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ABSTRACT

Metal flat surface in-line surface defect detection is notoriously difficult due to obstacles such as high surface
reflectivity, pseudo-defect interference, and random elastic deformation. This study evaluates the approach for
detecting scratches on a metal surface in order to address a problem in the detection process. This paper proposes
an improved Gauss-Laplace (LoG) operator combined with a deep learning technique for metal surface scratch
identification in order to solve the difficulties that it is challenging to reduce noise and that the edges are unclear
when utilizing existing edge detection algorithms. In the process of scratch identification, it is challenging to
differentiate between the scratch edge and the interference edge. Therefore, local texture screening is utilized by
deep learning techniques that evaluate and identify scratch edges and interference edges based on the local texture
characteristics of scratches. Experiments have proven that by combining the improved LoG operator with a deep
learning strategy, it is able to effectively detect image edges, distinguish between scratch edges and interference
edges, and identify clear scratch information. Experiments based on the six categories of meta scratches indicate
that the proposed method has achieved rolled-in crazing (100%), inclusion (94.4%), patches (100%), pitted (100%),
rolled (100%), and scratches (100%), respectively.
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Nomenclature

σ Spatial distribution coefficient of the Gaussian function
∗ Convolutional operation
h (x, y) Image obtained after smoothing filtering
∇2 Represents the Laplace operator
∇2G (x, y) LoG operator
h

(
x, y, σx, σy, α

)
Two-dimensional Gaussian function

βn nth weight value of the nth template
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σxn The standard deviation in the X direction
σyn The standard deviation in the Y direction

1 Introduction

The production and operation environment of metal materials is relatively hostile, resulting
in various surface blemishes and faults that negatively influence product quality and corporate
productivity. Consequently, it is essential to automatically detect flaws on metal surfaces. Scratches
are prominent manufacturing defects, and the detection of surface scratches is prevalent in the quality
inspection of modern industrial products [1–3]. In-line surface defect identification of metal planar
materials is confronted with the following formidable manufacturing challenges: (1) High surface
reflectivity under lower edge sharpness: The smooth surface of steel, aluminum, copper strip, and
other extremely thin strips makes it simple to bring together large areas of light and shadow., grayscale
inconsistencies increase the likelihood of false edge detection. (2) Pseudo-defect interference: Pseudo-
defects (such as water droplets, water cloth, rainlines, water mist, and other true defects formed during
laminar flow cooling) can frequently trigger false alarms in the detecting equipment. Random elastic
deformation will cause random image distortion in charge-coupled device (CCD) cameras [4]. This
is caused by things like continuous rolling equipment vibration, insufficient rolling speed, side guide
plate ectopicality, rolling speed fluctuations, atmospheric turbulence-like effects, and other things [5].

The utilization of computer vision-based product fault detection technologies is expanding. Image
edge detection is a crucial component of Technology for detecting product defects. Picture edge is a
characteristic of image segmentation and an essential source of texture data. Because noise and edges
are both high-frequency components in the frequency domain and the spatial domain is manifested by
a large abrupt change in gray value, it is frequently difficult to avoid enhancing the noise during edge
detection, which frequently causes issues with image segmentation and target detection and extraction
[6–8]. The surface defect detection methods of metal plane materials are mainly divided into four
categories: methods based on statistical and spectral analysis. methods based on machine learning.
and hybrid methods based on deep learning.

1) Detection methods based on statistical and spectral analysis. From the perspective of statistical
methods, visual textures are random events. Statistical approaches investigate the regular and periodic
distribution of pixel intensities by analyzing the statistical characteristics of the spatial distribution of
pixels in order to discover flaws on the surface of flat metal surfaces. In the case of light variations
and pseudo-defect interference, statistical approaches have limited application. Yang et al. [9] have
discovered that images with different characteristics are more likely to be isolated in the transformation
domain and that it is possible to find better defect detection methods than direct processing methods
in the pixel domain Consequently, the use of approaches based on spectrum analysis is growing. In
addition, a novel structural model with parameter learning projects the original texture distribution
of the image block onto a low-dimensional distribution, making it simpler to identify faults.

2) Machine learning-based detection methods. The essence of machine learning is the analysis
and learning of data (features) followed by making accurate decisions or predictions. In actual
industrial settings, machine vision Technology is frequently used to detect flaws on metal assembly
line surfaces. Typically, these techniques involve conventional image processing and deep learning
designed to identify and analyze manufacturer-collected issues. The primary goal of conventional
image processing techniques is to manually create features to describe surface flaws. Common manual
features include LBP (Local Binary Mode) [10,11], HOG (Histogram of Directional Gradient) [12,13],
GLCM (Grayscale Co-Occurrence Matrix) [14,15], and other statistical features. The goal is to identify
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the proper features to represent the defect information in the input image of the metal surface. Since
standard image processing algorithms frequently require sophisticated threshold settings for fault
identification, they cannot be immediately implemented in the real world. Moreover, classic detection
approaches are less effective and precise in complicated real-world contexts. They are sensitive to
factors such as lighting conditions and the background. if these factors change, the threshold settings
must be adjusted. Otherwise, the algorithm will not function in new contexts due to its lack of
adaptability and robustness.

3) Deep learning-based hybrid detection method. The detection algorithm based on deep learning
is more effective than manual detection in product surface quality control, and it can also reduce the
workload of inspectors, lower the production costs of businesses, improve the precision and positioning
of defect detection, enhance production efficiency, and promote manufacturing automation and
intelligent development. Zhang et al. [16] developed a deep learning method combined with scratch
tests to investigate plastic material properties and presented an effective strategy for determining the
surface properties of the materials. Combining deep learning with related image inspection techniques
is more likely to improve the detection accuracy of deep learning in various application contexts [17–
19]. The conventional edge detection method uses the local differential method of the image, such as the
Sobel operator, the Canny operator, the Pretalk operator, and the Laplace operator, to get information
about the image’s edges. These classical techniques are simple and straightforward to construct, but
edge continuity is low, noise sensitivity is high, and positioning accuracy is generic. In recent years,
there have been numerous techniques based on deep learning. Although these edge detection methods
have a high detection accuracy and excellent search capability, they require many training samples for
model training, and their efficiency is frequently poor [20–23]. The classic LoG (Gaussian-Laplace
operator) [24,25] has the advantages of strong anti-interference ability, high boundary positioning,
and good continuity, and it may also contribute to noise reduction. Nevertheless, the typical LoG
operator is not precisely positioned during edge detection. double edges will arise during detection.
and the detection edges under different scale factors are not distinct and discontinuous. Therefore,
this paper proposes an improved LoG operator optimized by weight parameters, which can synthesize
multi-angle edge details according to the characteristics and detection requirements of the detection
target, and make the edge of the detection target clearer and more continuous by increasing the weight
in a certain direction in a targeted manner and using deep learning techniques to extract the color,
shape, texture, and other related deep features based on the local text. Using the difference between
the gray value of the recovered target’s local texture and its local background, this method further
evaluates and identifies the edge information found by edge detection. It then carefully removes the
image’s scratches.

The rest of this paper is structured as follows: Section 2 describes the proposed detection strategy
for metal surface scratches, including the improved LoG for detection analysis, LoG operator improve-
ment and optimization strategy, and deep learning model structure design strategy. In Section 3, two
experiments are done based on the difference in gray value between the target of detection and the
local background, and this paper is concluded in Section 4.

2 The Proposed Detection Method for Metal Surface Scratch

This section introduces the proposed detection for metal surface scratches, including the improved
LoG for detection analysis, LoG operator improvement and optimization strategy, and deep learning
model structure design strategy, and Fig. 1 depicts the processing flowchart for this paper.
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Figure 1: Processing diagram of this paper
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Based on the difference between the gray value of the detection target and the gray value of the
local backdrop, the processing approach is divided into two parts in this study. 1) The Gaussian
smoothing filter and the Laplace sharpening filter are used in conjunction with the improved LoG
operator to conduct Gaussian smoothing on the image and to recover edge detail information from the
image. This method is effective for edge classification detection when the gray value of the detection
target and the surrounding background are significantly different. 2) Despite the fact that the LoG
operator can extract stronger semantic information and richer detailed information because of not
clear and continuous when dealing with weak scratches on the metal surface, the resolution is very low
and the perception of details is poor. This study combines the benefits of ResNet with the upgraded
LoG operator to cascade features into a new enhanced image with comprehensive information,
location information, and a higher resolution as input. The ResNet network is used to connect the
shallow and high-level feature maps and to convey the shallow information to the deep Layer in order
to alleviate the problem of easily overlooked detail scratches in the deep feature map and improve
the accuracy of classification detection. In addition, the confusion matrix on the testing (validation)
dataset for the four benchmark methods and the suggested method (improved LoG + ResNet) is
presented to assess the final performance.

2.1 The Improved LoG for Detection Analysis
The LoG operator is derived by locating the second-order derivative of the Gaussian kernel

function, which is represented in the image as first Gaussian smoothing of the image and then Laplace
second-order derivation. Set f (x, y) as the original image, use the two-dimensional Gaussian function
G (x, y) to convolution, the original image, and the filtering result is expressed as by Eq. (1),

h (x, y) = G (x, y) ∗ f (x, y) (1)

where ∗ is the symbol of convolutional operation, G (x, y) = 1
2πσ 2

exp
(

−x2 + y2

2σ 2

)
, h (x, y) is the

image obtained after smoothing filtering, σ is the spatial distribution coefficient of the Gaussian
function. Then Eq. (2) is obtained by applying the Laplace operator to the image,

∇2h (x, y) = ∇2G (x, y) ∗ f (x, y) (2)

where ∇2 represents the Laplace operator, i.e., ∇2G (x, y) is the LoG operator. Note that the convo-
lution principle of LoG is equivalent to differentiating the Gaussian function and then convolving
with the original image, that is, using a Gaussian low-pass filter on the image before using the Laplace
operator.

∇2G (x, y) = ∂2G (x, y)

∂x2
+ ∂2G (x, y)

∂y2
(3)

∇2G (x, y) = 1
2πσ 4

[
x2 + y2

2σ 2
− 2

]
exp

(
−x2 + y2

2σ 2

)
(4)

Eq. (4) is then derived by substituting Eq. (1) into Eq. (3). The LoG operator combines the
Gaussian smoothing filter with the Laplace sharpening filter, which smoothes the fine edges while
acting as a noise suppressor. As a result, the edge features are lost to a certain amount, and when
dealing with weak scratches, the edges are not distinct and continuous. The LoG operator has
rotational symmetry because a change in the value of the two-dimensional Gaussian function of the
classical LoG operator σ has no effect on the edge detection scale of other angles. Sometimes, only
the edge information of a particular angle is required to detect the target’s properties, or the edge of a
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particular angle must be emphasized. This study improves the standard LoG operator so that it affects
edge recognition in different ways depending on the direction of the image. This makes edge details
stand out at certain angles.

2.2 LoG Operator Improvement and Optimization Strategy
On the basis of the traditional LoG operator, the scale parameter is introduced, and the standard

deviation in the X direction is denoted as σx, and the standard deviation in the Y direction is denoted
as σy, then the Gaussian function with scale parameters G

(
x, y, σx, σy

)
can be represented as Eq. (5),

G
(
x, y, σx, σy

) = exp

(
− x2

2σ 2
x

− x2

2σ 2
y

)
×

(
2π

(σx

2
+ σy

2

)2
)−1

(5)

∇2G
(
x, y, σx, σy

) =
((

x2

σ 2
x

+ x2

σ 2
y

)
− 2

)
× exp

(
− x2

2σ 2
x

− x2

2σ 2
y

)
×

(
2π

(σx

2
+ σy

2

)4
)−1

(6)

LoG edge detection operator ∇2G
(
x, y, σx, σy

)
with scale parameters is thus obtained based on

Eq. (6). The projection of the traditional LoG operator three-dimensional function in the XOY plane
is a circle, after the introduction of scale parameters, the projection of the LoG operator three-
dimensional function diagram in the XOY plane is an ellipse. The two-dimensional Gaussian function
h

(
x, y, σx, σy, α

)
with scale and angle parameters is denoted as Eq. (7),

h
(
x, y, σx, σy, θ

) = ℵ (
σx, σy

)
exp

(
−1

2

(
xcosθ + ysinθ

σx

)2

− 1
2

(
ycosθ − xsinθ

σy

)2
)

(7)

where ℵ (
σx, σy

) =
(

2π
(σx

2
+ σy

2

)2
)−1

, then perform the Laplace transform ∇2G
(
x, y, σx, σy

)
on the

Eq. (7) to obtain a two-dimensional Gaussian function with scale and angle parameters. The result is
an anisotropic LoG operator ∇2G

(
x, y, σx, σy

)
that detects edges in different directions when values

are different. The three-dimensional image no longer has rotational symmetry when
(
σx, σy, θ

) =
(1.0, 0.5, π/4), the X direction is different from the Y direction scale, and the direction of the long axis
of the bottom projection is angled from the X axis. Edge detection is performed on the convolution
template obtained by the Eq. (8), and when the angle parameter takes different values, the edge of
different angles can be detected. In order to extract scratches at a specific angle according to the actual
detection task, highlight the edge features of a certain angle, and synthesize the multi-directional edge
details, this paper introduces the weight parameter [10] based on the anisotropic LoG operator.

∇2H
(
x, y, σx, σy, α1, . . . , αn, β1, . . . , βn

) = f (x, y) × (
β1∇2G

(
x, y, σx1, σy1, α1

) + . . .

+βn∇2G
(
x, y, σxn, σyn, αn

))
(8)

where βn, σxn, σyn represent the nth weight value of the nth template, the standard deviation in the X
direction, and the standard deviation in the Y direction, respectively.

2.3 Deep Learning Model with Improved LoG Operator
Convolutional neural networks (CNNs) are superior to traditional neural networks as a deep

learning machine learning technique. Convolutional Layers make up a convolutional neural network.
Convolutional neural networks consist of three neural Layers: convolutional neural Layer, pooling
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neural Layer, and fully connected neural Layer. Under certain conditions, the output of the convolu-
tional Layer is derived by filtering the input. The constituents of convolutional Layers are rectangular
meshes or neural cubes. Thus, input and output Layers with filters can be rectangular meshes or
cubic neuron modules. A new neuron is formed at each location in the filter by calculating the pixel’s
weighted volume. The volume of the output neuron in the convolutional Layer is regulated by three
hyperparameters: depth, stride length, and zero fill. The pooling Layer does the subsequent action
following every convolutional Layer. Pooling Layers are used to decrease the number of input neurons.
This Layer generates a single value for each small rectangular block sampled from the convolutional
Layer. Typically, the maximum pool method is employed. This is defined for a single type of pooling
Layer by Eq. (9),

hl
j (x, y)maxpooling = maxx∈N,y∈N(y)hl−1

j

(
x, y, ∇2H

(
x, y, σx, σy, α1, . . . , αn, β1, . . . , βn

))
(9)

Using sampling filters that apply filters to each Layer, pooling Layers are generated. In most cases,
the input Layer size is 4 ∗ 4, the filter size is 2 ∗ 2, and the stride size is 2. The fully linked Layer is the
final Layer, which consists of all the neurons that came before it. From all input neurons to all output
neurons, the fully linked Layer frequently reduces the quantity of spatial information. Thanks to the
CNN network, all of the levels are ultimately interconnected. This makes it difficult for the network
to go deep and expand, and gradient bursting or gradient disappearance may occur. ResNet uses a
rapid connection by bypassing at least two levels. The residual building blocks use quick connections
to bypass the convolutional Layers, which effectively alleviates the problem of vanishing gradients or
gradient exploding caused by the increase in depth in the neural network, thereby constructing a CNN
structure with greater flexibility to improve the defect detection rate. ResNet 50 is a widely used deep
learning model with 48 convolutional Layers along with 1 MaxPool and 1 average pool Layer. Its
residual building blocks consist of convolutional Layers (Conv), batch normalization (BN), rectified
linear elements (ReLU) activation functions and shortcuts. The ResNet-50 architecture is comprised of
the following components, one Layer consists of the convolution of kernel sizes 7 ∗ 7 and 64 distinct
cores, and the highest pooling step is 2. In turn, there are three hidden Layers with 1 ∗ 1 ∗ 64, 3 ∗
3 ∗ 64, and 1 ∗ 1 ∗ 256 convolutional kernel sizes, respectively. Then there are 4 replicates, and the
convolutional kernel sizes for the 12 hidden Layers are 1 ∗ 1 ∗ 128, 3 ∗ 3 ∗ 128, and 1 ∗ 1 ∗ 512,
respectively. This is followed by six replicates, including 18 hidden convolutional Layers with kernel
sizes of 1 ∗ 1 ∗ 256, 3 ∗ 3 ∗ 256, and 1 ∗ 1 ∗ 1024, respectively. The sizes of the convolutional kernels
were 1 ∗ 1 ∗ 512, 3 ∗ 3 ∗ 512, and 1 ∗ 1 ∗ 2048, in that order. Classify by developing a 1000-node average
pooled, fully linked Layer-connected softmax function. Consequently, a 50-Layer deep convolutional
ResNet network model has been developed for metal surface scratch identification. The network depth
of the deep learning model can enable the model to extract conceptual information at a higher level and
boost the model’s capability. However, as the number of hidden Layers in neural networks increases,
the correlation between backpropagation gradients deteriorates and approaches that of white noise,
which can easily result in a degradation of performance in deep learning. Specifically, the original
metal scratch image has a local correlation, and if the gradient of the hidden Layer is similar to white
noise, then the gradient update at this moment is equivalent to random perturbation, which cannot
substantially increase classification detection accuracy. Using gradient correlation measurements,
ResNet is exceptional at maintaining gradient correlation. As a result, as the gradient is propagated
backwards by the network, there will be no gradient exploding or disappearing, and the gradient of
each Layer will be updated.(

xin,image, labelx

)
�

{
f (x, y) , ∇2H

(
x, y, σx, σy, α1, . . . , αn, β1, . . . , βn

)
, label

}
x

(10)
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The original metal scratch image’s low-level features have a better resolution and include more
positional and detailed information, but because they undergo less convolution, their semantics
are diminished and they are more noisy. The LoG operator extracts features with better semantic
information and more detailed information, but at a very low resolution and with poor detail
perception. Especially if a bright spot appears in a darker area of the image, the Laplace operator
will produce a “brighter, brighter” effect, which might serve to sharpen the image. Therefore, this
paper combines the advantages of ResNet with the improved LoG operator, as described in Eq. (10),
and cascades the features to form a new enhanced image containing detailed information, position
information, and higher resolution as input. It can fuse feature maps with strong low-resolution
semantic information and feature maps with weak high-resolution semantic information but rich
spatial information under the premise of requiring less computation. Then, the ResNet network is
used to connect the shallow and high-level feature maps and transmit the shallow information to the
deep Layer to solve the problem of detail scratches that are easily overlooked in the deep feature map.

3 Experiments

In this section, in order to visualize the processing effect of the method and evaluate the
performance of the model, we test two different types of data sets.

3.1 Performance Analysis of the Improved LoG Operator Edge Feature Extraction
In order to visually demonstrate the advantages of improving the LoG operator, this paper selects

four sets of parameters
(
σx, σy, θ

)
, and for generating convolutional templates, respectively, the input

image is edge-detected, and then the detection results of each angle are weighted to obtain the final
image. The parameter combinations selected in this paper are,

(
σx = 1, σy = 0.5, θ = 0, π/4, π/2, 3π/4

)
.

These combinations of parameters are substituted into the discretization formula of Eq. (11), and the
resulting initial template is normalized and the coefficient sum is 0 steps to obtain the final convolution
template. The corresponding templates for the combination of parameters are provided in Table 1.

Table 1: Improve the template of the LoG operator

∂x = 1.0, ∂y = 0.5, θ = 0 ∂x = 1.0, ∂y = 0.5, θ = 3π/4

−0.01 −0.50 0.25 −0.50 −0.01 0.00 −0.02 −0.50 −0.74 −0.14
−0.02 −1.79 4.42 −1.79 −0.02 −0.02 −1.27 −2.57 2.82 −0.74
−0.04 −2.71 5.45 −2.71 −0.04 −0.50 −2.57 12.50 −.57 −0.50
−0.02 −1.79 4.42 −1.79 −0.02 −0.74 2.82 −2.57 −1.27 −0.02
−0.01 −0.50 0.25 −0.50 −0.01 −0.14 −0.74 −0.50 −0.02 0.00

In order to verify experimentally the used template shown in Figs. 3, 2a is the input image (single-
channel grayscale map) used in this section. The input images are convolved separately from the
obtained templates, and the results are shown in Figs. 2b–2e, respectively. From the experimental
results, it can be seen that the edge along the angle θ is clearer, while the edge information in the
direction perpendicular to the angle π/2 and 3π/4 are blurred, and when the angle parameters are
selected, the detected scratch information is clearer. Combined with the observation of Fig. 2, when the
long axis of the ellipse is perpendicular to the tangent direction of the edge profile, the edge detection
works best.
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(a) Input image (b) � ��0 (c) � �����

(d) � ����� (e) � ��	���

Figure 2: The experimental results when θ under different values

Through the above analysis, in order to obtain a better detection effect, when selecting the weight
factor, the weight in the direction π/2 and 3π/4 can be appropriately increased, the edge of the four
angles θ = 0, π/4, π/2, 3π/4 of the detection result image, respectively, take the weight parameters
(β1, β2, β3, β4) = (0, 0.2, 0.4, 0.8), substitute parameters to weight the image fusion, the final image
obtained is shown in Figs. 3a, 3b is the detection result of the traditional LoG operator. Fig. 3c is the
threshold estimation and morphological analysis results, and Figs. 3d, 3e are the identification results
of the input image and magnified edge detection in detail, respectively.

(a) Improved LoG
operator

(b) Traditional LoG
operator

(c) Threshold estimation &
morphological analysis

Figure 3: (Continued)
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(d) Identify a sample
of edge data

(e) Magnified edge
detection detail

a

b

Figure 3: Experimental results comparison of traditional and improved LoG operator

As observed in the illustration, the weighted result properly combines the edge information from
many angles, and the edge at the scratch is crisper and more continuous than the edge result obtained
by the standard LoG operator, which is consistent with the experimental predictions. The test results
show that the improved LoG can find edges from different angles and extract edge features that match
the requirements for finding edges.

3.2 The Performance Evaluation of the Proposed Approach
When the degree of difference between the gray value of the detection target and its local

background is different, the difficulty of metal scratch detection is also different, and this section
is divided into two parts to describe separately.

3.2.1 Texture Feature Extraction and Analysis

The larger the difference between a scratch and a certain feature parameter of other interfering
information, the more precisely this parameter can be used to extract targets. Observing the results
of edge detection reveals, however, that the edge of the scratch is comparable to the area size of
the interference edge, and that there is a connection between the scratch edge and the interference
edge. these characteristics will diminish the detection effect of the method. Using the form and color
characteristics of a detection target to filter and extract features is the most prevalent technique in
feature extraction. As a result of the brighter color on both sides of the scratch in a typical metal
scratch, the grayscale value is greater. the grayscale values are notably different on both sides of the
non-scratch edge, with higher values on one side and lower values on the other. Based on this property
and the improvement of LoG edge recognition, this work gives a local texture screening method that
filters out scratch information in an effective way.

i) Mark edge information. The edge detection result image of the improved LoG operator is
processed by threshold processing and morphological operation to prevent noise and many interfering
edges in the processed image. The grayscale of this figure is then reversed and overlaid into the original
grayscale image, and the edge of the image that is marked with the edge is marked with black and its
grayscale value is 0.

ii) Create Layer space. As shown in Fig. 4a, a Layer space is established with the input image
(denoted as Layer A), the tag edge image (denoted as Layer B) and the blank output image (denoted
as Layer C), and the subsequent steps will be performed in this Layer space, image A will be used as
a sampled image, image B will be used as a lookup image for suspicious pixels, and image C will be
used as the output image.
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Layer

i

j

Layer

Layer

Layer A

Layer C

Layer B

i

j

Layer

(a) Layer space (b) Square sampling area

Figure 4: Schematic diagram of Layer space and sampling

iii) Find suspicious pixels. Set a suspicious threshold of U that is used to find suspicious target
pixels in Layer B. Since the edge pixel grayscale value of Layer B in this case is 0, the threshold U can
be taken from 1. Each pixel is traversed sequentially on Layer B, and if the grayscale value of the point
is greater than U , the point is considered a non-suspicious pixel, and the grayscale value of the pixel is
assigned a value of 0 on Layer C, and the resulting grayscale image appears black, indicating that the
point is not an edge area and is not scratch information. If the grayscale value of a pixel is less than U ,
the point is considered a suspicious pixel and detection continues. The IC (i, j) is denoted by Eq. (11),

IC (i, j) =
{

0, ifIB (i, j) > U
Suspicious pixels, else

(11)

where IB (i, j) and IC (i, j) represent the Grayscale values corresponding to the pixels of the i-row, j-
column on Layer B and Layer C, respectively, signal that the pixel is suspicious and that processing
should proceed.

iv) Local sampling. On Layer A, a square sample region with a side length of (2K + 1) pixels is
built, centered on the corresponding pixel coordinates of the suspicious pixels, where K can be chosen
based on the image size and pixel width of the detection target. After constructing the square sampling
area, the pixels on the square’s perimeter are uniformly sampled on Layer A, and the number of sample
points is set to S. Fig. 5b depicts a diagrammatic representation of the created square sample area and
sampling point. Select an appropriate demarcation threshold V , which is the demarcation between
high and low gray values at the sample point on Layer A, and vote on the number of occurrences of
high and low gray values at the sample point. Vote results for light grayscale values are recorded as L1,
and voting results for dark grayscale values are recorded as L2.

v) Suspicious point discrimination. Introduce a voting threshold of W , the value of W is between
O and S, generally setting is W = 2S/3. When the value of the voting result L1 is greater than L2,
and L1 is greater than the voting threshold W , it means that in the field of the point, the pixel of the
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high gray value is larger than the pixel of the low gray value, and reaches a certain proportion, which
is in line with the texture characteristics at the scratch, then this pixel is determined to be the edge of
the scratch, and the grayscale value of the point is assigned a value of 255 on Layer C. Otherwise, if
the point is not in line with the texture characteristics of the scratch, the pixel is determined to be a
non-scratch edge, and the grayscale value of the pixel is assigned to 0 on Layer C. The resulting Layer
C is the output image. The above procedure can be expressed as follows by Eq. (12),

IC (i, j) =
{

255, if (L1 > L2, L1 > W)

0, else
(12)

where IC (i, j) is the grayscale value of the pixels of the i-row and j-column on Layer C.

vi) Noise removal. The above process has removed most of the interference edges, but still leaves
some smaller noise areas. In order to remove these noises, select the appropriate S and communication
domain filter values Q according to the image size, treat the communication domain area less than Q
as noise, and assign a value of 0, to remove the noise in the foreground pixels of the scratch image and
obtain the final scratch detection results.

The local texture screening method primarily uses the local texture characteristics of the scratch
to judge and identify the edge information, and the core basis for its judgment is that the texture and
grayscale value of the local background of the extracted target are not significantly different, whereas
the grayscale value of the local background of the interference information has obvious differences,
and the target and interference information can be distinguished. To ease the local texture screening
method for locating suspicious target pixels, you can first use an image segmentation algorithm, such as
threshold segmentation and edge detection, to enlarge and detect the grayscale difference between the
target and the local background information. In the preceding example, the edges of the input image
are detected with the improved LoG operator due to the texture characteristics of the image and the
detection task. After processing, the difference between edge information and its local background is
emphasized, and the local texture screening method is used to find targets.

In order to verify whether the above hypothesis can be true, this paper selects two cases of target
detection for experiments, as shown in Figs. 5a, 5b are the input images of “hair detection” and “weld
inspection” (single-channel grayscale image), and the images obtained after processing by local texture
screening method are shown in Figs. 5c, 5d, and the selected parameter values are shown in Table 2.

As can be seen from Fig. 5, in other object detection tasks, this method can also effectively
eliminate interference information, successfully detect the target, and obtain very desirable results.
S, L and W , respectively represent the area size of the available area corresponding to the sampling
length u and width v, the length and width of the smallest circumscribed rectangle as tabulated in
Table 2, and the circularity of metal scratch detection (indicating the degree to which the shape of the
target area is close to a circle), could be obtained by using the area S and the perimeter C of the area.
The circularity R and rectangularity J are estimated by Eqs. (13) and (14), respectively.

R = 4πS · C−2 (13)

J = S · (L · W)
−1 (14)

Especially when the difference between the gray value of the detection target and its local
background is more obvious, the use of LoG for edge detection can better complete the detection
of metal surface scratches. The great benefit of this research is that even very thin hair strands and
metal scratches can still be recognized with high precision, especially when texture information is
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analyzed, which is helpful in developing high-precision metal scratch detection models. The approach’s
major limitations are that the metal scratch data evaluated is essentially a 2D image, and the detecting
accuracy range of scratch size cannot be judged only on the image’s grayscale value. Because images
acquired under different light sources, the angle of acquisition, and the image processing method will
all cause the size of metal scratches to vary under different conditions.

(a) Input image (Hair)

(c) Input image (weld)

(b) Hair test results for (a)

(d) Weld test results for (c)

Figure 5: Object detection experiments and results

Table 2: Parameters for the local texture screening method

Image U V S W K Q

Hairline detection 115 130 16 11 2 0
Weld detection 75 100 16 11 7 0

3.2.2 Performance Comparison of the Deep Learning

The purpose of this paper is to detect accurate scratch information. Although the improved LoG
operator successfully detected the image’s edges and to some extent suppressed the noise, there is still
some noise that is difficult to remove, and there is a great deal of non-scratch interference information
in the image, such as product marks, metal shell edges, etc. The visualization of 6 randomly selected
metal scratches, metal scratches with low contrast and ones processed by LoG operator are shown in
Fig. 6. The confusion matrix on testing (validation) dataset by Googlenet [26], Xception [27], Inception
[28], ResNet [29] and the Proposed approach (improved LoG + ResNet) are shown in Tables 3–7,
respectively.
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(a) Visualization of 6 randomly selected metal scratches

(b) Visualization of metal scratches with
low contrast

(c) Visualization of metal scratches processed
by LoG operators

Figure 6: Visualization of the NEU metal surface defects dataset
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Table 3: The confusion matrix on testing (validation) dataset by Googlenet

Crazing Inclusion Patches Pitted Rolled Scratches

Crazing 19(17) 0(0) 0(0) 0(0) 0(0) 0(0)
Inclusion 0(0) 15(17) 0(0) 0(0) 0(0) 0(0)
Patches 0(0) 0(1) 15(16) 0(0) 0(0) 0(0)
Pitted 1(1) 1(0) 1(0) 17(16) 1(0) 0(0)
Rolled 1(0) 0(0) 1(0) 0(0) 18(17) 0(0)
Scratches 0(0) 1(0) 0(0) 1(0) 0(1) 14(16)

Table 4: The confusion matrix on testing (validation) dataset by Xception

Crazing Inclusion Patches Pitted Rolled Scratches

Crazing 17(17) 0(0) 0(0) 0(0) 0(0) 0(0)
Inclusion 0(0) 15(17) 0(0) 1(0) 1(0) 0(0)
Patches 0(0) 0(0) 17(17) 0(0) 0(0) 0(0)
Pitted 0(1) 1(2) 1(0) 14(14) 0(1) 0(0)
Rolled 0(0) 0(0) 0(0) 0(0) 20(0) 0(0)
Scratches 0(0) 1(0) 1(1) 0(0) 0(0) 17(16)

Table 5: The confusion matrix on testing (validation) dataset by Inception

Crazing Inclusion Patches Pitted Rolled Scratches

Crazing 16(17) 0(0) 0(0) 0(0) 0(0) 0(0)
Inclusion 0(0) 12(14) 0(1) 1(1) 1(0) 0(2)
Patches 1(0) 0(0) 18(17) 1(0) 0(0) 1(0)
Pitted 1(1) 1(1) 1(0) 19(14) 1(2) 0(0)
Rolled 0(0) 0(0) 1(0) 0(0) 16(16) 1(1)
Scratches 0(0) 1(0) 1(0) 1(1) 0(1) 15(16)

Table 6: The confusion matrix on testing (validation) dataset by ResNet

Crazing Inclusion Patches Pitted Rolled Scratches

Crazing 17(17) 0(0) 0(0) 0(0) 0(0) 0(0)
Inclusion 0(0) 18(17) 0(0) 1(0) 0(0) 0(0)
Patches 1(1) 0(0) 14(16) 0(0) 0(0) 0(0)
Pitted 0(0) 1(0) 0(0) 18(17) 0(0) 0(0)
Rolled 0(0) 0(0) 0(0) 0(0) 18(17) 0(0)
Scratches 0(0) 0(0) 0(0) 0(1) 0(0) 17(16)
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Table 7: The confusion matrix on testing (validation) dataset by proposed approach

Crazing Inclusion Patches Pitted Rolled Scratches

Crazing 17(17) 1(0) 0(0) 1(0) 0(0) 0(0)
Inclusion 0(0) 18(17) 0(0) 0(0) 0(0) 0(0)
Patches 0(0) 0(0) 13(0) 0(0) 0(0) 0(0)
Pitted 0(0) 2(1) 0(0) 14(16) 0(0) 0(0)
Rolled 0(0) 0(0) 0(0) 0(0) 17(17) 0(0)
Scratches 0(0) 1(0) 0(0) 0(0) 0(0) 20(17)

Feature extraction is necessary for removing interference information and properly extracting
the detection target. Especially when the difference between the gray value of the detection target
and its local background is not obvious, as depicted in Fig. 6b, the use of LoG for edge detection,
or even when combined with texture analysis, cannot effectively improve the detection accuracy, the
used data set NEU Metal Surface Defects Database (www.kaggle.com/datasets/fantacher/neu-metal-
surface-defects-data) which contains six kinds of typical surface defects of the hot-rolled (Sc). The
collection contains 1,800 grayscale photos, 300 examples for each of six types of common surface
flaws. It is required to utilize the LoG technique in conjunction with deep learning to develop a high-
precision metal surface scratch detection model since the detection target is close to the grayscale value
of its local background.

The performance configuration is Ubuntu 18.04.6 (GPU 2080Ti 11G, RAM 64 G), Windows 10
(GPU 6 G, RAM 32 G), Visual Studio 2022 (C++), Python 3.6, Matlab 2019b. To evaluate the final
six classification detections, the performance of Googlenet [26], Xception [27], Inception [28], and
ResNet [29] is applied. Based on deep learning’s superior classification performance, the Pytorch and
Keras frameworks are used to develop a deep learning network classification model for the classified
findings. The maximum epoch length is 10, and the maximum learning rate is 0.001. Crossectropy and
the Adam method are utilized to quantify model loss and optimize model architecture, respectively.
The confusion matrix of the Googlenet, Xception and Inception are shown in Fig. 7, and the confusion
matrix of the ResNet and proposed approach (ResNet combined the improved LoG operator) are
shown in Fig. 8.

Figure 7: (Continued)

www.kaggle.com/datasets/fantacher/neu-metal-surface-defects-data
www.kaggle.com/datasets/fantacher/neu-metal-surface-defects-data
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Figure 7: The confusion matrix of the Googlenet, Xception and Inception

Figure 8: The confusion matrix of the ResNet and proposed approach

Tables 8, 9 show the classification accuracy of five deep learning models on the validation dataset
and testing dataset, respectively. One can find that the detection accuracy of the metal surface scratch
based on the proposed approach has been improved by 1.9%, 2.8%, 8.0% and 1.0% compared with
the other four benchmark approaches. The comparison of the classification-detection accuracy on the
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training, validation, and testing dataset, and the statistics are shown in Figs. 9, 10. The advantages of
the proposed strategy and this paper in terms of model accuracy and model loss are readily apparent,
as is the method proposed for detecting scratches on metal surfaces. It is unable to efficiently extract
appropriate features from misclassified samples to compare with the characteristics of other scratches
because the texture features of the two-dimensional image’s scratches are so similar to one another.
Based on the available dataset, analysis is performed using the higher dimension with a topology or a
superior perspective.

Table 8: The classification-detection accuracy of the deep learning models on validation dataset

Methods Crazing Inclusion Patches Pitted Rolled Scratches

Googlenet [26] 90.5% 93.3% 87.5% 100% 100% 100%
Xception [27] 100% 93.3% 100% 93.3% 100% 100%
Inception [28] 94.1% 91.7% 94.4% 100% 94.1% 100%
ResNet [29] 94.1% 100% 100% 94.4% 100% 100%
Proposed 100% 85% 100% 93.3% 100% 100%

Table 9: The classification-detection accuracy of the deep learning models on testing dataset

Methods Crazing Inclusion Patches Pitted Rolled Scratches Ave. acc.

Googlenet [26] 94.4% 94.4% 100% 100% 94.4% 100% 97.2%
Xception [27] 94.4% 94.4% 94.4% 100% 94.4% 100% 96.3%
Inception [28] 94.4% 93.3% 94.4% 87.5% 88.9% 88.2% 91.1%
ResNet [29] 94.4% 100% 100% 94.4% 100% 100% 98.1%
Proposed 100% 94.4% 100% 100% 100% 100% 99.1%

Figure 9: (Continued)
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Figure 9: The classification-detection accuracy on the training, validation, and testing dataset

Figure 10: The classification-detection accuracy and loss on the training, validation, and testing dataset

4 Conclusions

This paper proposes a high-precision metal surface scratch classification-detection approach
based on the enhanced LoG edge extraction operator and a deep learning technique. When the gray
value of the detection target and its local background are significantly different, the enhanced LoG
edge extraction operator is used to obtain the edge information of the image by selecting the edge
based on the texture characteristics of the image and the target extraction task requirements. This
research proposes a solution based on an improved LoG edge extraction operator and deep learning
to overcome the challenge of removing interference edges during feature extraction. Experiments have
shown that the improved LoG edge detection technique, in conjunction with local thresholds and deep
learning, can efficiently remove interference information from the graph and reliably extract scratches.
Experiments utilizing the proposed method based on the six types of metal scratches in the NEU Metal
Surface Defects Database, namely rolled-in scale (RS), patches (Pa), crazing (Cr), pitted surface (PS),
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inclusion (In), and scratches (Sc), achieved a higher detection rate, i.e., an average detection accuracy
of approximately 99.1%. Future research in this paper focuses on three-dimensional (3D) metal scratch
identification of non-flat surfaces and employs a graph convolutional neural network (GCN) to assess
scratch breadth and depth, which reflect the degree of deformation and damage, in order to better
confront industrial applications.
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