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ABSTRACT

Harris Hawks Optimization (HHO) is a novel meta-heuristic algorithm that imitates the predation characteristics
of Harris Hawk and combines Lévy flight to solve complex multidimensional problems. Nevertheless, the basic
HHO algorithm still has certain limitations, including the tendency to fall into the local optima and poor
convergence accuracy. Coot Bird Optimization (CBO) is another new swarm-based optimization algorithm. CBO
originates from the regular and irregular motion of a bird called Coot on the water’s surface. Although the
framework of CBO is slightly complicated, it has outstanding exploration potential and excellent capability to
avoid falling into local optimal solutions. This paper proposes a novel enhanced hybrid algorithm based on the
basic HHO and CBO named Enhanced Harris Hawks Optimization Integrated with Coot Bird Optimization
(EHHOCBO). EHHOCBO can provide higher-quality solutions for numerical optimization problems. It first
embeds the leadership mechanism of CBO into the population initialization process of HHO. This way can
take full advantage of the valuable solution information to provide a good foundation for the global search of
the hybrid algorithm. Secondly, the Ensemble Mutation Strategy (EMS) is introduced to generate the mutant
candidate positions for consideration, further improving the hybrid algorithm’s exploration trend and population
diversity. To further reduce the likelihood of falling into the local optima and speed up the convergence, Refracted
Opposition-Based Learning (ROBL) is adopted to update the current optimal solution in the swarm. Using 23
classical benchmark functions and the IEEE CEC2017 test suite, the performance of the proposed EHHOCBO
is comprehensively evaluated and compared with eight other basic meta-heuristic algorithms and six improved
variants. Experimental results show that EHHOCBO can achieve better solution accuracy, faster convergence
speed, and a more robust ability to jump out of local optima than other advanced optimizers in most test cases.
Finally, EHHOCBO is applied to address four engineering design problems. Our findings indicate that the proposed
method also provides satisfactory performance regarding the convergence accuracy of the optimal global solution.
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1 Introduction

The optimization process refers to determining the best solution for a given problem. Optimization
problems are widespread in the contemporary military, engineering, and management fields. Opti-
mization methods have become an essential computational tool for technicians in different specialties
[1–4]. With the evolution of human society and technology, more complex optimization problems
are emerging. However, mathematical-programming optimization algorithms cannot effectively solve
these problems, such as the Gradient Method and Newton’s Method. These conventional methods
need help to locate the optimal global solution in large-scale, high-dimensional, and sub-optimal
search domains [4–6]. To accomplish more powerful optimization tools, in recent decades many schol-
ars have embarked on the research of meta-heuristic algorithms (MAs) [7]. MAs are a combination of
stochastic algorithms and local search algorithms. The design of MAs is mainly inspired by a series of
random phenomena in nature [8,9]. For MAs, they are concept-simple, require few parameter settings,
and do not have any special requirements for the objective function. Consequently, MAs are not
limited to specific problems and can be used in many applications [10,11]. MAs usually includes four
categories [12–14]: evolutionary-based algorithms, physics-based algorithms, swarm-based algorithms
(social behaviors of organisms in nature), and human-based algorithms. Some famous algorithms
are Genetic Algorithm (GA) [15], Differential Evolution (DE) [16], Evolution Strategy (ES) [17],
Simulated Annealing (SA) [18], Multi-Verse Optimizer (MVO) [19], Atom Search Optimization (ASO)
[20], Arithmetic Optimization Algorithm (AOA) [21], Particle Swarm Optimization (PSO) [22], Sine
Cosine Algorithm (SCA) [23], Sooty Tern Optimization Algorithm (STOA) [24], Chimp Optimization
Algorithm (ChOA) [25], Aquila Optimizer (AO) [26], Dragonfly Algorithm (DA) [27], Butterfly
Optimization Algorithm (BOA) [28], Slime Mould Algorithm (SMA) [29], Whale Optimization
Algorithm (WOA) [30], Grey Wolf Optimizer (GWO) [31], Seagull Optimization Algorithm (SOA)
[32], Gorilla Troops Optimizer (GTO) [33], Search Group Algorithm (SGA) [34], etc. Although
hundreds of MAs have been proposed since the Artificial Intelligence (AI) age, the No Free Lunch
(NFL) [35] theorem states that there is no single algorithm capable of tackling all optimization
problems. Hence, further innovation in MAs is indispensable. At the same time, most MAs still
need help with slow convergence, difficulty getting rid of local optimization, and imbalance between
exploration and exploitation stages [36]. In addition to developing new MAs, several researchers try to
boost the performance of existing algorithms by incorporating various search operators and achieving
promising results. Nguyen et al. [13] proposed an improved Slime Mould Algorithm and applied
it to control stepped hydropower plants. Debnath et al. [37] hybridized the Dragonfly Algorithm
with Differential Evolution to better solve the problem of maximizing secondary user throughput in
energy-harvesting cognitive radio networks. Ziyu et al. [38] proposed an improved Particle Swarm
Optimization algorithm named TACPSO by introducing acceleration factors and random speeds.
Li et al. [39] combined Differential Evolution and Hunger Games Search into a new DECEHGS
algorithm, validated on the CEC2014 test suite, CEC2017 test suite, and four engineering problems.
Jia et al. [40] constructed an improved Condor Search Algorithm based on the Lévy flight and
simulated annealing mechanisms. All the above-improved variants are proven to outperform the basic
algorithm to some extent, which indicates that it is feasible to enhance the performance of algorithms
by introducing some additional search strategies.

The Harris Hawks Optimization (HHO) simulates the cooperative behavior and chasing style
of Harris hawks in nature [41]. HHO is easy to implement with few parameters and performs well
in solving many optimization problems. However, the basic HHO algorithm has several limitations,
including the tendency to fall into the local optima and poor convergence accuracy. Its insufficient
exploration phase causes this. Research on the improvement of HHO has been in full swing. For
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example, Fan et al. [42] proposed a quasi-reflective Harris Hawks Algorithm (QRHHO), enhancing
the native algorithm’s exploration capability and convergence speed. Dokeroglu et al. [43] presented an
island parallel HHO (IP-HHO) version of the algorithm for optimizing continuous multi-dimensional
problems. Wang et al. [44] hybridized the exploration phase of Aquila Optimizer and the exploitation
phase of Harris Hawks Optimization to preserve the powerful search abilities of each in both
algorithms. They presented a novel improved optimizer, namely IHAOHHO. Another algorithm
discussed in this paper is Coot Bird Optimization (CBO), proposed by Naruei et al. [45] in 2021.
The CBO algorithm mimics four movement patterns of coot birds on the water surface, including
random movement, chain movement, location adjustment according to the group leaders, and leader
movement. In this algorithm, the Coot leaders continuously lead the population toward the goal.
The leaders sometimes have to leave their current positions to find better target areas, which gives
the algorithm have strong global ability to explore different parts of the search space. But the overall
framework of CBO is relatively complex compared to other algorithms, and its exploitation stage
needs to be revised, often leading to premature convergence. Considering this, mixing HHO and
CBO can compensate for the lack of HHO exploration capability and thus improve its global search
performance. The hybrid algorithm can effectively use the solution information in the search space
to maintain population diversity later in the search. Currently, some improved variants of the CBO-
based algorithm have achieved promising performance. Huang et al. [46] developed a COOTCLCO
algorithm that provided satisfactory solutions for solving the uneven distribution and low coverage
problems of randomly deployed Wireless Sensor Network (WSN) nodes.

Motivated by the NFL theory and fully considering the characteristics of the basic HHO and
CBO algorithms: HHO has good exploitation properties, but its exploration stage is insufficient,
and conversely, CBO owns excellent exploration capability benefiting from the leader mechanism,
but the algorithm itself is complex and lacks exploitation ability. Therefore, this paper attempts to
combine the basic HHO and CBO algorithms by taking advantage of each and proposes a novel
hybrid meta-heuristic algorithm with better all-around search performance for global optimization,
called EHHOCBO. First, integrate the leadership mechanism of CBO into the population initialization
stage of HHO. In the leader movement, the optimal individual guides the whole population to explore
all regions of the search space as much as possible in a circular envelope so that the algorithm has good
randomness and rich population diversity. It can make up for the lack of helpful information exchange
between the optimal individual and other individuals in the swarm, thus laying a good foundation
for the global search of HHO. Then, during the iterative computation, Ensemble Mutation Strategy
(EMS) [47] is introduced to generate the variant candidate positions of the current individual further
to enhance the algorithm exploration capability and convergence accuracy. Moreover, to extend the
search range and avoid the algorithm from falling into the local optima in the later search phase,
Refracted Opposition-Based Learning (ROBL) [48] is used to evaluate the fitness value of the inverse
position of the current optimal solution and perform the update. To assess the performance of the
proposed EHHOCBO, we used 23 classical benchmark functions and the IEEE CEC2017 test suite
for testing and applied the proposed algorithm to address four engineering problems. Experimental
results demonstrate that EHHOCBO performs better than competitors concerning solution accuracy,
convergence speed, stability, and local optima avoidance.

This paper is organized as follows: Section 2 briefly introduces the basic HHO and CBO algorithm
and two improved search strategies. In Section 3, the proposed hybrid EHHOCBO optimizer is
described in detail. In Section 4, we evaluate the performance of EHHOCBO through a series of
simulation experiments and analyze the results obtained. Based on this, the proposed method addresses
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four real-world engineering design problems to highlight its practicality in Section 5. Finally, a
conclusion of this paper is provided in Section 6.

2 Related Works
2.1 Harris Hawks Optimization (HHO)

Harris Hawks Optimization (HHO) was proposed by Heidari et al. [41] in 2019, which mimics
the predatory behavior of the Harris Hawk, a species of raptor living in southern Arizona, U.S.A. The
HHO algorithm consists of three main components: the exploration phase, the exploitation phase, and
the transition from exploration to exploitation. Fig. 1 shows the different search processes of the basic
HHO algorithm.

Figure 1: Different phases of HHO

2.1.1 Exploration Phase

During this phase, the Harris hawks randomly perch in certain places. They detect the prey with
keen vision and then choose between two strategies with the same probability of undertaking hunting
activities. The formula for the position update of Harris hawk in this phase is as follows.

X (t + 1) =
{

Xrand (t) − r1 · |Xrand (t) − 2r2X (t)|, q ≥ 0.5(
Xprey (t) − Xm (t)

)− r3 (LB + r4 (UB − LB)), q < 0.5
(1)

where X (t) and X (t + 1) represent the position vector of the Harris hawk in the current and next
iterations. t represents the current number of iterations. Xprey is the prey position, which is also
regarded as the optimal solution. Xrand (t) is the position vector of the random individual in the current
population. r1, r2, r3, r4, and q are random numbers between [0, 1]. LB and UB are the lower and upper
bounds of variables. Xm (t) represents the average position of all hawks in the population, which is
calculated as follows:
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Xm (t) = 1
N

N∑
i=1

Xi (t) (2)

where N is the population size. Xi (t) is the current position vector of the i-th hawk.

2.1.2 Transition from Exploration to Exploitation

In the HHO algorithm, the prey’s escape energy E drives the algorithm to switch between the
global exploration and local exploitation phases. The prey’s energy decreases gradually throughout
the escaping process, which can be simulated as in Eq. (3).

E = 2E0

(
T − t

T

)
(3)

where E0 is a random number between [−1, 1], representing the initial state of the escaping energy of
the prey. T is the maximum number of iterations. When |E| ≥ 1, the hawk will continue searching for
the location of prey in the target area, defined as the exploration phase. In the case of |E| < 1, the
hawk will start to hunt the prey found in the earlier step and enter the exploitation stage.

2.1.3 Exploitation Phase

Four possible strategies exist in the exploitation phase, including soft besiege, hard besiege, soft
besiege with progressive rapid dives, and hard besiege with progressive rapid dives, to simulate the
attack process of Harris hawk on its prey. r represents the probability of whether the prey can escape
the danger before the Harris hawk attack, which is a random number between [0,1]. If r < 0.5 means
that the prey has successfully run through the the dangerous situation, r ≥ 0.5 denotes the case of
unsuccessful escape. Different combinations of r-value and escape energy E correspond to different
predation strategies. When |E| < 0.5, a hard siege is performed. Otherwise, a soft siege is conducted.

• Soft Besiege

The soft besiege is performed when r ≥ 0.5 and |E| ≥ 0.5. At this stage, the position of Harris
hawk is updated as follows:

X (t + 1) = ΔX (t) − E
∣∣JXprey (t) − X (t)

∣∣ (4)

ΔX (t) = Xprey (t) − X (t) (5)

J = 2 (1 − r5) (6)

where ΔX (t) denotes the distance between the hawk’s position and the prey. r5 is the random number
between [0, 1]. J indicates the random jump intensity of the prey.

• Hard Besiege

The hawk will take a hard besiege when r ≥ 0.5 and |E| < 0.5. The mathematical formula for this
behavior is as follows:

X (t + 1) = Xprey (t) − E|ΔX(t)| (7)
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• Soft Besiege with Progressive Rapid Dives

When r < 0.5 and |E| ≥ 0.5, the hawk will take a soft besiege with progressive rapid dives. Lévy
flight is integrated into the HHO algorithm, and the mathematical model of the above behavior is as
follows:

Y = Xprey (t) − E
∣∣JXprey (t) − X (t)

∣∣ (8)

Z = Y + S × LF (D) (9)

X (t + 1) =
{

Y , if F (Y) < F (X (t))
Z, if F (Z) < F (X (t))

(10)

where D is the dimension of problem. S is a random vector whose size is 1 × D. F (·) is the objective
function. Only the better position between Y and Z is selected as the next position. LF (·) is the Lévy
flight function, which is calculated as follows:

LF (x) = 0.01 × u × σ

|v| 1
β

, σ =

⎛
⎜⎜⎝

Γ (1 + β) × sin
(

πβ

2

)

Γ (1 + β) × β × 2
(

β−1
2

)

⎞
⎟⎟⎠

1/β

(11)

where u and v are two random numbers between [0, 1]. β is a constant with a fixed value of 1.5. Γ(·) is
the gamma function.

• Hard Besiege with Progressive Rapid Dives

When r < 0.5 and |E| < 0.5, the Harris hawk will perform a hard siege to get close to the prey
and then make a surprise attack. The mathematical model of this behavior is simulated as follows:

Y = Xprey (t) − E
∣∣JXprey (t) − Xm (t)

∣∣ (12)

Z = Y + S × LF (D) (13)

X (t + 1) =
{

Y , if F (Y) < F (X (t))
Z, if F (Z) < F (X (t))

(14)

where Xm(t) is calculated by Eq. (2). Note that only the better position between Y and Z is selected as
the next position. The pseudo-code of the basic HHO algorithm is shown in Algorithm 1.

Algorithm 1: Pseudo-Code of Harris Hawks Optimization (HHO)
1. Initialize the population size N and the maximum iterations T
2. Initialize the random position of the population Xi(i = 1, 2, · · · , N)

3. While t ≤ T
4. Calculate the fitness value of each hawk
5. Save Xprey as the best position
6. For each hawk Xi

7. Calculate the E by Eq. (3)
8. If |E| ≥ 1
9. Update the hawk’s position by Eq. (1)
10. End If
11. If |E| < 1

(Continued)
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Algorithm 1: (Continued)
12. If r ≥ 0.5&&|E| ≥ 0.5
13. Update the hawk’s position by Eq. (4)
14. Else if r ≥ 0.5&& |E| < 0.5
15. Update the hawk’s position by Eq. (7)
16. Else if r < 0.5&& |E| ≥ 0.5
17. Update the hawk’s position by Eq. (10)
18. Else if r < 0.5&& |E| < 0.5
19. Update the hawk’s position by Eq. (14)
20. End If
21. End For
22. t = t + 1
23. End While

2.2 Coot Bird Optimization(CBO)
Coot Bird Optimization (CBO) is a bio-inspired, population-based, and gradient-free optimiza-

tion technique developed by Naruei et al. [45] in 2021, which mimics the collective behaviors of
American Coots (a small water bird) on the water surface. In the CBO, there are four different irregular
and regular movements implemented: (1) Random movement, (2) Chain movement, (3) Adjusting
the position based on the group leaders, and (4) Leader movement. The mathematical model of the
algorithm is presented below.

Usually, the Coots live in a group and make a chain structure to move toward the target area
(food). In front of the group are a few coots, also known as group leaders, who guide the direction and
take charge of the whole flock. Therefore, according to the habits of Coots, the initial population is
divided into two parts: the leader Coots and the follower Coots. If N is the population size, the number
of Coot leaders is calculated as a percentage of the total population equal to L, and the remaining
members (N − L) are considered Coot followers. It is noted that the leaders are all selected from the
population randomly. Then the mentioned four movements are implemented.

2.2.1 Random Movement

In this stage, the random position Q is defined using Eq. (15). The Coot followers are moved
towards this random position to explore various parts of the search domain.

Q = rand (1, D) . ∗ (UB − LB) + LB (15)

where D is the dimension of problem. LB and UB are the lower and upper bounds of variables.
The random movement gives the algorithm better global search performance and strengthens the
algorithm’s capability to escape from the local optima. The Coot’s new position is updated as follows:

Xi (t + 1) = Xi (t) + A × r6 × (Q − Xi (t)) (16)

where Xi(t + 1) denotes the position of the i-th follower in the next iteration t, r6 is a random number
in the range of [0, 1], and the parameter A is calculated according to Eq. (17).

A = 1 − t
T

(17)

where t represents the number of current iterations and T is the maximum iterations.
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2.2.2 Chain Movement

In the Salp Swarm Algorithm (SSA), the average position of two individuals is used to perform
chain movements. The same approach is employed in CBO. The new position of the Coot follower is
calculated as follows:

Xi (t + 1) = 1
2

× (Xi−1 (t) + Xi (t)) (18)

where Xi−1 (t) is the position of the (i − 1)-th follower in the current iteration t.

2.2.3 Adjust the Position Based on the Group Leaders

Generally, the whole group is led by some of the group leaders in the front, and all the remaining
coot followers need to adjust their position based on the leaders and move towards them. However,
a severe issue that must be addressed is that each Coot should update its position according to which
leader. Eq. (19) is designed to select the leader as follows:

k = 1 + (i MOD L) (19)

where i is the index number of the current follower, L denotes the number of leaders, and k stands for
the leader’s index number.

The next position of the Coot follower based on the selected leader k is calculated using Eq. (20).

Xi (t + 1) = LeaderXk (t) + 2 × r7 × cos (2Rπ) × (LeaderXk (t) − Xi (t)) (20)

where LeaderX k(t) is the position of the selected leader, r7 is a random number within the interval
[0, 1], and R denotes a random number within the interval [−1, 1].

2.2.4 Leader Movement

The group must be oriented towards the optimal area, so in some instances, the leaders have to
leave the current optimal position to search for a better one. The formula for updating the leader
position is given as follows:

LeaderXi (t + 1) =
{

B × r8 × cos (2Rπ) × (gBest (t) − LeaderXi (t)) + gBest (t) , r9 < 0.5
B × r8 × cos (2Rπ) × (gBest (t) − LeaderXi (t)) − gBest (t) , r9 ≥ 0.5 (21)

In Eq. (21), gBest denotes the current optimal position, r8 and r9 are random numbers within the
interval [0, 1], and R is a random number within the interval [−1, 1]. B×r8 generates a more significant
stochastic movement to help the algorithm eliminate the local optimal solutions. And cos(2Rπ) is
designed to search for the best individual with different radius to obtain a superior position. The
value of B is calculated using Eq. (22).

B = 2 − t ×
(

1
T

)
(22)

where t represents the number of current iterations, and T denotes the maximum. The pseudo-code of
Coot Bird Optimization (CBO) is summarized in Algorithm 2.

Algorithm 2: Pseudo-Code of Coot Bird Optimization (CBO)
1. Initialize the population size N, the maximum iterations T , and the number of leaders L
2. Initialize the positions of all coots
3. Select the leaders from the population randomly

(Continued)
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Algorithm 2: (Continued)
4. Estimate the fitness of coot followers and leaders
5. Save the best follower or leader as the global optimum (gBest)
6. While t ≤ T
7. Calculate the parameters of A and B using Eqs. (17) and (22)
8. If rand < 0.5
9. R, r7, and r8 denote random vectors along the problem dimension
10. Else
11. R, r7, and r8 denote random numbers
12. End If
13. For i = 1 to (N − L)

14. Calculate the value of k using Eq. (19)
15. If rand < 0.5
16. Update the position of the follower according to Eq. (20)
17. Else
18. If rand < 0.5&&i ∼= 1
19. Update the position of the follower according to Eq. (18)
20. Else
21. Update the position of the follower according to Eq. (16)
22. End If
23. End If
24. Estimate the fitness of follower F(X)

25. If the fitness of the follower F(X) < the fitness of the leader(k) fitness F(LeaderX k)

26. Temp = LeaderX k; LeaderX k = X ; X = Temp
27. End If
28. End For
29. For i = 1 to L
30. Update the position of the leader using Eq. (21)
31. Estimate the fitness of each leader F(LeaderX k)

32. If the fitness of the leader F(LeaderX k) < the fitness of the global optimum F(gBest)
33. Temp = gBest; gBest = LeaderX k; LeaderX k = Temp
34. End If
35. End For
36. t = t + 1
37. End While
38. Return gBest

2.3 Ensemble Mutation Strategy (EMS)
The set variation strategy is a new improvement mechanism proposed by Zheng et al. [8,47], which

can generate diverse individuals to improve the global search capability of the hybrid algorithm. The
mathematical formula of EMS is as follows:

Vi1 =
{

XR1 + F1 × (XR2 − XR3) , r10 < C1

Xi, r10 ≥ C1
(23)

Vi2 =
{

XR4 + F2 × (XR5 − XR6) + F2 × (XR7 − XR8) , r11 < C2

Xi, r11 ≥ C2
(24)
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Vi3 =
{

Xi + F3 × (XR9 − Xi) + F3 × (XR10 − XR11) , r12 < C3

Xi, r12 ≥ C3
(25)

where Vi1, Vi2, and Vi3 are the newly generated mutant positions of the ith search agent. R1∼R11 are
different integer exponents in the range [1, N]. F1, F2, and F3 represent scale factors with values of 1.0,
0.8, and 1.0, respectively. r10∼r12 are random numbers in the range of [0,1]. In addition, the parameters
C1, C2, and C3 are equal to 0.1, 0.2, and 0.9, which denote the crossover rate.

After the mutant candidate positions Vi1, Vi2, and Vi3 are generated, the best position Vi with
the lowest fitness value will be selected to compare with the fitness of the original post Xi, and then
the better one will be saved as the new Xi to participate in the following iterative calculation. These
processes can be described using Eq. (26).

Xi =
{

Vi, if F (Vi) < F (Xi)

Xi, otherwise (26)

where F (·) is the cost function.

2.4 Refracted Opposition-Based Learning
Refracted Opposition-based Learning [48] is an improved variant of Opposition-based Learning

(OBL) [49]. ROBL introduces the principle of refraction of light to generate dynamic inverse solutions
based on OBL, which solves the limitation that OBL can easily fall into local optimum in later
iterations. Currently, ROBL has been used to effectively improve the optimization performance of
the Grey Wolf Optimizer (GWO) [31]. The schematic diagram of ROBL is shown in Fig. 2, and its
mathematical model is formulated as follows:

X ∗
i,j = aj + bj

2
+ aj + bj

2zη
− Xi,j

zη
, j = 1, 2, . . . , D (27)

Figure 2: Refracted opposition-based learning
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where Xi,j is the location of the ith search agent in the jth dimension. X ∗
i,j is the inverse solution of Xi,j.

aj and bj are the upper and lower limits in the jth dimension. D deontes the dimension of problem. η

is the refraction index, which can be calculated using Eq. (28). z indicates the scale factor, which can
be calculated using Eq. (29).

z = h
h∗ (28)

η = sin θ1

sin θ2

(29)

where h and h∗ are the lengths of the incident light and the refracted light. θ1 and θ2 are the angle of
incidence and refraction, respectively.

3 The Proposed EHHOCBO Algorithm

This section integrates the basic HHO and CBO algorithms into a new swarm intelligence
algorithm called EHHOCBO. EHHOCBO takes HHO as the core framework and is hybridized
with the powerful exploratory leadership mechanism of hybrid CBO. In addition, ensemble mutation
strategy (EMS) and refracted opposition-based learning (ROBL) are introduced into the preliminary
hybrid algorithm to enhance its search performance further.

According to Section 2, the basic HHO algorithm consists of three main steps: the exploration
phase, the transition from exploration to exploitation, and the exploitation phase. In the exploration
phase, Harris hawk detects prey in the search space with two equal probabilities. After detecting
prey, the hawk transitions between global and local search based on the decay of prey energy. In
the exploitation phase, the energy of the prey and the probability of the prey escaping determine the
four different predation methods that the Harris hawk will adopt, namely soft besiege, hard besiege,
soft besiege with progressive rapid dives, and soft besiege with progressive rapid dives. When the prey
escapes successfully, the Lévy flight is introduced into the algorithm to ensure that the algorithm can
jump out of the local optima. In the basic algorithm, the Lévy flight is only used when the position
has a better fitness value, which leads to the algorithm being unable to jump out of the local optimum
well. The low population diversity and simple search method in the exploration phase weaken the
global search capability of HHO. This leads to a longer time to obtain the optimal global solution
and increases the possibility of getting stuck in local optima. These can be improved to explore better
and exploit the HHO algorithm [50]. For the CBO algorithm, the population is divided into a few
randomly chosen Coot leaders and Coot followers. The leaders can make full use of the information
in the search space and have a strong tendency to explore, thus effectively leading the followers to
the target area. CBO mainly consists of individual random movement, chain movement, and optimal
individual-guided movement. The CBO algorithm will choose a random position in the search space
as a reference, which is also a an excellent way to help the algorithm jump out of the local optimum.
Chain movement allows the algorithm to quickly improve the accuracy of the algorithm when the
population is concentrated. In the leader movement of the optimal individual, the position of the
follower will change with the position of the corresponding leader. This allows the leader to lead the
followers closer and closer to the optimal region. In this paper, the optimal individual movement
mechanism of CBO is integrated into the population initialization of HHO to take full advantage
of the strengths of both algorithms. In the CBO optimal individual-led movement, B × r8 generates
a large amount of randomness. This process can be used to initialize the population to increase the
diversity of the position and make up for the lack of information exchange with other individuals,
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thus laying a good foundation for global search. First, the population initialization formula Eq. (30)
of the hybrid algorithm is derived from Eq. (21). After the positions of all search agents are generated
by using Eq. (30), the fitness value of each new position is compared with that of the original position.
The candicate position with the highest fitness value is selected as the updated position for the hybrid
algorithm.

Xnewi (t + 1) =
{

B × r8 × cos (2Rπ) × (Xprey (t) − Xi (t)
)+ Xprey (t) , r9 < 0.5

B × r8 × cos (2Rπ) × (Xprey (t) − Xi (t)
)− Xprey (t) , r9 ≥ 0.5

(30)

where Xnewi(t + 1) is the position of the ith search agent in the (t + 1)th iteration. Xi(t) denotes the
position in the iteration. Xprey (t) is the current optimal solution, and the remaining parameters are
defined in Eq. (21).

Secondly, although the basic HHO algorithm introduces the Lévy flight to ensure that it can
jump out of the local optimum, it still has limitations that can cause the algorithm to fall into a
local optimum in later iterations. The EMS has multiple mutation operators, which can generate three
differentcandidate positions according to Eqs. (23)–(25). Then, the mutant positions with the lowest
fitness is selected for comparison with the fitness of the original positions. The position with the highest
fitness is selected as the new position. In this way, the global search ability of the algorithm can be
improved. At the end of the algorithm, ROBL is integrated into the HHO. The inverse solution of the
current optimum is generated by Eq. (27). This can expand the search range, improve the convergence
speed, and reduce the possibility of falling into the local optima. The introduction of EMS and
ROBL strategies makes up for the shortcomings of the basic HHO algorithm in the exploitation stage.
The flowchart and pseudo-code of the proposed EHHOCBO are shown in Fig. 3 and Algorithm 3,
respectively.

Figure 3: Flow chart of the proposed EHHOCBO algorithm
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Algorithm 3: Pseudo-Code of the Proposed EHHOCBO
1. Initialize the population size N and the maximum iterations T
2. Initialize the position of each search agent Xi(i = 1, 2, · · · , N)

3. While t ≤ T
4. Calculate the fitness values of each hawk
5. Set Xprey as the position of the current optimal solution
6. Calculate the value of B by Eq. (22)
7. For each hawk Xi

8. Update the position of Hawks by Eq. (30)
9. If F (Xnewi) < F (Xi)

10. Xi = Xnewi

11. If the fitness of the Hawks F (Xi) is better than the fitness of the global optimum F(Xprey)

12. Xprey = Xi; bestF = F (Xi)

13. End If
14. End For
15. Calculate E by Eq. (3)
16. For each hawk Xi

17. If |E| ≥ 1
18. Update the hawk’s position by Eq. (1)
19. End If
20. If |E| < 1
21. If r ≥ 0.5&& |E| ≥ 0.5
22. Update the hawk’s position by Eq. (4)
23. Else if r ≥ 0.5&& |E| < 0.5
24. Update the hawk’s position by Eq. (7)
25. Else if r < 0.5&& |E| ≥ 0.5
26. Update the hawk’s position by Eq. (10)
27. Else if r < 0.5&& |E| < 0.5
28. Update the hawk’s position by Eq. (14)
29. End If
30. End If
31. Calculate the new mutant locations Vi1, Vi2, Vi3 by Eqs. (23)–(25)
32. Set Vi as the best trial vector with the lowest fitness from Vi1, Vi2, Vi3

33. If F (Vi) < F(Xi)

34. Xi = Vi

35. End If
36. End For
37. Implement ROBLto calculate the inverse solution of the global optimum X ∗

prey

38. If the fitness of the inverse solution F
(
X ∗

prey

)
is better than the fitness of the global optimum f (Xprey)

39. Xprey = X ∗
prey; bestF = F(X ∗

prey)

40. End If
41. t = t + 1
42. End While
43. Return Xprey
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4 Experimental Results and Discussions

In this section, the effectiveness and feasibility of the proposed EHHOCBO is validated on two
sets of optimization problems. Firstly, the performance of the algorithm in solving simple numerical
problems is verified by 23 classical benchmark functions [51]. The algorithm’s performance in solving
complex numerical optimization problems is evaluated using the IEEE CEC2017 benchmark functions
[52]. All experiments were conducted on Windows 10 operating system with a computer hardware
configuration of Intel(R) Core(TM) i5-7300HQ CPU@2.50 GHz and 8 GB RAM, and the tool used
was MATLAB2020a software.

4.1 Experiment 1: Classical Benchmark Functions
In this section, 23 classical benchmark functions are used to evaluate the performance of

EHHOCBO. The functions F1–F7 are unimodal and are used to assess the development capability
of the algorithm. F8–F13 are multimodal, which are used to test the exploration capability of the
algorithm and its ability to escape from local optimum solutions. F14–F23 are fixed-dimension
multimodalities, a combination of unimodal and multimodal, used to evaluate the stability of an
algorithm between exploration and exploitation [51]. The population size and maximum iterations
for all algorithms were set to 30 and 500, respectively, for a fair comparison. In the proposed
EHHOCBO, we set the refraction index z = 100 and k = 1000. All other parameter settings of
the algorithm were kept the same as in the original paper, as shown in Table 1. All experiments should
be tested independently 30 to reduce randomness. Detailed descriptions of the 23 functions are listed
in Tables 2–4, and Fig. 4 visualizes the search space for the 23 benchmark functions. The following
algorithms are adopted for comparison tests:

• Harris Hawks Optimization (HHO) [41]

• Coot Bird Optimization(CBO) [45]

• Arithmetic Optimization Algorithm (AOA) [21]

• Whale Optimization Algorithm (WOA) [30]

• Grey Wolf Optimizer (GWO) [31]

• Particle Swarm Optimization (PSO) [22]

• Sooty Tern Optimization Algorithm (STOA) [24]

• Chimp Optimization Algorithm (ChOA) [25]

Table 1: Parameter settings of EHHOCBO and comparison algorithms

Algorithm Parameter setting

HHO [41] E0 ∈ [−1, 1]
CBO [45] —
AOA [21] α = 5; μ = 0.5; Min = 0.1; Max = 1
WOA [30] b = 1; a1 = [2, 0] ; a2 = [−2, −1]
GWO [31] a = [2, 0]
PSO [22] c1 = 2; c2 = 2; ωmin = 0.4; ωmax = 0.9
STOA [24] Cf = 2; CB = [2, 0] ; u = v = 1
ChOA [25] f = [2.5, 0] ; m = Gauss chaotic

(Continued)
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Table 1 (continued)

Algorithm Parameter setting

EHHOCBO E0 ∈ [−1, 1] ; z = 100, η = 1000; c1 = 0.1;
c2 = 0.2; c3 = 0.9; F1 = 1.0; F2 = 0.8;
F3 = 1.0

Table 2: Unimodal benchmark functions

Function Dimension (D) Range Fmin

F1 (x) =
D∑

i=1

x2
i 30 [−100,100] 0

F2 (x) =
D∑

i=1

|xi| +
D∏

i=1

|xi| 30 [−10,10] 0

F3 (x) =
D∑

i=1

(
D∑

j=1

xj

)2

30 [−100,100] 0

F4 (x) = max
i

{|xi|, 1 ≤ i ≤ D} 30 [−100,100] 0

F5 (x) =
D−1∑
i=1

[
100

(
xi+1 − x2

i

)2 + (xi − 1)
2
]

30 [−30,30] 0

F6 (x) =
D∑

i=1

(|xi + 0.5|)2 30 [−100,100] 0

F7 (x) =
D∑

i=1

ix4
i + random [0, 1) 30 [−1.28,1.28] 0

Table 3: Multimodal benchmark functions

Function Dimension (D) Range Fmin

F8 (x) =
D∑

i=1

−xi sin
(√|xi|

)
30 [−500,500] −418.9829 × D

F9 (x) =
D∑

i=1

[
x2

i − 10 cos (2πxi) + 10
]

30 [−5.12,5.12] 0

(Continued)



1650 CMES, 2023, vol.137, no.2

Table 3 (continued)

Function Dimension (D) Range Fmin

F10 (x) = −20 exp

⎛
⎝−0.2

√√√√1
n

D∑
i=1

x2
i

⎞
⎠

− exp

(
1
n

D∑
i=1

cos (2πxi)

)
+ 20 + e

30 [−32,32] 0

F11 (x) = 1
4000

D∑
i=1

x2
i −

D∏
i=1

cos
(

xi√
i

)
+ 1 30 [−600,600] 0

F12(x) = π

D

{
10 sin(πy1) +

D−1∑
i=1

(yi − 1)2

[1 + 10 sin2
(πyi+1)] + (yn − 1)2

}

+
D∑

i=1

u(xi, 10, 100, 4)

yi = 1 + xi + 1
4

,

u(xi, a, k, m) =

⎧⎪⎨
⎪⎩

k(xi − a)mxi > a
0 − a < xi < a
k(−xi − a)mxi < −a

30 [−50,50] 0

F13 (x) = 0.1
{

sin2
(3πxi) +

D∑
i=1

(xi − 1)
2

[
1 + sin2

(3πxi + 1)
]+ (xD − 1)

2

[
1 + sin2

(2πxD)
] }+

D∑
i=1

u (xi, 5, 100, 4)

30 [−50,50] 0

Table 4: Fix-dimension multimodal benchmark functions

Function Dimension (D) Range Fmin

F14 (x) =
⎛
⎝ 1

500
+

25∑
j=1

(
j +

n∑
i=1

(
xi − aij

)6

)−1
⎞
⎠

−1

2 [−65,65] 0.998

F15 (x) =
11∑

i=1

[
ai − x1

(
b2

i + bix2

)
b2

i + bix3 + x4

]2

4 [−5,5] 0.00030

(Continued)
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Table 4 (continued)

Function Dimension (D) Range Fmin

F16 (x) = 4x2
1 − 2.1x4

1 + 1
3

x6
1 + x1x2 − 4x2

2 + 4x4
2 2 [−5,5] −1.0316

F17 (x) =(
x2 − 5.1

4π 2
x2

1 + 5
π

x1 − 6
)2

+ 10
(

1 − 1
8π

)
cos x1 + 10

2 [−5,5] 0.398

F18 (x) = [1 + (x1 + x2 + 1)
2

× (19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2

) ]
×[30 + (2x1 − 3x2)

2

× (18 − 32x2 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2

) ] 2 [−2,2] 3

F19 (x) = −
4∑

i=1

ci exp

(
−

3∑
j=1

aij

(
xj − pij

)2

)
3 [−1,2] −3.8628

F20 (x) = −
4∑

i=1

ci exp

(
−

6∑
j=1

aij

(
xj − pij

)2

)
6 [0,1] −3.32

F21 (x) = −
5∑

i=1

[
(X − ai) (X − ai)

T + ci

]−1
4 [0,10] −10.1532

F22 (x) = −
7∑

i=1

[
(X − ai) (X − ai)

T + ci

]−1
4 [0,10] −10.4028

F23 (x) = −
10∑

i=1

[
(X − ai) (X − ai)

T + ci

]−1
4 [0,10] −10.5363

Figure 4: (Continued)
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Figure 4: 3D view of the search space for 23 benchmark functions

In order to evaluate the performance of the algorithm more intuitively, this paper introduces the
Mean fitness (Mean) and Standard deviation (Std) evaluation indicators. The difference between the
mean fitness and the target value represents the convergence accuracy of the algorithm. The standard
deviation evaluates the degree of fluctuation of the experimental results. The size of the Std depends
on how stable the algorithm is. The following formula calculates them:

Mean = 1
times

times∑
i=1

Ai (31)

Std =
√√√√ 1

times − 1

times∑
i=1

(Ai − Mean)
2 (32)

where times is the number of experiments. Ai is the result for each experiment.
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4.1.1 Effectiveness of the Introduced Strategy

This paper first integrates the original HHO and CBO algorithms into a new intelligent algo-
rithm named EHHOCBO. The algorithm takes HHO as the core framework, introduces the strong
exploratory leadership mechanism of CBO, and then improves the algorithm with EMS and ROBL
strategies. To investigate the impact of each improved component on the algorithm, this paper designs
a comparison experiment between EHHOCBO and three other derived algorithms (EHHOCBO1,
EHHOCBO2, EHHOCBO3). EHHOCBO1 only introduced the leadership mechanism of CBO into
the algorithm. EHHOCBO2 introduces the leadership mechanism of the CBO algorithm and the EMS
strategy into the algorithm. EHHOCBO3 introduces the leadership mechanism of the CBO algorithm
and ROBL strategy. The performance of these four algorithms is tested using 23 standard test functions
under the same parameter settings, and the sizes of Mean and Std are listed in Table 5.

Table 5: Results of EHHOCBO1, EHHOCBO2, EHHOCBO3, and EHHOCBO on 23 benchmark
functions

Fn Measure EHHOCBO EHHOCBO1 EHHOCBO2 EHHOCBO3

F 1 Mean 0.00E+00 9.05E−298 4.84E−316 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F 2 Mean 0.00E+00 1.15E−145 4.96E−157 0.00E+00
Std 0.00E+00 6.28E−145 2.71E−156 0.00E+00

F 3 Mean 0.00E+00 2.11E−246 4.89E−252 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F 4 Mean 0.00E+00 2.44E−150 2.07E−152 0.00E+00
Std 0.00E+00 1.10E−149 1.13E−151 0.00E+00

F 5 Mean 6.73E−05 7.24E−04 8.09E−05 9.65E−04
Std 1.03E−05 7.36E−04 8.05E−05 1.25E−03

F 6 Mean 2.12E−09 6.13E−08 2.14E−09 9.53E−08
Std 2.52E−09 4.88E−08 2.85E−09 1.14E−07

F 7 Mean 1.50E−04 1.61E−04 2.04E−04 2.50E−04
Std 1.56E−04 1.62E−04 2.88E−04 2.46E−04

F 8 Mean −1.26E+04 −1.18E+04 −1.23E+04 −1.22E+04
Std 3.69E−05 1.14E+03 6.36E+02 8.31E+02

F 9 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F 10 Mean 8.88E−16 8.88E−16 8.88E−16 8.88E−16
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F 11 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F 12 Mean 3.73E−10 1.14E−08 4.84E−10 1.36E−08
Std 8.19E−10 2.03E−08 7.50E−10 1.37E−08

F 13 Mean 5.32E−09 1.31E−07 7.20E−09 7.33E−04
Std 6.90E−09 2.08E−07 1.21E−08 2.79E−03

F 14 Mean 9.98E−01 1.10E+00 9.98E−01 1.06E+00
Std 2.84E−16 4.00E−01 2.90E−16 2.52E−01

(Continued)
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Table 5 (continued)

Fn Measure EHHOCBO EHHOCBO1 EHHOCBO2 EHHOCBO3

F 15 Mean 3.07E−04 3.69E−04 3.38E−04 3.38E−04
Std 1.69E−18 2.32E−04 1.67E−04 1.67E−04

F 16 Mean −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00
Std 4.18E−16 5.89E−16 4.14E−16 4.18E−16

F 17 Mean 3.98E−01 3.98E−01 3.98E−01 3.98E−01
Std 3.24E−16 1.51E−15 5.42E−16 1.49E−15

F 18 Mean 3.00E+00 3.00E+00 3.00E+00 3.00E+00
Std 7.09E−14 2.01E−11 1.01E−13 3.78E−12

F 19 Mean −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00
Std 2.59E−15 4.50E−15 3.76E−15 3.30E−15

F 20 Mean −3.30E+00 −3.27E+00 −3.27E+00 −3.29E+00
Std 5.11E−02 6.03E−02 6.05E−02 5.35E−02

F 21 Mean −1.02E+01 −5.23E+00 −9.98E+00 −5.31E+00
Std 4.13E−15 9.31E−01 9.31E−01 1.39E+00

F 22 Mean −1.03E+01 −5.36E+00 −1.02E+01 −6.05E+00
Std 1.35E−01 1.43E+00 9.70E−01 2.16E+00

F 23 Mean −1.05E+01 −5.40E+00 −1.04E+01 −5.40E+00
Std 3.86E−15 1.48E+00 4.35E−15 1.48E+00

The experimental results show that in comparing between EHHOCBO and the remaining three
derived algorithms, EHHOCBO has better simulation results on the test functions F1–F23. This
verifies the effectiveness of the improved method in this paper. The theoretical minimum of the
test functions was achieved for the test functions F1–F4, F8, F9, F11, F14, F16–F19, and F23.
The remaining three derived algorithms also reached theoretical minima in some test functions, but
the overall performance shows a different advantage than the EHHOCBO algorithm. In terms of
standard deviation, the simulation results of EHHOCBO also obtained better results. This shows that
EHHOCBO has strong stability in solving all test functions. The results show that the improvements
in this paper significantly improve the performance of the original HHO algorithm. The improved
method in this paper enables the EHHOCBO algorithm to obtain strong exploration and utilization
capabilities, laying a foundation for the ability to provide high-quality solutions. After validation,
EHHOCBO was selected as the final version for further comparison and discussion.

4.1.2 Comparison between EHHOCBO and Other Optimization Algorithms

This section evaluates the proposed algorithm’s exploration and development capabilities using
standard test functions. The above eight well-known algorithms are compared mainly from numerical
analysis, box plot, convergence curve, and Wilcoxon test. After 30 independent runs of the experiment.
The Mean and Std of the obtained results are recorded in Table 6 below.
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Table 6: Results of 23 benchmark functions

Fn Measure GWO WOA PSO AOA HHO ChOA STOA CBO EHHOCBO

F1 Mean 2.22E−27 7.92E−72 2.63E+00 9.73E−48 5.75E−98 6.49E−06 4.99E−07 1.20E−22 0.00E+00
Std 5.43E−27 4.22E−71 1.15E+00 4.80E−47 2.87E−97 1.28E−05 6.71E−07 6.59E−22 0.00E+00

F2 Mean 8.23E−17 4.46E−51 1.44E−49 0.00E+00 1.51E−50 3.39E−05 1.26E−05 2.01E−14 0.00E+00
Std 6.13E−17 1.30E−50 7.53E−49 0.00E+00 5.19E−50 4.15E−05 2.54E−05 6.47E−14 0.00E+00

F3 Mean 1.43E−05 4.25E+04 1.95E+02 4.04E−03 3.50E−72 9.74E+01 1.29E−01 3.96E−26 0.00E+00
Std 3.47E−05 1.23E+04 6.70E+01 7.64E−03 1.79E−71 1.57E+02 2.52E−01 1.92E−26 0.00E+00

F4 Mean 1.08E−06 5.26E+01 1.97E+00 3.02E−02 3.14E−49 2.87E−01 5.03E−02 2.10E−13 0.00E+00
Std 1.26E−06 2.68E+01 2.31E−01 1.77E−02 1.47E−48 3.48E−01 8.79E−02 9.37E−13 0.00E+00

F5 Mean 2.70E+01 2.80E+01 1.12E+03 2.85E+01 8.34E−03 2.89E+01 2.84E+01 4.50E+01 6.73E−05
Std 8.74E−01 5.51E−01 6.36E+02 3.06E−01 1.36E−02 1.26E−01 4.05E−01 3.20E+01 1.03E−05

F6 Mean 7.66E−01 4.69E−01 2.42E+00 3.27E+00 1.02E−04 3.72E+00 2.56E+00 1.96E−01 2.12E−09
Std 3.53E−01 2.86E−01 1.21E+00 2.36E−01 1.16E−04 4.53E−01 4.64E−01 1.22E−01 2.52E−09

F7 Mean 2.19E−03 2.54E−03 1.92E+01 9.03E−05 1.28E−04 2.09E−03 6.91E−03 5.75E−03 1.50E−04
Std 1.22E−03 2.76E−03 1.04E+01 8.86E−05 1.01E−04 2.80E−03 5.71E−03 5.22E−03 1.56E−04

F8 Mean −6.02E+03 −1.08E+04 −6.22E+03 −5.43E+03 −1.24E+04 −5.74E+03 −5.91E+03 −7.40E+03 −1.26E+04
Std 1.02E+03 1.73E+03 1.50E+03 4.29E+02 5.03E+02 7.42E+01 5.13E+02 7.23E+02 3.69E−05

F9 Mean 1.90E+00 1.75E+00 1.65E+02 0.00E+00 0.00E+00 1.66E+01 1.12E+01 1.73E−04 0.00E+00
Std 2.74E+00 7.09E+00 2.44E+01 0.00E+00 0.00E+00 2.01E+01 1.64E+01 9.48E−04 0.00E+00

F10 Mean 1.00E−13 4.56E−15 2.62E+00 8.88E−16 8.88E−16 2.00E+01 2.00E+01 2.76E−09 8.88E−16
Std 1.47E−14 2.38E−15 4.84E−01 0.00E+00 0.00E+00 1.20E−03 1.20E−03 1.40E−08 0.00E+00

F11 Mean 4.27E−03 6.89E−03 1.22E−01 1.76E−01 0.00E+00 2.57E−02 2.59E−02 1.26E−16 0.00E+00
Std 1.06E−02 2.77E−02 3.73E−02 1.34E−01 0.00E+00 6.67E−02 4.07E−02 2.75E−16 0.00E+00

F12 Mean 4.27E−02 2.20E−02 6.26E−02 5.10E+06 1.02E−05 5.41E−01 2.41E−01 3.74E−01 3.73E−10
Std 2.01E−02 1.08E−02 5.55E−02 4.63E+07 1.58E−05 2.24E−01 1.61E−01 8.27E−01 8.19E−10

F13 Mean 6.82E−01 5.70E−01 5.65E−01 2.83E+00 9.94E−05 2.72E+00 1.89E+00 4.10E−01 5.32E−09
Std 2.49E−01 2.52E−01 2.77E−01 1.02E−01 1.54E−04 1.27E−01 2.51E−01 5.26E−01 6.90E−09

F14 Mean 4.29E+00 3.48E+00 2.88E+00 9.80E+00 1.72E+00 1.32E+00 1.23E+00 9.98E−01 9.98E−01
Std 4.20E+00 3.66E+00 2.01E+00 4.28E+00 1.97E+00 1.78E+00 5.64E−01 6.60E−16 2.84E−16

F15 Mean 3.14E−03 8.30E−04 8.44E−04 1.18E−02 3.74E−04 1.30E−03 1.09E−03 1.32E−03 3.07E−04
Std 6.88E−03 5.59E−04 1.59E−04 1.76E−02 1.71E−04 5.13E−05 3.35E−04 3.60E−03 1.69E−18

F16 Mean −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00
Std 2.62E−08 3.12E−09 4.46E−16 1.24E−07 8.85E−10 1.46E−05 3.45E−06 3.23E−12 4.18E−16

F17 Mean 3.98E−01 3.98E−01 3.98E−01 4.14E−01 3.98E−01 5.54E−01 3.98E−01 3.98E−01 3.98E−01
Std 3.11E−06 3.57E−05 0.00E+00 1.54E−02 2.30E−05 8.47E−01 4.95E−04 8.84E−07 3.24E−16

F18 Mean 3.00E+00 3.00E+00 3.00E+00 7.58E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00
Std 4.97E−05 8.07E−05 7.71E−15 1.02E+01 2.83E−07 2.95E−04 9.94E−05 1.16E−12 7.09E−14

F19 Mean −3.86E+00 −3.85E+00 −3.86E+00 −3.85E+00 −3.86E+00 −3.85E+00 −3.85E+00 −3.86E+00 −3.86E+00
Std 1.81E−03 1.34E−02 2.92E−15 4.03E−03 5.45E−03 1.57E−03 1.16E−03 1.46E−12 2.59E−15

F20 Mean −3.22E+00 −3.23E+00 −3.25E+00 −3.07E+00 −3.08E+00 −2.63E+00 −2.91E+00 −3.29E+00 −3.30E+00
Std 1.32E−01 9.13E−02 5.99E−02 1.06E−01 1.36E−01 4.84E−01 4.48E−01 5.35E−02 5.11E−02

F21 Mean −9.14E+00 −8.50E+00 −7.06E+00 −3.46E+00 −5.05E+00 −1.91E+00 −3.09E+00 −7.98E+00 −1.02E+01
Std 2.06E+00 2.52E+00 3.27E+00 1.47E+00 4.62E−03 1.85E+00 3.77E+00 3.20E+00 4.13E−15

F22 Mean −1.01E+01 −8.05E+00 −9.46E+00 −4.28E+00 −5.42E+00 −3.61E+00 −4.71E+00 −9.49E+00 −1.03E+01
Std 1.40E+00 3.20E+00 2.47E+00 1.54E+00 1.30E+00 1.97E+00 4.47E+00 2.38E+00 1.35E−01

F23 Mean −1.01E+01 −7.14E+00 −9.71E+00 −3.76E+00 −5.64E+00 −4.25E+00 −7.71E+00 −9.88E+00 −1.05E+01
Std 1.75E+00 3.55E+00 2.60E+00 1.51E+00 1.56E+00 1.59E+00 3.71E+00 2.03E+00 3.86E−15

The proposed EHHOCBO experiment showed better mean fitness and standard deviation. The
EHHOCBO has an overwhelming advantage in solving the unimodal test function problem. In the
test functions F1–F4, the EHHOCBO can acquire the theoretically global optimal solution compared
with the original HHO algorithm and CBO algorithm. In the multi-dimensional test functions
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F8–F13, the EHHOCBO algorithm achieves better simulation results than the other algorithms. It
is worth mentioning that in functions F9 and F11, EHHOCBO obtains the ideal optimal value. The
experimental results of the unimodal and multimodal functions fully demonstrate that the EHHOCBO
has a better exploitation and exploration capability and a higher possibility of jumping out of the
local optimum solution. This shows that the introduced improvement strategy greatly improves the
relationship between exploration and exploitation in the HHO algorithm. The EHHOCBO integrates
the leadership mechanism of the CBO algorithm into the population initialization of the HHO
algorithm. In this way, the stable exploration and development capabilities of the two algorithms are
extracted so that the algorithm can easily jump out of the local optimum. For the fixed-dimension
benchmark functions F14–F23, the EHHOCBO algorithm obtains better solutions and smaller
deviations. Especially in the functions F14, F16–F19, EHHOCBO obtained the theoretically optimal
Mean and Std. The smaller Std indicates that the EHHOCBO has higher stability, which can ensure
that the algorithm can obtain more accurate results in the application process. The fixed dimension
test function results show that the proposed EHHOCBO has good stability between exploration and
exploitation due to the introduction of the EMS improvement strategy.

Boxplots are drawn in this paper to visualize the distribution of the data. It can well describe the
consistency between data. Fig. 5 depicts the boxplot of EHHOCBO against eight other comparison
algorithms over 15 representative benchmark functions. In this figure, serial numbers 1–9 correspond
to the algorithms in the table in order, specifically 1-GWO, 2-WOA, 3-PSO, 4-AOA, 5-HHO, 6-ChOA,
7-STOA, 8-CBO, and 9-EHHOCBO. As can be seen from Fig. 5, the EHHOCBO algorithm has
better consistency than other original algorithms. No outliers were generated during the iteration.
The obtained median, maximum and minimum values are more concentrated than other comparison
algorithms and only slightly worse than the HHO algorithm in function F6. The above confirms the
high stability of EHHOCBO.

In order to study the convergence behavior of the EHHOCBO algorithm, this paper compares the
convergence curve of the EHHOCBO algorithm with the convergence curves of the other eight com-
parison algorithms on some representative test functions. The results are shown in Fig. 6. According
to the convergence curve graph, we can see that the EHHOCBO algorithm has a better convergence
performance. In the test functions F1, F3, and F4, the EHHOCBO algorithm can quickly converge to
the global optimum, and its convergence curve shows the fastest decay trend. At the same time, other
algorithms have obvious lag and slow convergence speed. This is because the algorithm introduces
an improved strategy so that the algorithm have better randomness and population diversity. Among
the test functions F5 and F6, the convergence of the EHHOCBO algorithm is also the best, and its
convergence curve is consistent with that of HHO at the beginning of the iteration. But in the later
stage, the convergence trend of HHO could be clearer, and the EHHOCBO algorithm still maintains
good convergence until the end. This shows that the introduction of the improved strategy effectively
reduces the possibility of the algorithm falling into the local optimum. In the multi-dimensional test
functions F8–F12, the EHHOCBO algorithm also maintains good convergence. In test functions F9–
F11, EHHOCBO converges to the optimal global solution only after several iterations. In F8, the
convergence of EHHOCBO is slightly worse than that of HHO in the early stage. But in the later
iterations, the HHO algorithm gradually falls into the local optimum, while the EHHOCBO algorithm
still maintains good convergence performance. In F10–F12, although the EHHOCBO algorithm
does not reach the theoretical optimum, its convergence performance and final accuracy are the best
among all algorithms. The EHHOCBO algorithm also shows strong performance in solving fixed-
dimensional testing problems. EHHOCBO converges rapidly in the early stages of testing functions
F17, F18, F20, F22, and F23. And make a quick transitions between exploration and exploitation.
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Finally, the optimal value was determined. The convergence accuracy and operational efficiency of
the EHHOCBO algorithm are also improved to some extent compared to HHO and CBO.

Figure 5: Boxplot analysis on 23 benchmark functions
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Figure 6: Convergence curves of different algorithms on fifteen benchmark functions
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Table 7: Comparison results of the average computation time for different algorithms (unit: s)

Fn GWO WOA PSO AOA HHO ChOA STOA CBO EHHOCBO
F1 3.26E−01 9.67E−02 1.59E−01 1.80E−01 2.35E−01 2.78E+00 2.77E−01 1.60E−01 7.46E−01
F2 3.61E−01 1.07E−01 1.52E−01 1.86E−01 2.09E−01 2.72E+00 2.57E−01 1.60E−01 7.24E−01
F3 5.04E−01 3.34E−01 3.51E−01 4.16E−01 7.88E−01 2.68E+00 4.45E−01 4.48E−01 2.81E−01
F4 4.01E−01 1.15E−01 1.64E−01 2.22E−01 3.08E−01 2.98E+00 2.83E−01 1.76E−01 7.67E−01
F5 4.37E−01 1.52E−01 1.85E−01 2.85E−01 4.68E−01 2.70E+00 2.90E−01 2.30E−01 1.24E−01
F6 3.82E−01 1.01E−01 1.42E−01 1.97E−01 3.13E−01 2.61E+00 2.56E−01 1.69E−01 1.92E−01
F7 4.85E−01 2.39E−01 2.56E−01 3.91E−01 6.58E−01 2.82E+00 3.41E−01 3.37E−01 2.29E+00
F8 4.49E−01 1.78E−01 2.21E−01 2.53E−01 5.16E−01 2.84E+00 3.25E−01 2.47E−01 1.32E+00
F9 4.25E−01 1.27E−01 1.91E−01 2.21E−01 4.124E−01 2.87E+00 2.97E−01 2.37E−01 1.05E+00
F10 4.14E−01 1.39E−01 1.92E−01 2.35E−01 4.40E−01 2.87E+00 3.36E−01 2.39E−01 1.12E+00
F11 3.95E−01 1.43E−01 1.88E−01 2.35E−01 4.31E−01 2.38E+00 2.90E−01 2.23E−01 1.11E+00
F12 4.27E−01 3.74E−01 4.20E−01 4.56E−01 1.06E−01 2.30E+00 4.56E−01 4.91E−01 3.33E−01
F13 4.77E−01 3.83E−01 4.31E−01 4.47E−01 1.14E−01 2.37E+00 4.59E−01 5.07E−01 2.49E+00
F14 5.52E−01 5.75E−01 5.26E−01 5.96E−01 1.55E+00 6.55E−01 5.10E−01 7.78E−01 1.34E+00
F15 1.41E−01 9.28E−02 8.16E−02 1.11E−01 3.05E−01 6.74E+00 1.16E−01 1.71E−01 1.05E+00
F16 1.12E−01 9.31E−02 6.97E−02 1.10E−01 3.27E−01 4.17E−01 9.66E−02 1.54E−01 1.04E+00
F17 1.11E−01 9.49E−02 5.42E−02 9.47E−02 3.17E−01 4.67E+00 9.97E−02 1.58E−01 1.03E+00
F18 9.94E−02 7.73E−02 4.62E−02 9.09E−02 2.73E−01 4.37E−01 8.69E−02 1.55E−01 9.59E−02
F19 1.25E−01 1.18E−01 7.93E−01 1.23E−01 3.42E−01 5.34E−01 1.22E−01 1.73E−01 1.06E+00
F20 1.57E−01 1.08E−01 9.24E−01 1.33E−01 3.54E−01 8.73E−01 1.36E−01 1.67E−01 9.56E−01
F21 1.43E−01 1.20E−01 9.94E−02 1.30E−01 3.86E−01 6.05E−01 1.29E−01 1.84E−01 1.19E+00
F22 1.67E−01 1.40E−01 1.15E−01 1.42E−01 4.10E−01 6.19E−01 1.49E−01 1.90E−01 1.19E+00
F23 2.01E−01 1.60E−01 1.35E−01 1.78E−01 4.89E−01 5.76E−01 1.65E−01 2.23E−01 1.28E+00
Total 7.29E+00 4.07E+00 5.90E+00 5.43E+00 9.75E+00 5.10E+01 5.92E+00 5.98E+00 2.28E+01

Table 7 reports the average computation time for each algorithm. The total running time for each
algorithm is calculated and ranked as follows: ChOA(51 s) > EHHOCBO(22.8 s) > HHO(9.75 s) >
GWO(7.29 s) > CBO(5.98 s) > STOA(5.92 s) > PSO(5.90 s) > AOA(5.43 s) > WOA(4.07 s). Table 7
shows that the EHHOCBO algorithm takes more time than the original HHO algorithm. The main
reason is that the improved approach adds steps and extra time to the HHO algorithm. Overall, our
proposed algorithm is acceptable due to the performance improvements.

To better evaluate the correlation, the Wilcoxon rank sum test was designed, and the significance
level was set at 0.05 [53]. The p-values are recorded in Table 8. In the table, the parts where EHHOCBO
performs better are highlighted in bold. NaN indicates the same performance as the comparison
algorithm. The rest is the part where EHHOCBO has poor performance. As can be seen from
Table 8, EHHOCBO performs worse than some algorithms only on individual functions. EHHOCBO
performs slightly worse than the PSO algorithm on F18 and slightly worse than the HHO algorithm
on F7. In other cases, EHHOCBO achieved the same or better results. Based on statistical theory,
EHHOCBO has better performance.
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Table 8: p-values of the Wilcoxon rank-sum test

Fn EHHOCBO
vs. GWO

EHHOCBO
vs. WOA

EHHOCBO
vs. PSO

EHHOCBO
vs. AOA

EHHOCBO
vs. HHO

EHHOCBO
vs. ChOA

EHHOCBO
vs. STOA

EHHOCBO
vs. CBO

F1 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12
F2 1.21E−12 1.21E−12 1.21E−12 NaN 1.21E−12 1.21E−12 1.21E−12 1.21E−12
F3 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12
F4 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12
F5 3.02E−11 3.02E−11 3.02E−11 3.02E−11 1.61E−10 3.02E−11 3.02E−11 3.02E−11
F6 3.02E−11 3.02E−11 3.02E−11 3.02E−10 4.08E−11 3.02E−11 3.02E−11 3.02E−11
F7 1.07E−09 6.52E−09 3.02E−11 3.18E−01 3.71E−01 1.01E−08 6.07E−11 9.92E−11
F8 3.02E−11 3.82E−09 3.02E−11 3.02E−11 6.53E−07 3.02E−11 3.02E−11 3.02E−11
F9 1.12E−12 1.61E−01 1.21E−12 NaN NaN 1.21E−12 1.21E−12 1.10E−02
F10 1.11E−12 9.16E−09 1.21E−12 NaN NaN 1.21E−12 1.21E−12 5.26E−09
F11 1.37E−03 3.34E−01 1.21E−12 1.21E−12 NaN 1.21E−12 1.21E−12 4.19E−02
F12 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11
F13 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.34E−11 3.02E−11 3.02E−11 3.02E−11
F14 2.33E−11 2.45E−11 2.89E−06 2.33E−11 2.33E−11 2.33E−11 2.33E−11 4.28E−02
F15 3.00E−11 3.00E−11 3.00E−11 3.00E−11 3.00E−11 3.00E−11 3.00E−11 3.00E−11
F16 1.89E−11 1.89E−11 6.33E−05 1.89E−11 1.89E−11 1.89E−11 1.89E−11 8.23E−06
F17 1.21E−12 1.21E−12 NaN 1.21E−12 4.57E−12 1.21E−12 1.21E−12 1.93E−10
F18 3.00E−11 3.00E−11 8.59E−01 3.00E−11 1.68E−09 3.00E−11 3.00E−11 4.84E−03
F19 1.71E−11 1.71E−11 2.23E−03 1.71E−11 1.71E−11 1.71E−11 1.71E−11 1.71E−11
F20 1.22E−03 2.53E−05 2.13E−03 8.49E−11 1.94E−09 2.47E−10 8.49E−11 5.14E−05
F21 1.59E−11 1.59E−11 1.59E−11 1.59E−11 1.59E−11 1.59E−11 1.59E−11 1.59E−11
F22 1.95E−11 1.95E−11 1.95E−11 1.95E−11 1.95E−11 1.95E−11 1.95E−11 1.95E−11
F23 2.38E−11 2.38E−11 2.38E−11 2.38E−11 2.38E−11 2.38E−11 2.38E−11 2.38E−11
+/=/− 23/0/0 23/0/0 21/1/1 20/3/0 19/3/1 23/0/0 23/0/0 23/0/0

In addition, the performance of some optimization algorithms gradually deteriorates as the
dimension of the problem expands. In this paper, EHHOCBO and HHO algorithms are simulated
in different dimensions to evaluate the impact of scalability on the EHHOCBO algorithm. The
experimental tools are F1–F13 of the standard test functions, and the results are recorded in Table 9.
The experimental results show that the simulation accuracy of both the original HHO and EHHOCBO
decreases with the increase in the number of iterations. However, the simulation results of EHHOCBO
are consistently more accurate than HHO. The accuracy of EHHOCBO will remain relatively high
and will always be kept in a relatively precise state. It is worth mentioning that EHHOCBO reaches
the global optimal solution in F1–F4, F9, and F11. In conclusion, the EHHOCBO algorithm also
performs well in solving high-dimensional problems.

Table 9: Fitness values of HHO and EHHOCBO in different dimensions on 13 test functions

Fn 100 500 1000
HHO EHHOCBO HHO EHHOCBO HHO EHHOCBO

F 1 1.13E−94 0.00E+00 2.91E−93 0.00E+00 8.12E−94 0.00E+00
F 2 3.53E−50 0.00E+00 3.09E−50 0.00E+00 7.31E−49 0.00E+00

(Continued)
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Table 9 (continued)

Fn 100 500 1000
HHO EHHOCBO HHO EHHOCBO HHO EHHOCBO

F 3 1.30E−61 0.00E+00 1.08E−37 0.00E+00 2.25E−21 0.00E+00
F 4 3.35E−48 0.00E+00 8.23E−49 0.00E+00 5.52E−48 0.00E+00
F 5 5.35E−02 1.52E−02 1.84E−01 9.26E−02 5.37E−01 2.02E−01
F 6 3.96E−04 4.44E−05 1.79E−03 2.77E−04 2.31E−02 1.34E−02
F 7 1.76E−04 1.56E−04 1.86E−04 1.66E−04 1.60E−04 8.67E−05
F 8 −41896.6 −41840.5 −209468.7 −209476.7 −418972.3 −418976.7
F 9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F 10 8.88E−16 8.88E−16 8.88E−16 8.88E−16 8.88E−16 8.88E−16
F 11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F 12 4.10E−06 3.33E−07 2.05E−06 7.28E−07 1.92E−05 2.16E−06
F 13 9.37E−05 1.62E−05 3.48E−03 2.83E−03 1.03E−02 1.01E−03

4.2 Experiment 2: IEEE CEC2017 Test Functions
The benchmark function test proves that EHHOCBO performs well in solving simple problems,

but is insufficient to prove its superior performance. To further exploit its performance, this paper
applies the EHHOCBO algorithm to solve 29 test functions in IEEE CEC2017 [50,51] to evaluate
its performance in solving complex numerical problems. In this section, comparative experiments are
conducted between EHHOCBO and six well-known hybrid algorithms based on IEEE CEC2017 test
functions. The six algorithms are the Differential Squirrel Search Algorithm (DSSA) [54], Equilibrium
Slime Mould Algorithm (ESMA) [55], Grey Wolf Optimizer Based on Aquila Exploration Method
(AGWO) [56], Teaching-Learning-Based Optimization Algorithm with Reinforcement Learning Strat-
egy (RLTLBO) [57], Leader Harris Hawks optimization (LHHO) [58] and Hybrid Sine-Cosine Harris
Hawks Optimization (SCHHO) [59]. IEEE CEC2017 test functions include 29 functions, which are
widely used for performance testing and evaluation of intelligent bee swarm algorithms. Among
them, CEC-1 and CEC-3 are single-peaked functions, F4–F10 are simple multi-peaked functions,
CEC-11 to CEC-20 are hybrid functions, and CEC-21 to CEC-30 are combined functions. Table 10
lists these functions’ names, dimensions, target values, and search ranges. The proposed EHHOCBO
algorithm was run independently of the other comparison algorithms 30 times. The population size
and maximum iterations were set to 30 and 500. The mean and standard deviation obtained were
recorded in Table 11.

Table 10: IEEE CEC2017 test function

Function Name Dim Range Fmin

Unimodal functions

CEC-01 Shifted and Rotated Bent Cigar Function 10 [−100,100] 100
CEC-03 Shifted and Rotated Zakharov Function 10 [−100,100] 300

Simple multimodal functions

CEC-04 Shifted and Rotated Rosenbrock’s Function 10 [−100,100] 400

(Continued)
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Table 10 (continued)

Function Name Dim Range Fmin

CEC-05 Shifted and Rotated Rastrigin’s Function 10 [−100,100] 500
CEC-06 Shifted and Rotated Expanded Scaffer’s F6 Function 10 [−100,100] 600
CEC-07 Shifted and Rotated Lunacek Bi_Rastrigin Function 10 [−100,100] 700
CEC-08 Shifted and Rotated Non-Continuous Rastrigin’s Function 10 [−100,100] 800
CEC-09 Shifted and Rotated Levy Function 10 [−100,100] 900
CEC-10 Shifted and Rotated Schwefel’s Function 10 [−100,100] 1000

Hybrid functions

CEC-11 Hybrid Function 1 (N = 3) 10 [−100,100] 1100
CEC-12 Hybrid Function 2 (N = 3) 10 [−100,100] 1200
CEC-13 Hybrid Function 3 (N = 3) 10 [−100,100] 1300
CEC-14 Hybrid Function 4 (N = 4) 10 [−100,100] 1400
CEC-15 Hybrid Function 5 (N = 4) 10 [−100,100] 1500
CEC-16 Hybrid Function 6 (N = 4) 10 [−100,100] 1600
CEC-17 Hybrid Function 6 (N = 5) 10 [−100,100] 1700
CEC-18 Hybrid Function 6 (N = 5) 10 [−100,100] 1800
CEC-19 Hybrid Function 6 (N = 5) 10 [−100,100] 1900
CEC-20 Hybrid Function 6 (N = 6) 10 [−100,100] 2000

Composition functions

CEC-21 Composition Function 1 (N = 3) 10 [−100,100] 2100
CEC-22 Composition Function 2 (N = 3) 10 [−100,100] 2200
CEC-23 Composition Function 3 (N = 4) 10 [−100,100] 2300
CEC-24 Composition Function 4 (N = 4) 10 [−100,100] 2400
CEC-25 Composition Function 5 (N = 5) 10 [−100,100] 2500
CEC-26 Composition Function 6 (N = 5) 10 [−100,100] 2600
CEC-27 Composition Function 7 (N = 6) 10 [−100,100] 2700
CEC-28 Composition Function 8 (N = 6) 10 [−100,100] 2800
CEC-29 Composition Function 9 (N = 3) 10 [−100,100] 2900
CEC-30 Composition Function 10 (N = 3) 10 [−100,100] 3000

Table 11: Results of IEEE CEC2017 test function

Fn Measure DSSA ESMA AGWO RLTLBO SCHHO LHHO EHHOCBO

CEC-1 Mean 8.60E+09 6.98E+03 2.39E+08 2.52E+03 7.72E+03 3.66E+09 2.96E+03
Std 1.78E+09 4.51E+03 1.41E+08 2.81E+03 3.31E+01 2.09E+09 2.78E+03

CEC-3 Mean 8.53E+03 3.08E+02 1.91E+03 3.00E+02 5.69E+03 8.99E+03 3.00E+02
Std 1.83E+03 1.94E+01 1.76E+03 2.31E−02 1.20E+03 2.84E+03 1.73E−06

CEC-4 Mean 9.62E+02 4.16E+02 4.28E+02 4.08E+02 4.35E+02 6.88E+02 4.05E+02
Std 2.23E+02 2.73E+01 2.60E+01 1.18E+01 5.42E+01 2.29E+02 1.44E+00

CEC-5 Mean 5.98E+02 5.20E+02 5.39E+02 5.16E+02 5.12E+02 5.64E+02 5.27E+02
Std 1.29E+01 6.81E+00 5.55E+00 6.33E+00 1.29E+01 1.82E+01 9.75E+00

(Continued)
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Table 11 (continued)

Fn Measure DSSA ESMA AGWO RLTLBO SCHHO LHHO EHHOCBO

CEC-6 Mean 6.51E+02 6.00E+02 6.10E+02 6.01E+02 6.58E+02 6.37E+02 6.03E+02
Std 8.37E+00 3.14E−01 2.97E+00 9.69E−01 8.66E+01 9.68E+00 9.13E−01

CEC-7 Mean 8.24E+02 7.30E+02 7.57E+02 7.35E+02 1.73E+01 7.85E+02 7.27E+02
Std 1.71E+01 6.78E+00 7.28E+00 1.12E+01 8.63E+00 1.56E+01 1.24E+00

CEC-8 Mean 8.20E+02 8.23E+02 8.21E+02 8.21E+02 1.02E+03 8.35E+02 8.21E+02
Std 1.09E+01 1.00E+01 1.07E+01 7.36E+01 2.03E+01 9.80E+00 7.31E+00

CEC-9 Mean 1.67E+03 9.19E+02 9.33E+02 9.04E+02 1.21E+04 1.38E+03 9.14E+02
Std 2.03E+02 6.58E+01 2.36E+01 1.48E+00 2.25E+02 2.21E+02 1.92E+01

CEC-10 Mean 2.63E+03 1.68E+03 2.17E+03 1.74E+03 3.60E+03 2.34E+03 1.56E+03
Std 1.32E+02 3.10E+02 3.24E+02 3.48E+02 1.65E+02 3.21E+02 2.02E+02

CEC-11 Mean 2.05E+03 1.18E+03 1.16E+03 1.12E+03 1.65E+04 1.69E+03 1.14E+03
Std 5.83E+01 9.78E+01 2.54E+01 2.43E+03 7.35E+02 7.40E+02 1.98E+01

CEC-12 Mean 1.77E+08 6.46E+05 3.01E+06 1.69E+04 7.69E+05 1.06E+07 1.25E+04
Std 8.78E+07 6.54E+05 3.28E+06 2.45E+04 8.34E+05 1.62E+07 1.05E+04

CEC-13 Mean 5.51E+06 9.94E+03 2.22E+04 4.34E+03 3.94E+05 1.65E+04 1.82E+03
Std 6.20E+06 1.21E+04 1.25E+04 2.76E+03 3.73E+05 1.14E+04 5.80E+02

CEC-14 Mean 3.19E+03 5.07E+03 3.55E+03 1.47E+03 5.37E+05 1.62E+03 1.49E+03
Std 3.89E+03 5.57E+03 1.84E+03 2.11E+01 3.91E+03 1.73E+02 2.77E+01

CEC-15 Mean 2.18E+04 9.63E+03 4.48E+03 1.61E+03 1.15E+05 7.77E+03 1.59E+03
Std 5.00E+04 7.99E+03 2.65E+03 5.80E+01 6.57E+03 4.65E+03 6.35E+01

CEC-16 Mean 2.13E+03 1.73E+03 1.74E+03 1.68E+03 3.24E+03 1.97E+03 1.72E+03
Std 9.23E+01 9.33E+01 1.05E+02 8.52E+01 1.65E+02 1.53E+02 1.09E+02

CEC-17 Mean 1.88E+03 1.77E+03 1.78E+03 1.75E+03 3.12E+03 1.77E+03 1.75E+03
Std 6.86E+01 4.70E+01 2.99E+01 1.03E+01 2.39E+02 1.84E+01 2.07E+01

CEC-18 Mean 1.29E+07 2.78E+04 7.96E+04 6.61E+03 2.87E+04 1.69E+04 5.28E+03
Std 1.15E+07 1.26E+04 6.55E+04 3.00E+06 2.34E+03 1.03E+04 6.89E+03

CEC-19 Mean 2.54E+05 1.32E+04 1.09E+04 2.00E+05 5.68E+05 3.43E+05 1.96E+03
Std 3.15E+05 1.22E+04 6.34E+03 1.04E+02 3.43E+05 1.72E+05 5.97E+01

CEC-20 Mean 2.26E+03 2.04E+03 2.14E+03 2.03E+03 2.45E+03 2.18E+03 2.13E+03
Std 5.33E+01 3.63E+01 4.64E+01 1.06E+01 2.71E+02 7.09E+01 5.64E+01

CEC-21 Mean 2.30E+03 2.31E+03 2.32E+03 2.25E+03 1.60E+03 2.35E+03 2.18E+03
Std 2.53E+01 4.77E+01 4.31E+01 5.06E+01 5.80E+01 4.68E+01 2.49E+01

CEC-22 Mean 2.74E+03 2.45E+03 2.33E+03 2.30E+03 2.69E+03 2.68E+03 2.30E+03
Std 1.99E+02 3.58E+02 7.51E+00 1.37E+01 6.04E+02 3.83E+02 3.78E+00

CEC-23 Mean 2.70E+03 2.62E+03 2.64E+03 2.62E+03 2.05E+03 2.68E+03 2.61E+03
Std 1.40E+01 8.91E+01 5.97E+00 6.12E+00 7.25E+01 3.00E+01 1.26E+00

CEC-24 Mean 2.84E+03 2.76E+03 2.77E+03 2.72E+03 5.70E+03 2.83E+03 2.72E+03
Std 3.62E+01 1.13E+01 7.85E+00 6.94E+01 2.65E+02 5.76E+01 1.00E+02

CEC-25 Mean 3.27E+03 2.93E+03 2.94E+03 2.93E+03 1.63E+03 3.12E+03 2.93E+03
Std 8.80E+01 2.68E+01 1.41E+01 2.23E+01 2.26E+01 1.42E+02 1.87E+01

CEC-26 Mean 3.78E+03 3.06E+03 3.23E+03 2.94E+03 5.95E+03 3.85E+03 2.93E+03

(Continued)
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Table 11 (continued)

Fn Measure DSSA ESMA AGWO RLTLBO SCHHO LHHO EHHOCBO

Std 2.15E+02 3.10E+02 4.27E+02 9.82E+01 2.07E+03 4.11E+02 7.92E+01
CEC-27 Mean 3.18E+03 3.10E+03 3.10E+03 3.10E+03 3.27E+03 3.22E+03 3.10E+03

Std 2.51E+01 1.79E+01 1.73E+00 4.07E+00 1.56E+02 7.55E+01 1.44E+01
CEC-28 Mean 3.31E+03 3.43E+03 3.36E+03 3.24E+03 3.13E+03 3.56E+03 3.27E+03

Std 5.15E+01 1.76E+02 8.53E+01 1.15E+02 1.18E+02 1.59E+02 1.35E+02
CEC-29 Mean 3.45E+03 3.22E+03 3.24E+03 3.19E+03 5.78E+03 3.41E+03 3.22E+03

Std 6.20E+01 7.69E+01 6.44E+01 2.11E+01 4.57E+02 1.36E+02 3.71E+01
CEC-30 Mean 1.74E+06 3.85E+05 6.20E+05 5.07E+05 2.19E+05 4.64E+06 2.83E+05

Std 1.75E+06 4.81E+06 6.82E+05 1.74E+05 7.25E+04 4.44E+06 1.52E+05

The results show that the performance of the EHHOCBO algorithm is significantly better
than that of DSSA, ESMA, AGWO, LHHO, and SCHHO algorithms and is comparable to the
performance of the RLTLBO algorithm. For unimodal functions CEC-1 and CEC-3, EHHOCBO
gives better simulation results, but in CEC-1, the standard deviation of the algorithm is slightly worse
than RLTLBO. For multimodal functions, EHHOCBO achieves the best standard deviation in the
test functions CEC-4, CEC-7, CEC8, and CEC-10, and the simulation results in other multimodal
functions are also slightly worse than the best results. The EHHOCBO algorithm also performs
well in mixed and composite functions. Among the 20 test functions from CEC-11 to CEC-30, the
EHHOCBO algorithm performs better than or equal to other algorithms in 15 of them. In the
remaining six functions, the simulation results of EHHOCBO are slightly worse than the optimal
results. The above experimental results show that EHHOCBO also has better advantages in solving
various complex optimization problems. Fig. 7 is the radar ranking chart of the five algorithms on the
CEC2017 test function. The size of the range enclosed by each curve in the figure represents algorithm’s
performance. The smaller the range, the better the performance. The figure shows that the EHHOCBO
has better performance.

Figure 7: Ranking on IEEE CEC2017 test function
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5 EHHOCBO for Addressing Engineering Problems

This section uses EHHOCBO to solve four common engineering problems in the structure
field. Engineering problem testing validates the applicability and black-box nature of meta-heuristic
algorithms in real-world constrained optimization. The four problems used are the cantilever beam
design problem, speed reducer design problem, welded beam design problem, and rolling element
bearing design problem. This paper introduces the death penalty function [60] to deal with those
non-feasible candidate solutions under equality and inequality constraints. The maximum number of
iterations and population size are still set to 500 and 30, respectively. In this experiment, each algorithm
runs independently 30 times. The detailed experimental results and discussions are as follows.

5.1 Cantilever Beam Design Problem
The cantilever beam design problem is a structural engineering design problem that is related to

the weight optimization of a cantilever beam with square cross-section. One end of the cantilever beam
is rigidly supported, and the vertical force acts on the free node of the cantilever. The beam comprises
five hollow blocks with constant thickness, and its height is a decision variable. The structure of the
cantilever beam is shown in Fig. 8, and the mathematical formula of the problem is as follows:

Consider:
→
x = [x1, x2, x3, x4, x5]

Minimize: f
(→

x
)

= 0.0624 (x1 + x2 + x3 + x4 + x5)

Subject to: g
(→

x
)

= 61
x1

3
+ 37

x2
3
+ 19

x3
3
+ 7

x4
3
+ 1

x5
3
− 1 ≤ 0

Variable range: 0.01 ≤ xi ≤ 100, i = 1, 2, · · · , 5

Figure 8: Schematic diagram of cantilever beam design problem

The optimization results of EHHOCBO and other algorithms for the cantilever beam design
problem are presented in Table 12. The results show that EHHOCBO proposed in this paper achieves
the best design. Its performance is significantly improved compared with the basic CBO and HHO
algorithms. Therefore, we believe that the EHHOCBO algorithm has good potential for solving such
problems.
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Table 12: Results of the cantilever beam design problem

Algorithm Optimum variables Minimum cost

x1 x2 x3 x4 x5

HHO 5.8340 5.4193 4.6158 3.5883 2.0527 1.3422
WOA 5.4947 6.2341 4.5780 2.9461 5.0408 1.5159
GWO 6.0252 5.3617 4.4035 3.5094 2.1795 1.3403
CBO 5.5809 6.6886 5.0170 2.8448 2.4897 1.4115
STOA 6.7764 5.6809 4.4343 2.9944 2.2305 1.3801
AOA 4.7413 4.8541 7.7214 9.3955 9.1411 2.2373
ChOA 6.5512 5.4661 4.1481 3.5411 1.9854 1.3536
AGWO 6.0395 5.1586 4.4599 3.5354 2.3121 1.3419
RLTLBO 5.9646 5.3115 4.6256 3.467 2.1152 1.3406
ESMA 5.975 5.3064 4.4528 3.5805 2.164 1.3403
LHHO 6.2389 5.2433 4.3853 3.3666 2.2891 1.343
SCHHO 5.8484 6.6103 3.8281 3.646 2.3151 1.3883
EHHOCBO 6.0013 5.2993 4.5250 3.5151 2.1340 1.3400

5.2 Speed Reducer Design Problem
The objective of this optimization problem is to minimize the weight of the reduction gear subject

to 11 constraints. The decision variables in this problem are the width of the tooth face x1, the modulus
of the gear x2, the number of teeth x3 in the pinion, the length of the first shaft x4, and the diameter x5,
the length of the second shaft x6, and the diameter x7. Fig. 9 is the schematic diagram of the reducer,
and the mathematical formula is shown as follows:

Consider:
→
x = [x1, x2, x3, x4, x5, x6, x7]

Minimize:
f
(→

x
)

= 0.7854x1x2
2
(
3.3333x3

2 + 14.9334x3 − 43.0934
)

−1.508x1

(
x6

2 + x2
7

)+ 7.4777
(
x6

3 + x7
3
)

Subject to:

g1

(→
x
)

= 27
x1x2

2x3

− 1 ≤ 0, g2

(→
x
)

= 397.5
x1x2

2x3
2
− 1 ≤ 0

g3

(→
x
)

= 1.93x4
3

x2x3x6
4
− 1 ≤ 0, g4

(→
x
)

= 1.93x5
3

x2x3x7
4
− 1 ≤ 0

g5

(→
x
)

=

√(
745x4

x2x3

)2

+ 16.9 × 106

110.0x6
3

− 1 ≤ 0

g6

(→
x
)

=

√(
745x4

x2x3

)2

+ 157.5 × 106

85.0x6
3

− 1 ≤ 0

g7

(→
x
)

= x2x3

40
− 1 ≤ 0, g8

(→
x
)

= 5x2

x1

− 1 ≤ 0
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g9

(→
x
)

= x1

12x2

− 1 ≤ 0, g10

(→
x
)

= 1.5x6 + 1.9
x4

− 1 ≤ 0

g11

(→
x
)

= 1.1x7 + 1.9
x5

− 1 ≤ 0

Variable range:
2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3,
7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5

Figure 9: Schematic diagram of speed reducer design problem

The results of this experiment are recorded in Table 13. The results show that the minimum weight
of EHHOCBO is slightly worse than that of RLTLBO and ESMA algorithms. Although EHHOCBO
could have better design results, it achieves relatively good performance. Therefore, it is reasonable to
believe that the proposed hybrid technique is suitable for solving the speed reducer design problem.

Table 13: Results of the cantilever beam design problem

Algorithms Optimum variables Minimum weight

x1 x2 x3 x4 x5 x6 x7

HHO 3.5171 0.7020 23.0301 7.3000 7.9853 3.3486 5.2861 4233.5583
WOA 3.5000 0.7000 17.0000 8.0694 8.0694 3.7917 5.3208 3160.7315
GWO 3.5035 0.7000 17.0000 7.8834 7.9377 3.3642 5.2878 3010.1887
CBO 3.5009 0.7000 17.0000 7.4292 8.3000 3.3518 5.2869 3009.3681
STOA 3.6000 0.7000 17.0000 8.3000 8.3000 3.3694 5.5000 3202.1389
AOA 3.5023 0.7000 17.0000 7.3000 8.3000 3.5203 5.5000 3195.8477
ChOA 3.6000 0.7000 17.0000 8.0581 8.3000 3.7853 5.3064 3193.0844
AGWO 3.5034 0.7000 17.0000 7.3038 7.8173 3.4473 5.3612 3070.6211
RLTLBO 3.5432 0.7063 15.3372 7.3760 7.7711 3.4832 5.3148 2812.3482
ESMA 3.5000 0.7000 17.0000 7.3000 7.7155 3.3502 5.2867 2994.4839
LHHO 3.5000 0.7000 17.0000 7.7287 7.7422 3.4822 5.2867 3035.8028
SCHHO 3.6000 0.7000 17.0000 7.3000 8.3000 3.3621 5.5000 3191.3621
EHHOCBO 3.5000 0.7000 17.0000 7.7064 7.7659 3.3510 5.2867 2999.3758
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5.3 Welded Beam Design Problem
The purpose of the design problem of the welded beam is to reduce the manufacturing cost

of the design as much as possible under the constraint of meeting the beam’s shear stress, bending
stress, bending load, end deviation, and boundary conditions. The problem can be described as an
optimization design problem with four decision variables. The four decision variables are length l,
height t, thickness b, and weld thickness h of the beam bar. Fig. 10 is the schematic diagram of the
welded beam. The mathematical representation of the problem is as follows:

Consider:
→
x = [x1, x2, x3, x4] = [h, l, t, b]

Minimize: f
(→

x
)

= 1.10471x2
1x2 + 0.04811x3x4 (14 + x2)

Subject to:

g1

(→
x
)

= τ
(→

x
)

− τmax ≤ 0

g2

(→
x
)

= σ − σmax ≤ 0

g3

(→
x
)

= δ − δmax ≤ 0

g4

(→
x
)

= x1 − x4 ≤ 0

g5

(→
x
)

= P − PC

(→
x
)

≤ 0

g6

(→
x
)

= 0.125 − x1 ≤ 0

g7

(→
x
)

= 1.10471x2
1 + 0.04811x3x4 (14 + x2) − 5 ≤ 0

Variable range: 0.1 ≤ x1, x4 ≤ 2, 0.1 ≤ x2, x3 ≤ 10

where f
(	x) represents the cost of manufacturing welded beams, and other variables are defined as

follows:

τ
(→

x
)

=
√

(τ ′)2 + 2τ ′τ ′′ x2

2R
+ (τ ′′)2, τ ′ = P√

2x1x2

, τ ′ = MR
J

, M = P
(

L + x2

2

)

R =
√

x2
2

4
+
(

x1 + x3

2

)2

, J = 2

{√
2x1x2

[
x2

2

4
+
(

x1 + x3

2

)2
]}

, σ
(→

x
)

= 6PL
Ex2

3x4

δ
(→

x
)

= 6PL3

Ex2
3x4

, PC

(→
x
)

=
4.013E

√
x2

3x
6
4

36
L2

(
1 − x3

2L

√
E

4G

)

P = 6000 lb, L = 14 in, E = 30 × 106 psi, G = 12 × 106 psi,

δmax = 0.25 in, τmax = 13600 psi, σmax = 30000 psi.

The results of the experiment are shown in Table 14. EHHOCBO obtaines the lowest manufac-
turing cost of 1.7256 under the corresponding parameters h = 0.2057, l = 3.4698, t = 9.0438, and
b = 0.2057. Since EHHOCBO has achieved the most satisfactory results in all competitive algorithms,
it has a good application prospect in designing welded beams.
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Figure 10: Schematic diagram of the welded beam design problem

Table 14: Results of the welded beam design problem

Algorithm Optimum variables Minimum cost

h (x1) l (x2) t (x3) b (x4)

HHO 0.2062 3.6249 8.9799 0.2083 1.7566
WOA 0.4092 4.1027 6.2098 0.4357 3.1151
GWO 0.2053 3.4862 9.0483 0.2057 1.7281
CBO 0.2676 2.8620 7.8765 0.2764 1.9923
STOA 0.1652 4.9035 9.0370 0.2081 1.8580
AOA 0.1950 5.1639 10.0000 0.2022 2.0810
ChOA 0.1840 3.6292 10.0000 0.2066 1.8877
AGWO 0.1895 3.8867 9.0386 0.2074 1.7673
RLTLBO 0.21733 3.7545 8.7271 0.22084 1.8422
ESMA 0.2511 2.9794 8.1776 0.2512 1.8856
LHHO 0.1254 8.0461 8.9965 0.20757 2.1204
SCHHO 0.19879 4.1188 9.2621 0.2066 1.8477
EHHOCBO 0.2057 3.4698 9.0436 0.2057 1.7256

5.4 Rolling Element Bearing Design Problem
The objective of the rolling element bearing design problem is to find the maximum dynamic

load capacity of a bearing subject to more than ten decision parameters. The decision parameters are
pitch diameter Dm, ball diameter Db, number of balls Z, inner and outer raceway radius of curvature
coefficients fi and fo, Kd min, Kd max, δ, e, and ζ . Fig. 11 shows schematic diagram of the rolling element
bearing. The mathematical expression of the problem is as follows:

Maximize: Cd =
{

fcZ2/3D1.8
b , if Db ≤ 25.4 mm

3.647fcZ2/3D1.4
b , else
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Subject to:

g1

(→
x
)

= φ0

2 sin−1
(Db/Dm)

− Z + 1 ≤ 0

g2

(→
x
)

= 2Db − Kd min (D − d) > 0

g3

(→
x
)

= Kd max (D − d) − 2Db ≥ 0

g4

(→
x
)

= ζBw − Db ≤ 0

g5

(→
x
)

= Dm − 0.5 (D + d) ≥ 0

g6

(→
x
)

= (0.5 + e) (D + d) − Dm ≥ 0

g7

(→
x
)

= 0.5 (D − Dm − Db) − δDb ≥ 0

g8

(→
x
)

= fi ≥ 0.515

g9

(→
x
)

= fo ≥ 0.515

where

fc = 37.91

⎡
⎣1 +

{
1.04

(
1 − γ

1 + γ

)1.72 ( fi (2fo − 1)

fo (2fi − 1)

)0.41
}10/3

⎤
⎦

−0.3

×
[
γ 0.3 (1 − γ )

1.39

(1 + γ )
1/3

] [
2fi

2fi − 1

]0.41

x = [{(D − d)/2 − 3 (T/4)}2 + {D/2 − T/4 − Db}2 − {d/2 + T/4}2]
y = 2 {(D − d)/2 − 3 (T/4)} {D/2 − T/4 − Db}

φ0 = 2
∏− cos−1

(
x
y

)
, γ = Db

Dm

, fi = ri

Db

, fo = ro

Db

, T = D − d − 2Db

D = 160, d = 90, Bw = 30, ri = ro = 11.033, 0.5 (D + d) ≤ Dm ≤ 0.6 (D + d)

0.15 (D − d) ≤ Db ≤ 0.45 (D − d) , 4 ≤ Z ≤ 50, 0.515 ≤ fi and fo ≤ 0.6

0.4 ≤ Kd min ≤ 0.5, 0.6 ≤ Kd max ≤ 0.7, 0.3 ≤ δ ≤ 0.4, 0.02 ≤ e ≤ 0.1, 0.6 ≤ ζ ≤ 0.85.

Figure 11: Schematic diagram of rolling element bearing design problem
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The results of this experiment are reported in Table 15. It can be seen from this table that compared
with other classical algorithms, the proposed EHHOCBO provides the best fitness value of 85549.

Table 15: Results for rolling element bearing design problem

Algorithm HHO WOA GWO CBO STOA AOA ChOA AGWO RLTLBO ESMA LHHO SCHHO EHHOCBO

125.0 125.0 125.5 125.7 125.0 125.0 125.0 125.0 125.6 125.7 125.6 125.0 125.7
Db 21.0 21.0 21.4 21.4 21.0 20.2 21.0 21.3 21.4 21.4 21.4 21.1 21.4
Z 11.5 11.5 10.8 10.8 9.5 11.0 11.2 11.1 10.6 11.2 11.0 10.1 11.2
fi 0.515 0.515 0.515 0.515 0.515 0.515 0.515 0.515 0.515 0.515 0.515 0.515 0.515
fo 0.515 0.515 0.599 0.518 0.515 0.600 0.596 0.515 0.553 0.515 0.515 0.600 0.515
Kd min 0.400 0.400 0.476 0.455 0.400 0.400 0.440 0.439 0.404 0.448 0.500 0.400 0.479
Kd max 0.600 0.600 0.622 0.676 0.700 0.600 0.700 0.666 0.650 0.651 0.700 0.700 0.652
δ 0.300 0.300 0.306 0.300 0.300 0.300 0.300 0.316 0.617 0.300 0.303 0.300 0.300
e 0.048 0.048 0.080 0.067 0.020 0.020 0.020 0.029 0.297 0.079 0.040 0.020 0.075
ζ 0.600 0.600 0.607 0.600 0.600 0.600 0.653 0.619 0.726 0.654 0.611 0.611 0.605
Optimum
cost

82533 82552 85162 85520 77760 77138 82445 84334 85306 85548 85405 78349 85549

The above experiments show that EHHOCBO has advantages in solving practical engineering
problems. This is attributed to the combination of HHO and CBO, as well as the introduction of the
ensemble mutation strategy and refracted opposition-based learning, which improves the proposed
method’s searchability significantly.

6 Conclusion and Future Directions

Considering the respective characteristics of the HHO algorithm and CBO algorithm, a new
improved hybrid algorithm named EHHOCBO is proposed in this paper. First, the leader mechanism
of CBO is introduced in the initialization phase of HHO to provide a good basis for global search and
enhance the exploration ability of the algorithm. Then, an ensemble mutation strategy is employed to
increase the population diversity and further boost the exploration trend. Finally, refracted opposition-
based learning is used to update the optimal solution to expand the search range and avoid the
algorithm falling into the local optima. In order to fully evaluate the performance of the proposed
algorithm, EHHOCBO was compared with the basic HHO, CBO algorithm, and other meta-heuristic
algorithms based on classical benchmark functions and the IEEE CEC2017 test suite. Wilcoxon’s rank
sum test verified the significance of the experimental results. Through a series of numerical statistics, it
is verified that the EHHOCBO algorithm has significantly improved in terms of accuracy, convergence
speed, stability, and avoidance of falling into local optimum solutions. In addition, four engineering
problems were used to verify the applicability of the EHHOCBO algorithm. Experiments show that
the algorithm can effectively provide competitive solutions for these real-life engineering problems.

Although the EHHOCBO algorithm proposed in this paper has been significantly improved over
the basic HHO and CBO algorithms, there is still room for further improvement in its performance
on IEEE CEC2017 test functions. The EHHOCBO algorithm still suffers from the major limitation
of excessive computation time and needs to be improved. It is believed that this situation can be
alleviated by introducing several parallel mechanisms, such as master-slave models, cellular models
and coordination strategies. In future work, we aim to further improve the performance of the
EHHOCBO algorithm by developing new improvement strategies and parallelism mechanisms while
reducing the total time consumption. And we hope to make the parameter settings more reasonable
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by incorporating parameter adaptive control. In addition, we believe it would also be interesting to
implement EHHOCBO to solve more practical optimization problems such as feature selection, path
planning, predictive modeling, image segmentation, etc. [61]. We will enhance our work in this area.
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