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ABSTRACT

Graph theory plays a significant role in the applications of chemistry, pharmacy, communication, maps, and
aeronautical fields. The molecules of chemical compounds are modelled as a graph to study the properties of the
compounds. The geometric structure of the compound relates to a few physical properties such as boiling point,
enthalpy, π-electron energy, and molecular weight. The article aims to determine the practical application of graph
theory by solving one of the interdisciplinary problems describing the structures of benzenoid hydrocarbons and
graphenylene. The topological index is an invariant of a molecular graph associated with the chemical structure,
which shows the correlation of chemical structures using many physical, chemical properties and biological
activities. This study aims to introduce some novel degree-based entropy descriptors such as ENTSO, ENTGH ,
ENTHG, ENTSS, ENTNSO, ENTNReZ1, ENTNReZ2 and ENTNSS using the respective topological indices. Also, the
above-mentioned entropy measures and physico-chemical properties of benzenoid hydrocarbons are fitted using
linear regression models and calculated for graphenylene structure.
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1 Introduction

Mathematics and computer science are often used in the applications of research development.
One example of such applications is cheminformatics which is a relatively recent area of research
in mathematics. The study includes the problem of analysing the structure of a molecule which
can be retrieved from the cheminformatics dataset. There are many compounds available in organic
and inorganic chemistry whose properties and structures seem promising to search and evaluate the
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uses of a substance. The study of the structure of a molecule gives information about its chemical
properties [1,2].

Graph theory has been a very useful branch of science, especially in the applications of chemistry.
It has a very powerful tool known as the topological index which provides a lot of information
about a chemical compound. These topological indices are classified based on degree, distance, and
eccentricity [3–6].

Most of these indices have a good correlation with the properties of isomers and benzenoid
hydrocarbons, such that the compounds are used for various purposes based on their correlation
coefficient [7–9].

Graph theory facilitates the mathematical model of a compound to draw information about the
chemical compound. In modelling a compound into a graph, the hydrogen atoms are neglected without
losing information about the molecule, as carbon atoms have four chemical bonds whereas hydrogen
atom has one chemical bond [10–13].

The recent trends in research have attracted a lot of studies involving information science. It
provides a good correlation between the biological and structural properties of compounds. Many
scientists have done remarkable findings which led to wide applications in graph theory [14–16].

Graph theory being an ideal tool in the hands of the chemist involves representation, synthesis
of compounds and numerous chemical activities. Also, chemists are always interested in breaking and
making chemical bonds, resulting in different types of structures [17,18].

The degree of amount of energy dispersed and the measure of unavailability of heat energy for
work is termed as the entropy. Originally, Shannon introduced the concept of entropy as a part of the
communication theory [19]. According to him, data is communicated as a system consisting of three
elements: source, channel and receiver. During his learning, Shannon used various methods to encode,
transmit and compress the messages which proved that the entropy denotes an absolute limit on how
well data can be compressed from the source to reach the receiver in his famous coding theorem.

The measure of uncertainty refers to the entropy of a probability distribution. Indeed, the result
of an analysis conducted can be assumed by taking the numerical value equal to the amount of
uncertainty of the outcome of the analysis. Furthermore, studies on graphs and networks were studied
by various researchers during the late 1950s. More work on entropy measures was carried out using
graph invariants which proved advantageous to study important properties of graphs [20–23].

Several theoretic measures and tools have been developed to study the complexity of the structure
of chemical compounds and complex networks. The word entropy is dealt with various ways by
researchers involving a variety of problems in different fields like discrete mathematics, biology,
chemistry, statistics, etc., in investigating entropies of relational structures. In mathematical chemistry,
graph entropy is used to characterize the structure of a graph [24–26].

A class of chemical compounds having at least one benzene ring is termed as a benzenoid.
They have a high chemical stability because of its bonding with certain molecules. Benzenoids are
aromatic hydrocarbons having significant applications in gasoline additives, dry cleaning, manufacture
of synthetic fibres, plastics and products in rubber-like materials [27]. Their applications are growing
rapidly in the fields of industrial chemistry particularly, in the products of polymers. The work is
carried out for twenty-two benzenoid hydrocarbons refer Fig. 1.
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Figure 1: Molecular structure of benzenoid hydrocarbons

Graphenylene is a cyclic hydrocarbon in which each hexagon has a square adjacent to it. Two
such hexagons separated by a square are termed as biphenylenes. Chemically, it is a cyclobutadiene
ring in between two benzene rings. Biphenylene is a building block of graphenylene which is pale
yellowish powder having melting temperature of 110◦C. Biphenylene is a hydrocarbon whose chemical
formula is C12H8. A 2D graphene is a prospective compound that has significant applications in the
next-generation electronic and optical devices. Biphenylene becomes an interesting forerunner of a 2D
porous graphene-like molecular network called Graphenylene. This new material has a good dispersion
and gap separation in the characterization of delocalized band [28,29].

Numerous studies on graphene have grabbed researchers across the globe due to its magnificent
properties and promising potential applications because of its unique 2D structure. Graphene can be
wrapped up into fullerenes, carbon nanotubes and even along a specific direction that forms graphene
nanoribbon. These have extremely enriched the family of carbon nanomaterials. Also, these studies
have created an interest in exploiting new 2D carbon allotropes through both experimental techniques
and theoretical calculations [30]. Biphenylene carbon is a product of cyclotrimerization of graphene
whose structure is 2D network of hydrogen free carbon atoms.

The main aims/objectives of this work are

• To introduce novel entropy measures.
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• To understand their physical/chemical applicability of benzenoid hydrocarbons by regression
models.

• To calculate defined entropies of graphenylene structure.

In this article, all standard graph terminologies and notations are referred from [31–33]. In the
literature, various studies are carried out using topological indices of which the below mentioned
indices are considered in this work.

Definition 1.1. Gutman defined Sombor index [34] as

SO(G) =
∑

ϑω∈E(G)

√
(d(ϑ))2 + (d(ω))2

Definition 1.2. Usha et al. [35] defined Geometric-Harmonic index as

GH(G) =
∑

ϑω∈E(G)

((d(ϑ) + d(ω))
(√

d(ϑ) × d(ω)
)

2

Definition 1.3. Shanmukha et al. [36] defined Harmonic-Geometric index as

HG(G) =
∑

ϑω∈E(G)

2

(d(ϑ) + d(ω))
(√

d(ϑ) × d(ω)
)

Definition 1.4. Zhao et al. [37] defined SS index as

SS(G) =
∑

ϑω∈E(G)

√
d(ϑ) × d(ω)

d(ϑ) + d(ω)

In continuation to SS index, the neighborhood version of SS index is defined as

NSS(G) =
∑

ϑω∈E(G)

√
S(ϑ) × S(ω)

S(ϑ) + S(ω)

Definition 1.5. Kulli [38] defined neighborhood Sombor index as

NSO(G) =
∑

ϑω∈E(G)

√
(S(ϑ))2 + (S(ω))2

Definition 1.6. Shanmukha et al. [39] defined neighborhood redefined first and second Zagreb
indices as

NReZ1(G) =
∑

ϑω∈E(G)

S(ϑ) + S(ω)

S(ϑ) × S(ω)

NReZ2(G) =
∑

ϑω∈E(G)

S(ϑ) × S(ω)

S(ϑ) + S(ω)

1.1 Graph Entropy Based on Degree and Edge Weight
The theory of edge weighted graph based on entropy was first introduced by Chen et al. [40] in the

year 2014. Let G be an edge weighted graph, denoted by (V(G), E(G), ψ(ϑω)). Here, V(G) and E(G)
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are the usual notations of the set of vertices and edges respectively, where ψ(ϑω) denotes the edge
weight of the graph G. The edge weight of ψ(ϑω) is computed by adding the degrees of the vertices ϑ

and ω of the edge ϑω. Then, the graph entropy based on edge weight is defined in Eq. (1).

ENTψ(G) = −
∑

ϑ ′ω′∈E(G)

ψ(ϑ ′ω′)∑
ϑω∈E(G)

ψ(ϑω)
log

[
ψ(ϑ ′ω′)∑

ϑω∈E(G)
ψ(ϑω)

]
(1)

• Sombor Entropy
If ψ(ϑω) = √

d(ϑ)2 + d(ω)2, then∑
ϑω∈E(G)

ψ(ϑω) =
∑

ϑω∈E(G)

√
d(ϑ)2 + d(ω)2 = SO(G)

Using the definition of Eq. (1) for Sombor index results in Sombor entropy given by

ENTSO(G) = log(SO(G)) − 1
SO(G)

log

[ ∏
ϑω∈E(G)

[√
d(ϑ)2 + d(ω)2

][√
d(ϑ)2+d(ω)2

]]
(2)

• Geometric-Harmonic Entropy

If ψ(ϑω) = (d(ϑ) + d(ω))
(√

d(ϑ) × d(ω)
)

2
, then

∑
ϑω∈E(G)

ψ(ϑω) =
∑

ϑω∈E(G)

(d(ϑ) + d(ω))
(√

d(ϑ) × d(ω)
)

2
= GH(G)

Using the definition of Eq. (1) for Geometric-Harmonic index results in Geometric-Harmonic
entropy given by

ENTGH(G) = log(GH(G))

− 1
GH(G)

log

⎡
⎢⎢⎢⎣

∏
ϑω∈E(G)

[
(d(ϑ) + d(ω))

(√
d(ϑ) × d(ω)

)
2

]⎡
⎢⎢⎢⎣
(d(ϑ) + d(ω))

(√
d(ϑ) × d(ω)

)
2

⎤
⎥⎥⎥⎦
⎤
⎥⎥⎥⎦

(3)

• Harmonic-Geometric Entropy

If ψ(ϑω) = 2

(d(ϑ) + d(ω))(
√

d(ϑ) × d(ω))
, then

∑
ϑω∈E(G)

ψ(ϑω) =
∑

ϑω∈E(G)

2

(d(ϑ) + d(ω))
(√

d(ϑ) × d(ω)
) = HG(G)

Using the definition of Eq. (1) for Harmonic-Geometric index results in Harmonic-Geometric
entropy given by
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ENTHG(G) = log(HG(G))

− 1
HG(G)

log

⎡
⎢⎢⎢⎣

∏
ϑω∈E(G)

[
2

(d(ϑ) + d(ω))
(√

d(ϑ) × d(ω)
)
]⎡

⎢⎣ 2

(d(ϑ) + d(ω))
(√

d(ϑ) × d(ω)
)⎤

⎥⎦
⎤
⎥⎥⎥⎦

(4)

• The SS Entropy

If ψ(ϑω) =
√

d(ϑ) × d(ω)

d(ϑ) + d(ω)
, then

∑
ϑω∈E(G)

ψ(ϑω) =
∑

ϑω∈E(G)

√
d(ϑ) × d(ω)

d(ϑ) + d(ω)
= SS(G)

Using the definition of Eq. (1) for SS index results in SS entropy given by

ENTSS(G) = log(SS(G)) − 1
SS(G)

log

⎡
⎢⎢⎢⎢⎣

∏
ϑω∈E(G)

⎡
⎣

√
d(ϑ) × d(ω)

d(ϑ) + d(ω)

⎤
⎦

⎡
⎢⎢⎢⎣

√√√√√√ d(ϑ) × d(ω)

d(ϑ) + d(ω)

⎤
⎥⎥⎥⎦
⎤
⎥⎥⎥⎥⎦ (5)

• The Neighborhood Sombor Entropy
If ψ(ϑω) = √

S(ϑ)2 + S(ω)2, then∑
ϑω∈E(G)

ψ(ϑω) =
∑

ϑω∈E(G)

√
S(ϑ)2 + S(ω)2 = NSO(G)

Using the definition of Eq. (1) for neighborhood Sombor index results in neighborhood
Sombor entropy given by

ENTNSO(G) = log(NSO(G)) − 1
NSO(G)

log

[ ∏
ϑω∈E(G)

[√
S(ϑ)2 + S(ω)2

][√
S(ϑ)2+S(ω)2

]]
(6)

• The NReZ1 Entropy

If ψ(ϑω) = S(ϑ) + S(ω)

S(ϑ) × S(ω)
, then∑

ϑω∈E(G)

ψ(ϑω) =
∑

ϑω∈E(G)

S(ϑ) + S(ω)

S(ϑ) × S(ω)
= NReZ1(G)
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Using the definition of Eq. (1) for NReZ1 index results in NReZ1 entropy given by

ENTNReZ1(G) = log(NReZ1(G)) − 1
NReZ1(G)

log

⎡
⎢⎢⎣ ∏

ϑω∈E(G)

[
S(ϑ) + S(ω)

S(ϑ) × S(ω)

]⎡
⎢⎣ S(ϑ) + S(ω)

S(ϑ) × S(ω)

⎤
⎥⎦
⎤
⎥⎥⎦ (7)

• The NReZ2 Entropy

If ψ(ϑω) = S(ϑ) × S(ω)

S(ϑ) + S(ω)
, then∑

ϑω∈E(G)

ψ(ϑω) =
∑

ϑω∈E(G)

S(ϑ) × S(ω)

S(ϑ) + S(ω)
= NReZ2(G)

Using the definition of Eq. (1) for NReZ2 index results in NReZ2 entropy given by

ENTNReZ2(G) = log(NReZ2(G)) − 1
NReZ2(G)

log

⎡
⎢⎢⎣ ∏

ϑω∈E(G)

[
S(ϑ) × S(ω)

S(ϑ) + S(ω)

]⎡
⎢⎣ S(ϑ) × S(ω)

S(ϑ) + S(ω)

⎤
⎥⎦
⎤
⎥⎥⎦ (8)

• The Neighborhood SS Entropy

If ψ(ϑω) =
√

S(ϑ) × S(ω)

S(ϑ) + S(ω)
, then

∑
ϑω∈E(G)

ψ(ϑω) =
∑

ϑω∈E(G)

√
S(ϑ) × S(ω)

S(ϑ) + S(ω)
= SS(G)

Using the definition of Eq. (1) for neighborhood SS index results in neighborhood SS entropy
given by

ENTNSS(G) = log(NSS(G)) − 1
NSS(G)

log

⎡
⎢⎢⎢⎢⎣

∏
ϑω∈E(G)

[√
S(ϑ) × S(ω)

S(ϑ) + S(ω)

]
⎡
⎢⎢⎢⎣

√√√√√√ S(ϑ) × S(ω)

S(ϑ) + S(ω)

⎤
⎥⎥⎥⎦
⎤
⎥⎥⎥⎥⎦ (9)

1.2 Chemical Applicability of Defined Degree-Based Entropies
This section concentrates on framing the linear regression model for the properties viz., boiling

point (BP), enthalpy (E), π-electron energy (π − ele) and molecular weight (MW) of benzene
derivatives. They are presented for entropies such as ENTSO, ENTGH , ENTHG, ENTSS, ENTNSO,
ENTNReZ1

, ENTNReZ2
and ENTNSS. The properties considered [41–44] in the study have shown a good

correlation with the defined entropies.

The ENTSO, ENTGH , ENTHG, ENTSS, ENTNSO, ENTNReZ1
, ENTNReZ2

and ENTNSS are calculated and
shown in Table 1.
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The linear regression models for BP, E, π-ele and MW are fitted using least squares method for
the data presented in Table 1.

Table 1: Experimental values (BP, E, π-ele, MW ) of benzenoid hydrocarbons and the corresponding
values of ENTSO, ENTGH , ENTHG, ENTSS, ENTNSO, ENTNReZ1

, ENTNReZ2
and ENTNSS

Dervatives of benzene BP E π -ele MW ENTSO ENTGH

Benzene 80.1 75.2 8 78.11 3.683 4.144
Naphthalene 218 141 13.683 128.17 4.576 5.01
Phenanthrene 338 202.7 19.448 178.23 5.265 5.871
Anthracene 340 222.6 19.314 178.23 5.278 5.858
Chrysene 431 271.1 25.192 228.3 5.798 5.951
Benzo[a]anthracene 425 277.1 25.101 228.3 5.803 6.485
Triphenylene 429 275.1 25.275 228.3 5.794 6.51
Tetrcene 440 310.5 25.188 228.3 5.812 6.476
Benzo[a]pyrene 496 296 28.222 252.3 6.084 6.848
Benzo[e]pyrene 493 289.9 28.336 252.3 6.079 6.855
Perylene 497 319.2 28.245 252.3 6.079 6.855
Anthanthrene 547 323 31.253 276.3 6.154 7.133
Benzo[ghi]perylene 542 326.1 31.425 276.3 6.322 7.14
Dibenzi[a,c]anthracene 535 348 30.942 278.3 6.192 6.938
Dibenzo[a,h]anthracene 535 335 30.881 292.4 6.196 6.93
Dibenzo[a,j]anthracene 531 336.3 30.88 281.3 6.196 6.93
Picene 519 336.9 30.943 278.3 6.192 6.938
Coronene 590 296.7 34.572 300.4 6.536 7.384
Dienzo[a,h]pyrene 596 375.6 33.928 302.4 6.417 7.209
Dienzo[a,i]pyrene 594 366 33.954 302.4 6.417 7.209
Dienzo[a,l]pyrene 595 393.3 34.031 302.4 6.414 7.216
Pyrene 393 221.3 22.506 202.25 5.654 6.37

Dervatives of benzene ENTHG ENTSS ENTNSO ENTNReZ1 ENTNReZ2 ENTNSS

Benzene −0.805 2.154 4.592 −0.862 3.203 −0.304
Naphthalene −0.594 2.92 5.913 1.482 4.598 4.029
Phenanthrene −0.247 3.674 5.242 1.94 4.688 4.123
Anthracene −0.156 3.693 5.998 1.677 4.849 4.2
Chrysene 0.1062 4.13 6.386 1.996 5.237 4.603
Benzo[a]anthracene 0.143 4.138 5.816 2.029 4.986 4.539
Triphenylene 0.149 4.133 6.881 1.982 5.509 4.757
Tetrcene 0.213 4.15 6.706 1.977 5.428 4.714
Benzo[a]pyrene 0.214 4.373 6.333 2.482 5.284 4.763
Benzo[e]pyrene 0.227 4.373 6.432 2.36 5.393 4.822
Perylene 0.227 4.373 6.705 2.23 5.551 4.878
Anthanthrene 0.347 4.589 7.214 2.098 5.926 5.154
Benzo[ghi]perylene 0.347 4.586 6.899 2.217 5.746 5.072
Dibenzi[a,c]anthracene 0.388 4.49 6.785 2.367 5.503 4.973
Dibenzo[a,h]anthracene 0.502 4.493 6.661 2.31 5.554 4.926
Dibenzo[a,j]anthracene 0.502 4.493 6.661 2.31 5.554 4.926
Picene 0.388 4.49 6.959 2.212 5.709 4.999

(Continued)
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Table 1 (continued)

Dervatives of benzene ENTHG ENTSS ENTNSO ENTNReZ1 ENTNReZ2 ENTNSS

Coronene 0.49 4.778 7.684 2.236 6.288 5.442
Dienzo[a,h]pyrene 0.599 4.688 6.684 2.436 5.65 5.123
Dienzo[a,i]pyrene 0.599 4.688 6.684 2.436 5.65 5.123
Dienzo[a,l]pyrene 0.609 4.689 6.703 2.526 5.671 5.083
Pyrene −0.225 3.981 6.433 1.893 5.22 4.566

The models fitted for ENTSO are

BP = 190.6 (±6.276)ENTSO − 655.096 (±37.014) (10)

E = 108.097 (±8.357)ENTSO − 345.434 (±49.282) (11)

π − ele = 10.080 (±0.449)ENTSO − 32.197 (±2.646) (12)

MW = 86.748 (±4.116)ENTSO − 266.352 (±24.272) (13)

The models fitted for ENTGH are

BP = 160.894 (±6.565)ENTGH − 593.023 (±43.342) (14)

E = 90.611 (±7.801)ENTGH − 306.043 (±51.508) (15)

π − ele = 8.521 (±0.419)ENTGH − 28.997 (±2.766) (16)

MW = 73.130 (±3.996)ENTGH − 237.460 (±26.384) (17)

The models fitted for ENTHG are

BP = 331.917 (±16.403)ENTHG + 401.306 (±6.781) (18)

E = 197.177(±9.610)ENTHG + 252.060(±3.973) (19)

π − ele = 17.788(±0.788)ENTHG + 23.625(±0.326) (20)

MW = 154.499 (±5.532)ENTHG + 213.819 (±2.287) (21)

The models fitted for ENTSS are

BP = 204.078 (±6.950)ENTSS − 392.055 (±29.394) (22)

E = 115.902 (±8.905)ENTSS − 196.928 (±37.661) (23)

π − ele = 10.777 (±0.506)ENTSS − 18.225 (±2.139) (24)

MW = 92.772 (±4.594)ENTSS − 146.175 (±19.430) (25)
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The models fitted for ENTNSO are

BP = 164.761 (±23.838)ENTNSO − 604.233 (±155.021) (26)

E = 89.087 (±16.788)ENTNSO − 288.401 (±109.175) (27)

π − ele = 8.820 (±1.261)ENTNSO − 30.199 (±8.200) (28)

MW = 74.984 (±11.262)ENTNSO − 243.183 (±73.241) (29)

The models fitted for ENTNReZ1
are

BP = 161.292 (±20.581)ENTNReZ1
+ 136.973 (±43.764) (30)

E = 92.088 (±13.555)ENTNReZ1
+ 102.544 (±28.822) (31)

π − ele = 8.263 (±1.222)ENTNReZ1
+ 10.226 (±2.598) (32)

MW = 71.638 (±10.428)ENTNReZ1
+ 97.710 (±22.174) (33)

The models fitted for ENTNReZ2
are

BP = 194.930 (±17.009)ENTNReZ2
− 576.413 (±91.188) (34)

E = 106.499 (±14.300)ENTNReZ2
− 279.217 (±76.661) (35)

π − ele = 10.303 (±0.960)ENTNReZ2
− 28.006 (±5.149) (36)

MW = 88.044 (±8.732)ENTNReZ2
− 226.952 (±46.811) (37)

The models fitted for ENTNSS are

BP = 95.807 (±13.311)ENTNSS + 24.289(±62.604) (38)

E = 53.271(±9.070)ENTNSS + 44.738(±42.659) (39)

π − ele = 4.916(±0.775)ENTNSS + 4.417(±3.647) (40)

MW = 42.370(±6.707)ENTNSS + 48.494(±31.544) (41)

Note: The errors associated with the regression coefficients are enclosed with in brackets of
Eqs. (10)–(41).

Tables 2 to 9 and Fig. 2 show the r (coefficient of correlation) and RSE (residual standard error) of
the above properties using regression models with ENTSO, ENTGH , ENTHG, ENTSS, ENTNSO, ENTNReZ1

,
ENTNReZ2

and ENTNSS entropies.

By inspection of Table 2, it shows that ENTSO and BP are highly correlated with r = 0.989. Also,
ENTSO and E have r = 0.945, ENTSO and π − ele have r = 0.981, ENTSO and MW have r = 0.978.
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Table 2: The regression models of statistical parameters for ENTSO

Physical properties r r2 F RSE Significant

Boiling point 0.989 0.979 922.191 19.257 0.000
Enthalpy 0.945 0.893 167.33 25.64 0.000
π−ele 0.981 0.962 504.695 1.377 0.000
Molecular weight 0.978 0.957 444.222 12.628 0.000

Table 3: The regression models of statistical parameters for ENTGH

Physical properties r r2 F RSE Significant

Boiling point 0.984 0.968 600.698 23.73 0.000
Enthalpy 0.933 0.871 134.901 28.195 0.000
π−ele 0.977 0.954 413.597 1.514 0.000
Molecular weight 0.971 0.944 334.902 14.442 0.000

Table 4: The regression models of statistical parameters for ENTHG

Physical properties r r2 F RSE Significant

Boiling point 0.976 0.953 409.445 28.524 0.000
Enthalpy 0.977 0.955 421.006 16.710 0.000
π−ele 0.981 0.962 509.755 1.37 0.000
Molecular weight 0.987 0.975 780.104 9.619 0.000

Table 5: The regression models of statistical parameters for ENTSS

Physical properties r r2 F RSE Significant

Boiling point 0.989 0.977 862.189 19.901 0.000
Enthalpy 0.946 0.894 169.403 25.498 0.000
π−ele 0.979 0.958 454.259 1.45 0.000
Molecular weight 0.976 0.953 407.788 13.155 0.000

Table 6: The regression models of statistical parameters for ENTNSO

Physical properties r r2 F RSE Significant

Boiling point 0.840 0.705 47.773 71.801 0.000
Enthalpy 0.765 0.585 28.160 50.566 0.000
π−ele 0.843 0.710 48.922 3.798 0.000
Molecular weight 0.830 0.689 44.329 33.923 0.000
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Table 7: The regression models of statistical parameters for ENTNReZ1

Physical properties r r2 F RSE Significant

Boiling point 0.869 0.754 61.416 65.51 0.000
Enthalpy 0.835 0.698 46.156 43.144 0.000
π−ele 0.834 0.696 45.740 3.889 0.000
Molecular weight 0.838 0.702 47.193 33.192 0.000

Table 8: The regression models of statistical parameters for ENTNReZ2

Physical properties r r2 F RSE Significant

Boiling point 0.932 0.868 131.336 48.049 0.000
Enthalpy 0.857 0.735 55.469 40.395 0.000
π−ele 0.923 0.852 115.057 2.713 0.000
Molecular weight 0.914 0.836 101.675 24.666 0.000

Table 9: The regression models of statistical parameters for ENTNSS

Physical properties r r2 F RSE Significant

Boiling point 0.849 0.721 51.808 69.762 0.000
Enthalpy 0.796 0.633 34.496 47.536 0.000
π−ele 0.817 0.668 40.193 4.064 0.000
Molecular weight 0.816 0.666 39.912 35.150 0.000

From Table 3, it is observed that ENTGH and BP are are highly correlated with r = 0.984. Also,
ENTGH and E have r = 0.933, ENTGH and π − ele have r = 0.977, ENTGH and MW have r = 0.971.

From Table 4, it is observed that ENTHG and MW highly correlated with r = 0.987. Also, ENTHG

and BP have r = 0.976, ENTHG and E have r = 0.977, ENTHG and π − ele have r = 0.981.

From Table 5, it is observed that ENTSS and BP highly correlated with r = 0.989. Also, ENTSS

and E have r = 0.946, ENTSS and π − ele have r = 0.979, ENTSS and MW have r = 0.976.

From Table 6, it is observed that ENTNSO and π − ele highly correlated with r = 0.843. Also,
ENTNSO and BP have r = 0.840, ENTNSO and E have r = 0.765, ENTNSO and MW have r = 0.830.

From Table 7, it is observed that ENTNReZ1
and BP highly correlated with r = 0.869. Also,

ENTNReZ1
and E have r = 0.835, ENTNReZ1

and π − ele have r = 0.834, ENTNReZ1
and MW have

r = 0.838.

From Table 8, it is observed that ENTNReZ2
and BP highly correlated with r = 0.932. Also,

ENTNReZ2
and E have r = 0.857, ENTNReZ2

and π − ele have r = 0.923, ENTNReZ2
and MW have

r = 0.914.

From Table 9, it is observed that ENTNSS and BP highly correlated with r = 0.849. Also, ENTNSS

and E have r = 0.796, ENTNSS and π − ele have r = 0.817, ENTNSS and MW have r = 0.816.
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Figure 2: (Continued)
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Figure 2: Scatter diagram of physical property with entropy descriptor
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2 ENTSO, ENTGH , ENTHG , ENTSS, ENTNSO, ENTNReZ1
, ENTNReZ2

and ENTNSS of Graphenylene
Molecular Graph

Graphenylene is a cyclic hydrocarbon, where each hexagon has a square adjacent to it. Two
such hexagons separated by a square are termed as biphenylene. Chemically, it is a cyclobutadiene
ring in between two benzene rings. Graphenylene is modelled as a molecular graph for which the
vertices and edges are computed and details are tabulated in Tables 10 and 11 based on degrees and
neighborhood degrees of end vertices respectively. From the Fig. 3, the total number of vertices and
edges of Graphenylene are 12 mn and 18 mn − 2 m − 2 n, respectively.

Table 10: The edge partition of molecular graph of m × n graphenylene structure

(d(ϑ), d(ω))with ϑω ∈ E(G) No. of edges

(2, 2) (2m + 2n + 2)

(2, 3) 4m + 4n − 4
(3, 3) 18mn − 8m − 8n + 2

Table 11: The edge partition of molecular graph of m × n graphenylene structure for neighborhood
degree based vertices

(S(ϑ), S(ω)) with ϑω ∈ E(G) No. of edges (S(ϑ), S(ω)) with ϑω ∈ E(G) No. of edges

(4, 4) 2 (8, 8) 4m + 4n − 4
(4, 5) 4 (8, 9) 4
(5, 5) 2m + 2n − 4 (9, 9) 8m + 8n − 16
(5, 8) 18mn − 16m − 16n + 14 − −

Figure 3: Planar view of 4 × 4 supercells of biphenylene (graphenylene)

In this section, ENTSO, ENTGH , ENTHG, ENTSS, ENTNSO, ENTNReZ1
, ENTNReZ2

and ENTNSS of
graphenylene are computed.
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2.1 Results for Graphenylene for Degree Based Vertices
Theorem 2.1. Consider graphenylene structure as a molecular graph G, then the Sombor entropy is:

ENTSO(G) = log(76.368mn − 13.862m − 13.862n − 0.28)

−
log

[
(2m + 2n + 2) × (

√
8)

√
8
]

(76.368mn − 13.862m − 13.862n − 0.28)
−

log
[
(4m + 4n − 4) × (

√
13)

√
13
]

(76.368mn − 13.862m − 13.862n − 0.28)

−
log

[
(18mn − 8m − 8n + 2) × (

√
18)

√
18
]

(76.368mn − 13.862m − 13.862n − 0.28)
.

Proof. The Sombor entropy and Sombor index are computed as per the above definitions and
Table 10.

Then the Sombor index is given by

SO(G) = 76.368mn − 13.862m − 13.862n − 0.28.

The Sombor entropy is computed for graphenylene structure using Eq. (2) and Table 10, which
results in:

ENTSO(G) = log(SO(G)) − 1
SO(G)

log

⎡
⎣ ∏

(2,2)∈E1(G)

[
1√

(2)2 + (2)2

] 1√
(2)2+(2)2

×
∏

(2,3)∈E2(G)

[
1√

(2)2 + (3)2

] 1√
(2)2+(3)2 +

∏
(3,3)∈E3(G)

[
1√

(3)2 + (3)2

] 1√
(3)2+(3)2

⎤
⎦

ENTSO(G) = log(SO(G))

− 1
SO(G)

log
[[

(2m + 2n + 2) × (
√

8)
√

8
]

×
[
(4m + 4n − 4) × (

√
13)

√
13
]

×
[
(18mn − 8m − 8n + 2) × (

√
18)

√
18
]]

ENTSO(G) = log(76.368mn − 13.862m − 13.862n − 0.28)

−
log

[
(2m + 2n + 2) × (

√
8)

√
8
]

(76.368mn − 13.862m − 13.862n − 0.28)
−

log
[
(4m + 4n − 4) × (

√
13)

√
13
]

(76.368mn − 13.862m − 13.862n − 0.28)

−
log

[
(18mn − 8m − 8n + 2) × (

√
18)

√
18
]

(76.368mn − 13.862m − 13.862n − 0.28)
.

Theorem 2.2. Consider graphenylene structure as a molecular graph G, then the GH entropy is:

ENTGH(G) = log(162mn − 39.504m − 39.504n + 1.504)

− log [(2m + 2n + 2) × (4)4]
(162mn − 39.504m − 39.504n + 1.504)

− log [(4m + 4n − 4) × (6.124)6.124]
(162mn − 39.504m − 39.504n + 1.504)

− log [(18mn − 8m − 8n + 2) × (9)9]
(162mn − 39.504m − 39.504n + 1.504)

.
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Proof. The GH entropy and GH index are computed as per the above definitions and Table 10.

Then, the GH index is given by

GH(G) = 162mn − 39.504m − 39.504n + 1.504.

The GH entropy is calculated for graphenylene structure using Eq. (3) and Table 10, results in:

ENTGH(G) = log(GH(G)) − 1
GH(G)

log

⎡
⎣ ∏

(2,2)∈E1(G)

[
(2 + 2)(

√
2 × 2)

2

] (2+2)(
√

2×2)
2

×
∏

(2,3)∈E2(G)

[
(2 + 3)(

√
2 × 3)

2

] (2+3)(
√

2×3)
2

×
∏

(3,3)∈E3(G)

[
(3 + 3)(

√
3 × 3)

2

] (3+3)(
√

3×3)
2

⎤
⎦

ENTGH(G) = log(GH(G))

− 1
GH(G)

log
[[

(2m + 2n + 2) × (4)4
] × [

(4m + 4n − 4) × (6.124)6.124
]

×[(18mn − 8m − 8n + 2) × (9)9]
]

ENTGH(G) = log(162mn − 39.504m − 39.504n + 1.504)

− log [(2m + 2n + 2) × (4)4]
(162mn − 39.504m − 39.504n + 1.504)

− log [(4m + 4n − 4) × (6.124)6.124]
(162mn − 39.504m − 39.504n + 1.504)

− log [(18mn − 8m − 8n + 2) × (9)9]
(162mn − 39.504m − 39.504n + 1.504)

.

Theorem 2.3. Consider graphenylene structure as a molecular graph G, then the HG entropy is:

ENTHG(G) = log(1.998mn + 0.264m + 0.264 n + 0.07)

− log [(2m + 2n + 2) × (0.25)0.25]
(1.998mn + 0.264m + 0.264n + 0.07)

− log [(4m + 4n − 4) × (0.163)0.163]
(1.998mn + 0.264m + 0.264n + 0.07)

− log [(18mn − 8m − 8n + 2) × (0.111)0.111]
(1.998mn + 0.264m + 0.264n + 0.07)

.

Proof. The HG entropy and HG index are computed as per the above definitions and Table 10.

Then, the HG index is given by

HG(G) = 1.998mn + 0.264m + 0.264n + 0.07.

The HG entropy is calculated for graphenylene structure using Eq. (4) and Table 10, results in:

ENTHG(G) = log(HG(G)) − 1
HG(G)

log

⎡
⎣ ∏

(2,2)∈E1(G)

[
2

(2 + 2)(
√

2 × 2)

] 2
(2+2)(

√
2×2)

×
∏

(2,3)∈E2(G)

[
2

(2 + 3)(
√

2 × 3)

] 2
(2+3)(

√
2×3) ×

∏
(3,3)∈E3(G)

[
2

(3 + 3)(
√

3 × 3)

] 2
(3+3)(

√
3×3)

⎤
⎦

ENTHG(G) = log(HG(G))
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− 1
HG(G)

log
[[

(2m + 2n + 2) × (0.25)0.25
] × [

(4m + 4n − 4) × (0.163)0.163
]

× [
(18mn − 8m − 8n + 2) × (0.111)0.111

]]
ENTHG(G) = log(1.998mn + 0.264m + 0.264n + 0.07)

− log [(2m + 2n + 2) × (0.25)0.25]
(1.998mn + 0.264m + 0.264n + 0.07)

− log [(4m + 4n − 4) × (0.163)0.163]
(1.998mn + 0.264m + 0.264n + 0.07)

− log [(18mn − 8m − 8n + 2) × (0.111)0.111]
(1.998mn + 0.264m + 0.264n + 0.07)

.

Theorem 2.4. Consider graphenylene structure as a molecular graph G, then the SS entropy is:

ENTSS(G) = log(22.05mn − 3.42m − 3.42n + 0.07)

− log [(2m + 2n + 2) × (1)1]
(22.05mn − 3.42m − 3.42n + 0.07)

− log [(4m + 4n − 4) × (1.095)1.095]
(22.05mn − 3.42m − 3.42n + 0.07)

− log [(18mn − 8m − 8n + 2) × (1.225)1.225]
(22.05mn − 3.42m − 3.42n + 0.07)

.

Proof. The SS entropy and SS index are computed as per the above definitions and Table 10.

Then, the SS index is given by

SS(G) = 22.05mn − 3.42m − 3.42n + 0.07.

The SS entropy is calculated for graphenylene structure using Eq. (5) and Table 10, which
results in:

ENTSS(G) = log(SS(G)) − 1
SS(G)

log

⎡
⎢⎣ ∏

(2,2)∈E1(G)

[√
2 × 2
2 + 2

]√
2×2
2+2

×
∏

(2,3)∈E2(G)

[√
2 × 3
2 + 3

]√
2×3
2+3

×
∏

(3,3)∈E3(G)

[√
3 × 3
3 + 3

]√
3×3
3+3

⎤
⎥⎦

ENTSS(G) = log(SS(G))

− 1
SS(G)

log
[[

(2m + 2n + 2) × (1)1
] × [(4m + 4n − 4) × (1.095)1.095]

× [
(18mn − 8m − 8n + 2) × (1.225)1.225

]]
ENTSS(G) = log(22.05mn − 3.42m − 3.42n + 0.07)

− log [(2m + 2n + 2) × (1)1]
(22.05mn − 3.42m − 3.42n + 0.07)

− log [(4m + 4n − 4) × (1.095)1.095]
(22.05mn − 3.42m − 3.42n + 0.07)

− log [(18mn − 8m − 8n + 2) × (1.225)1.225]
(22.05mn − 3.42m − 3.42n + 0.07)

.
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2.2 Results for Graphenylene Using Neighbourhood Degree of End Vertices
Theorem 2.5. Consider graphenylene structure as a molecular graph G, then the neighborhood

Sombor entropy is:

ENTNSO(G) = log(229.102mn − 55.436m − 55.436n + 1.686)

−
log

[
(2) × (

√
32)

√
32
]

(229.102mn − 55.436m − 55.436n + 1.686)
−

log
[
(4) × (

√
41)

√
41
]

(229.102mn − 55.436m − 55.436n + 1.686)

−
log

[
(2m + 2n − 4) × (

√
50)

√
50
]

(229.102mn − 55.436m − 55.436n + 1.686)
−

log
[
(4m + 4n − 4) × (

√
89)

√
89
]

(229.102mn − 55.436m − 55.436n + 1.686)

−
log

[
(4) × (

√
28)

√
28
]

(229.102mn − 55.436m − 55.436n + 1.686)
−

log
[
(8m + 8n − 16) × (

√
145)

√
145

]
(229.102mn − 55.436m − 55.436n + 1.686)

−
log

[
(18mn − 16m − 16n + 14) × (

√
162)

√
162

]
(229.102mn − 55.436m − 55.436n + 1.686)

.

Proof. The neighborhood Sombor entropy and neighborhood Sombor index are computed as per
the above definitions and Table 11.

Then, the neighborhood Sombor index is given by

NSO(G) = 229.102mn − 55.436m − 55.436n + 1.686.

The neighborhood Sombor entropy is calculated for graphenylene structure using Eq. (6) and
Table 11, which results in:

ENTNSO(G) = log(NSO(G)) − 1
NSO(G)

log

⎡
⎣ ∏

(4,4)∈E1(G)

[√
(4)2 + (4)2

]√(4)2+(4)2

×
∏

(4,5)∈E2(G)

[√
(4)2 + (5)2

]√(4)2+(5)2

×
∏

(5,5)∈E3(G)

[√
(5)2 + (5)2

]√(5)2+(5)2

×
∏

(5,8)∈E2(G)

[√
(5)2 + (8)2

]√(5)2+(8)2

×
∏

(8,8)∈E3(G)

[√
(8)2 + (8)2

]√(8)2+(8)2

×
∏

(8,9)∈E4(G)

[√
(8)2 + (9)2

]√(8)2+(9)2

×
∏

(9,9)∈E4(G)

[√
(9)2 + (9)2

]√(9)2+(9)2

⎤
⎦

ENTNSO(G) = log(NSO(G)) − 1
NSO(G)

log
[[

(2) × (
√

32)
√

32
]

×
[
(4) × (

√
41)

√
41
]

×
[
(2m + 2n − 4) × (

√
50)

√
50
]

× [(4m + 4n − 4) × (
√

89)
√

89] ×
[
(4) × (

√
128)

√
128

]
×

[
(8m + 8n − 16) × (

√
145)

√
145

]
×

[
(18mn − 16m − 16n + 14) × (

√
162)

√
162

]]
ENTNSO(G) = log(229.102mn − 55.436m − 55.436n + 1.686)
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−
log

[
(2) × (

√
32)

√
32
]

(229.102mn − 55.436m − 55.436n + 1.686)
−

log
[
(4) × (

√
41)

√
41
]

(229.102mn − 55.436m − 55.436n + 1.686)

−
log

[
(2m + 2n − 4) × (

√
50)

√
50
]

(229.102mn − 55.436m − 55.436n + 1.686)
−

log
[
(4m + 4n − 4) × (

√
89)

√
89
]

(229.102mn − 55.436m − 55.436n + 1.686)

−
log

[
(4) × (

√
28)

√
28
]

(229.102mn − 55.436m − 55.436n + 1.686)
−

log
[
(8m + 8n − 16) × (

√
145)

√
145

]
(229.102mn − 55.436m − 55.436n + 1.686)

−
log

[
(18mn − 16m − 16n + 14) × (

√
162)

√
162

]
(229.102mn − 55.436m − 55.436n + 1.686)

.

Theorem 2.6. Consider graphenylene structure as a molecular graph G, then NReZ1 entropy is:

ENTNReZ1
(G) = log(3.966mn + 0.436mn + 0.436n + 0.232)

− log [(2) × (0.5)0.5]
(3.966mn + 0.436mn + 0.436n + 0.232)

− log [(4) × (0.45)0.45]
(3.966mn + 0.436mn + 0.436n + 0.232)

− log [(2m + 2n − 4) × (0.4)0.4]
(3.966mn + 0.436mn + 0.436n + 0.232)

− log [(4m + 4n − 4) × (0.325)0.325]
(3.966mn + 0.436mn + 0.436n + 0.232)

− log [(4) × (0.25)0.25]
(3.966mn + 0.436mn + 0.436n + 0.232)

− log [(8m + 8n − 16) × (0.236)0.236]
(3.966mn + 0.436mn + 0.436n + 0.232)

− log [(18mn − 16m − 16n + 14) × (0.222)0.222]
(3.966mn + 0.436mn + 0.436n + 0.232)

.

Proof.

The NReZ1 entropy and NReZ1 index are computed as per the above definitions and Table 11.

Then, the NReZ1 index is given by

NReZ1(G) = 3.966mn + 0.436mn + 0.436n + 0.232.

The NReZ1 entropy is calculated for graphenylene using Eq. (7) and Table 11, which results in:

ENTNReZ1
(G) = log(NReZ1(G)) − 1

NReZ1(G)
log

⎡
⎣ ∏

(4,4)∈E1(G)

[
4 + 4
4 × 4

] 4+4
4×4

×
∏

(4,5)∈E2(G)

[
4 + 5
4 × 5

] 4+5
4×5

×
∏

(5,5)∈E3(G)

[
5 + 5
5 × 5

] 5+5
5×5

×
∏

(5,8)∈E2(G)

[
5 + 8
5 × 8

] 5+8
5×8

×
∏

(8,8)∈E3(G)

[
8 + 8
8 × 8

] 8+8
8×8

×
∏

(8,9)∈E4(G)

[
8 + 9
8 × 9

] 8+9
8×9

×
∏

(9,9)∈E4(G)

[
9 + 9
9 × 9

] 9+9
9×9

⎤
⎦

ENTNReZ1
(G) = log(NReZ1(G)) − 1

NReZ1(G)
log

[[
(2) × (0.5)0.5

] × [
(4) × (0.45)0.45

]
× [

(2m + 2n − 4) × (0.4)0.4
] × [

(4m + 4n − 4) × (0.325)0.325
] × [

(4) × (0.25)0.25
]



CMES, 2023, vol.137, no.1 959

× [
(8m + 8n − 16) × (0.236)0.236

] × [
(18mn − 16m − 16n + 14) × (0.222)0.222

]]
ENTNReZ1

(G) = log(3.966mn + 0.436mn + 0.436n + 0.232)

− log [(2) × (0.5)0.5]
(3.966mn + 0.436mn + 0.436n + 0.232)

− log [(4) × (0.45)0.45]
(3.966mn + 0.436mn + 0.436n + 0.232)

− log [(2m + 2n − 4) × (0.4)0.4]
(3.966mn + 0.436mn + 0.436n + 0.232)

− log [(4m + 4n − 4) × (0.325)0.325]
(3.966mn + 0.436mn + 0.436n + 0.232)

− log [(4) × (0.25)0.25]
(3.966mn + 0.436mn + 0.436n + 0.232)

− log [(8m + 8n − 16) × (0.236)0.236]
(3.966mn + 0.436mn + 0.436n + 0.232)

− log [(18mn − 16m − 16n + 14) × (0.222)0.222]
(3.966mn + 0.436mn + 0.436n + 0.232)

.

Theorem 2.7. Consider graphenylene structure as a molecular graph G, then NReZ2 entropy is:

ENTNReZ2
(G) = log(81mn − 20.812m − 20.812n + 1.82)

− log [(2) × (2)2]
(81mn − 20.812m − 20.812n + 1.82)

− log [(4) × (2.222)2.222]
(81mn − 20.812m − 20.812n + 1.82)

− log [(2m + 2n − 4) × (2.5)2.5]
(81mn − 20.812m − 20.812n + 1.82)

− log [(4m + 4n − 4) × (3.077)3.077]
(81mn − 20.812m − 20.812n + 1.82)

− log [(4) × (4)4]
(81mn − 20.812m − 20.812n + 1.82)

− log [(8m + 8n − 16) × (4.235)4.235]
(81mn − 20.812m − 20.812n + 1.82)

− log [(18mn − 16m − 16n + 14) × (4.5)4.5]
(81mn − 20.812m − 20.812n + 1.82)

.

Proof. The NReZ2 entropy and NReZ2 index are computed as per the above definitions and
Table 11.

Then, the NReZ2 index is given by

NReZ2(G) = 3.966mn + 0.436mn + 0.436n + 0.232.

The NReZ2 entropy is calculated for graphenylene using Eq. (8) and Table 11, which results in:

ENTNReZ2
(G) = log(NReZ2(G)) − 1

NReZ2(G)
log

⎡
⎣ ∏

(4,4)∈E1(G)

[
4 × 4
4 + 4

] 4×4
4+4

×
∏

(4,5)∈E2(G)

[
4 × 5
4 + 5

] 4×5
4+5

×
∏

(5,5)∈E3(G)

[
5 × 5
5 + 5

] 5×5
5+5

×
∏

(5,8)∈E2(G)

[
5 × 8
5 + 8

] 5×8
5+8

×
∏

(8,8)∈E3(G)

[
8 × 8
8 + 8

] 8×8
8+8

×
∏

(8,9)∈E4(G)

[
8 × 9
8 + 9

] 8×9
8+9

×
∏

(9,9)∈E4(G)

[
9 × 9
9 + 9

] 9×9
9+9

⎤
⎦

ENTNReZ2
(G) = log(NReZ2(G)) − 1

NReZ2(G)
log

[
[(2) × (2)2] × [(4) × (2.222)2.222]
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× [
(2m + 2n − 4) × (2.5)2.5

] × [
(4m + 4n − 4) × (3.077)3.077

] × [
(4) × (4)4

]
× [

(8m + 8n − 16) × (4.235)4.235
] × [(18mn − 16m − 16n + 14) × (4.5)4.5]

]
ENTNReZ2

(G) = log(81mn − 20.812m − 20.812n + 1.82)

− log [(2) × (2)2]
(81mn − 20.812m − 20.812n + 1.82)

− log [(4) × (2.222)2.222]
(81mn − 20.812m − 20.812n + 1.82)

− log [(2m + 2n − 4) × (2.5)2.5]
(81mn − 20.812m − 20.812n + 1.82)

− log [(4m + 4n − 4) × (3.077)3.077]
(81mn − 20.812m − 20.812n + 1.82)

− log [(4) × (4)4]
(81mn − 20.812m − 20.812n + 1.82)

− log [(8m + 8n − 16) × (4.235)4.235]
(81mn − 20.812m − 20.812n + 1.82)

− log [(18mn − 16m − 16n + 14) × (4.5)4.5]
(81mn − 20.812m − 20.812n + 1.82)

.

Theorem 2.8. Consider graphenylene structure as a molecular graph G, then neighborhood SS
entropy is:

ENTNSS(G) = log(38.18mn − 7.298m − 7.298n + 0.221)

− log [(2) × (1.414)1.414]
(38.18mn − 7.298m − 7.298n + 0.221)

− log [(4) × (1.491)1.491]
(38.18mn − 7.298m − 7.298n + 0.221)

− log [(2m + 2n − 4) × (1.581)1.581]
(38.18mn − 7.298m − 7.298n + 0.221)

− log [(4m + 4n − 4) × (1.754)1.754]
(38.18mn − 7.298m − 7.298n + 0.221)

− log [(4) × (2)2]
(38.18mn − 7.298m − 7.298n + 0.221)

− log [(8m + 8n − 16) × (2.058)2.058]
(38.18mn − 7.298m − 7.298n + 0.221)

− log [(18mn − 16m − 16n + 14) × (2.121)2.121]
(38.18mn − 7.298m − 7.298n + 0.221)

.

Proof. The neighborhood SS entropy and neighborhood SS index are computed as per the above
definitions and Table 11.

Then, the neighborhood SS index is given by

NSS(G) = 38.18mn − 7.298m − 7.298n + 0.221.

The neighborhood SS entropy is calculated for graphenylene structure using Eq. (9) and Table 11,
which results in:

ENTNSS(G) = log(NSS(G)) − 1
NSS(G)

log

⎡
⎢⎣ ∏

(4,4)∈E1(G)

[√
4 × 4
4 + 4

]√
4×4
4+4

×
∏

(4,5)∈E2(G)

[√
4 × 5
4 + 5

]√
4×5
4+5

×
∏

(5,5)∈E3(G)

[√
5 × 5
5 + 5

]√
5×5
5+5

×
∏

(5,8)∈E2(G)

[√
5 × 8
5 + 8

]√
5×8
5+8
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×
∏

(8,8)∈E3(G)

[√
8 × 8
8 + 8

]√
8×8
8+8

×
∏

(8,9)∈E4(G)

[√
8 × 9
8 + 9

]√
8×9
8+9

×
∏

(9,9)∈E4(G)

[√
9 × 9
9 + 9

]√
9×9
9+9

⎤
⎥⎦

ENTNSS(G) = log(NSS(G)) − 1
NSS(G)

log
[
[(2) × (1.414)1.414] × [(4) × (1.491)1.491]

×[(2m + 2n − 4) × (1.581)1.581] × [(4m + 4n − 4) × (1.754)1.754] × [(4) × (2)2]

×[(8m + 8n − 16) × (2.058)2.058] × [(18mn − 16m − 16n + 14) × (2.121)2.121]
]

ENTNSS(G) = log(38.18mn − 7.298m − 7.298n + 0.221)

− log [(2) × (1.414)1.414]
(38.18mn − 7.298m − 7.298n + 0.221)

− log [(4) × (1.491)1.491]
(38.18mn − 7.298m − 7.298n + 0.221)

− log [(2m + 2n − 4) × (1.581)1.581]
(38.18mn − 7.298m − 7.298n + 0.221)

− log [(4m + 4n − 4) × (1.754)1.754]
(38.18mn − 7.298m − 7.298n + 0.221)

− log [(4) × (2)2]
(38.18mn − 7.298m − 7.298n + 0.221)

− log [(8m + 8n − 16) × (2.058)2.058]
(38.18mn − 7.298m − 7.298n + 0.221)

− log [(18mn − 16m − 16n + 14) × (2.121)2.121]
(38.18mn − 7.298m − 7.298n + 0.221)

.

3 Conclusion

This work is dedicated to defining and discussing the chemical applicability of ENTSO, ENTGH ,
ENTHG, ENTSS, ENTNSO, ENTNReZ1

, ENTNReZ2
and ENTNSS for a few properties of by-products of

benzene molecules by applying regression models and computing entropy descriptors of graphenylene
structure. It is observed from the above study that the graph entropies considered have proved to
be correlated well with the four physical properties mentioned in this work. The following are the
observations made from the study. The ENTSO has a high positive correlation against BP with r =
0.989. The ENTGH has a high positive correlation against BP with r = 0.984. The ENTHG has a high
positive correlation against MW with r = 0.987. There is a high positive correlation between ENTSS

against BP with r = 0.989. The ENTNSO has a high positive correlation against π − ele with r = 0.843.
The ENTNReZ1

has a high positive correlation with BP having r = 0.869. The ENTNReZ2
has a high

positive correlation with BP with r = 0.932. The ENTNSS has a high positive correlation against BP
with r = 0.849.

There has been a remarkable increase in the applications of graphenylene as it has distinguished
mechanical, electrical, and thermal properties. This study provides a way for researchers to study
physico-chemical and biological properties of various compounds associated with degree-based
entropies.
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