain can act as a trusted third party to assist the data demander and owner to realize
the data sharing by VFL. The circulation and sharing of data can effectively promote the development
of MEC. This article is carried out under the setting of honest-but-curious nodes and future work will
consider the case where there are byzantine nodes in the consortium blockchain.
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