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ABSTRACT

In medical image segmentation task, convolutional neural networks (CNNs) are difficult to capture long-range
dependencies, but transformers can model the long-range dependencies effectively. However, transformers have a
flexible structure and seldom assume the structural bias of input data, so it is difficult for transformers to learn
positional encoding of the medical images when using fewer images for training. To solve these problems, a
dual branch structure is proposed. In one branch, Mix-Feed-Forward Network (Mix-FFN) and axial attention are
adopted to capture long-range dependencies and keep the translation invariance of the model. Mix-FFN whose
depth-wise convolutions can provide position information is better than ordinary positional encoding. In the
other branch, traditional convolutional neural networks (CNNs) are used to extract different features of fewer
medical images. In addition, the attention fusion module BiFusion is used to effectively integrate the information
from the CNN branch and Transformer branch, and the fused features can effectively capture the global and local
context of the current spatial resolution. On the public standard datasets Gland Segmentation (GlaS), Colorectal
adenocarcinoma gland (CRAG) and COVID-19 CT Images Segmentation, the F1-score, Intersection over Union
(IoU) and parameters of the proposed TC-Fuse are superior to those by Axial Attention U-Net, U-Net, Medical
Transformer and other methods. And F1-score increased respectively by 2.99%, 3.42% and 3.95% compared with
Medical Transformer.
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1 Introduction

Medical image segmentation is an important field of medical image analysis, and it is also a
very important part of computer-aided diagnosis, monitoring, intervention and treatment. The key to
medical image segmentation is to segment the objects of interest (such as organs or lesions) in medical
images. The analysis and measurement methods based on image segmentation can meet various
medical needs and help doctors make a more accurate diagnosis [1,2]. Nowadays, medical image
segmentation methods have been widely used in the fields of heart segmentation, gland segmentation,
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brain tumor detection, and so on. With the researchers’ exploration of deep learning, convolutional
neural networks (CNNs) have achieved remarkable performance in many medical image segmentation
tasks. CNNs are also used in most of the latest medical image segmentation models. However, CNNs
also have obvious disadvantages. For example, convolutional layers used in CNNs are difficult to
capture long-range dependencies because they aggregate local information in the filter region across
the current layer to the next layer. To capture the long-range dependencies, a deeper network or a very
large filter is used to make the parameters of the model increase sharply and make the training more
difficult. Moreover, the increase in the depth of the CNN model may lead to the disappearance of
the gradient of the low-level network, and make the convergence speed of the deep neural network
become slower and slower [3]. Some works, such as atrous convolutions [4], image pyramids [5], and
attention mechanisms [6], have been proposed to capture the long-range dependencies of convolutional
networks. However, the atrous convolutions could cause a gridding effect, which will weaken the
segmentation performance of the model. And the image pyramids increase the number of parameters
of the model. In addition, the global receptive field obtained by the model that uses an attention
mechanism is generally through a global pooling operation, which is difficult to provide pixel-level
attention. So there is still room for improvement in the aspect of capturing long-range dependencies.

When the background of the image is scattered and accounts for a large proportion of the image,
if the network is not strong enough to capture the long-range dependencies, it is easy to mistakenly
classify the pixels in the background as masks [7]. Learning the long-range dependencies between
the pixels corresponding to the background can effectively reduce false positives. Similarly, when the
segmentation mask is large, learning the long-range dependencies between the pixels corresponding
to the mask is also helpful in making prediction more effective. Transformers [8] in the applications
of natural language processing (NLP) can find the dependencies between the given sequence inputs
so as to effectively model the long-range dependencies. It is a pioneering self-attention deep learning
technology that enables self-attention mechanisms to be realized on the global scale. However, the
transformer has a flexible structure and seldom assumes the structural bias of input data. So it is
difficult to learn image position encoding by using few images for training. It is difficult to train
on small-scale data [9]. The number of images that can be used for training and the corresponding
labels in the medical datasets is relatively few. Moreover, labeling mask areas in medical datasets
needs professional medical knowledge. Medical datasets are very difficult to be expanded to large-
scale data. Therefore, pre-training technology is often used when transformers are used in medical
image segmentation tasks. However, pre-training of these transformers has high demands for computer
hardware.

In order to solve the existing problems in the current medical image segmentation tasks, inspired
by Medical Transformer [7], a medical image segmentation model TC-Fuse is proposed. Different from
Medical Transformer [7] with two transformer branches, TC-Fuse is a dual branch structure composed
of one transformer branch and one CNN branch. TC-Fuse not only has the ability of excellent long-
range dependencies learning like a transformer, but also can improve the generalization ability of the
model, so that it can achieve excellent performances on small-scale datasets such as medical image
datasets, and accurately segment the target objects. Moreover, TC-Fuse solves the problems faced by
the convolution neural network in modeling long-range dependencies to a certain extent. On the other
hand, axial attention used by TC-Fuse provides pixel-level attention. The main innovations of our
model are:

(1) A network structure composed of paralleled transformer branch and CNN branch is proposed
to capture high-level semantic context and low-level spatial features, respectively. The attention
fusion module is used to fuse the final output features of these two branches. It can give full
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play to the advantages of transformers and CNNs. And there is no need to build a very deep
network, which avoids the overstaffing of the model and alleviates the problems of gradient
disappearance and diminishing feature reuse.

(2) A transformer branch composed of Mix-FFN and axial attention is proposed to provide
location information and keep the translation invariance of the model. Compared with the
original transformer, the proposed transformer has a stronger ability of perceiving location
information.

(3) On the public standard datasets GlaS, CRAG, and COVID-19 CT Segmentation datasets, the
proposed model achieves good performance for medical image segmentation, which proves
the effectiveness of the proposed method. The F1-score (F1) in GlaS, CRAG, and COVID-19
CT Segmentation datasets are 84.01%, 83.13%, and 72.10%, respectively. And the IoU values
in GlaS, CRAG, and COVID-19 CT Segmentation datasets are 73.80%, 71.13%, and 56.37%,
respectively.

2 Related Works
2.1 Medical Image Segmentation Based on CNNs

In recent years, medical image segmentation methods based on CNNs have made some progress,
and excellent image segmentation models such as FCN [10], U-Net [11], and DeepLabV3+ [12] have
emerged. Because the encoder-decoder architecture proposed in U-Net is popular due to its excellent
performance, many improvements and extensions of U-Net have been proposed. For example, some
models replace the vanilla convolutional layer of U-Net with other backbone networks such as
Residual U-Net [13] with ResNet [14] as the backbone network and Dense U-Net [15] with DenseNet
[16] as the backbone network. Some models adopted more skip connections between the encoder and
decoder of U-Net to construct U-Net++ [17] and U-Net 3+ [18]. These CNN-based medical image
segmentation models have stronger generalization ability, higher segmentation accuracy and efficiency
for medical images segmentation task. UNeXt [19] replaced the deepest two-layer convolution
blocks of U-Net with a multi-layer perceptron (MLP) block, which improved the performance of
medical image segmentation, and reduced the number of parameters and computational complexity.
Xie et al. [20] proposed a semi-supervised model based on pairwise relation for gland segmentation
and used unlabeled data for training to alleviate the lack of gland datasets. Graham et al. [21] used
convolutional neural network and spatial pyramid pooling to segment the gland images and achieved
state-of-the-art performance. Yu et al. [22] redesigned the skip connection of U-Net and the internal
connection between decoder sub-networks to enhance the extraction ability of semantic features at
different levels and the fusion of multi-scale features in U-Net. Combining the advantages of DenseNet
and ResNet, Tie et al. [23] proposed an improved 3D U-Net, which used dense blocks in the encoder
part and residual blocks in the decoder part.

2.2 Vision Transformer
Inspired by the strong encoding ability of the transformer [8] for long-range dependencies in the

applications of natural language processing, the transformer has also been widely used in computer
vision tasks recently. ViT [24] proved for the first time that the pure transformer can have the most
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advanced image classification performance when there are enough training data. In order to achieve
better performance in medical image segmentation tasks, Valanarasu et al. [7] proposed gated axial
attention on the basis of Axial Deeplab [25]. SETR [26] introduced a transformer into the encoder
part of the network, which achieved a better segmentation effect. Swin Transformer [27] proposed
the shifted window based on self-attention with linear computational complexity, which not only
reduced the computational overhead but also had the flexibility as a general backbone network.
Swin Transformer achieved SOTA performance in image classification, object detection and semantic
segmentation tasks. SegFormer [28] inserted the depth-wise convolution between the fully-connected
layers of the feed-forward network in the transformer block to replace the absolute position encoding
so as to resist the damage to the translation invariance of the model due to the absolute position
encoding. Mahajan et al. [29] proposed a new hybrid method using Aquila optimizer (AO) and
arithmetic optimization algorithm (AOA), and this method could be applied in vision transformer
to make the network converge faster and achieve high-quality results.

2.3 Medical Image Segmentation Based on Transformers and CNNs
In order to give full play to the advantages of transformers and CNNs at the same time, some

researchers have proposed some hybrid models with transformers and CNNs. TransUnet [30] has the
advantages of transformer and U-Net. First, it used CNNs to extract low-level features, then used
transformer blocks to extract the global context information, and finally used skip connections and
decoder to enhance the detail information. TransUnet achieved excellent performance in multi-organ
segmentation and heart segmentation. TransClaw U-Net [31] upsampled the bottom of TransUnet,
and combined the encoding part, upsampling part and decoding part of the corresponding layers to
achieve more accurate organ segmentation. TransFuse [32] used transformers and CNNs in parallel
to obtain multi-level feature representation, and then fused them to improve the efficiency of global
context modeling. TransFuse achieved SOTA in the polyp segmentation task. In FAT-Net [33] as a
classic encoder-decoder architecture, and a transformer branch was added to its encoder in parallel
to capture long-range dependencies and global context information. In addition, a memory-efficient
decoder and a adaptive feature module were used In FAT-Net to enhance the ability of feature fusion.
Nevertheless, all of these methods need pre-trained the model to achieve better effect in medical image
segmentation.

3 Method
3.1 Overview of TC-Fuse

As shown in Fig. 1, the proposed TC-Fuse model consists of one transformer branch and one
CNN branch. The transformer branch is used to extract global features and give full play to the
advantages of the transformer in learning long-range dependencies. The CNN branch does not
conduct down-sampled operations in order to better preserve the details, so as to achieve better
performance on small-scale datasets. Finally, the features extracted from the transformer branch and
CNN branch are fused through the BiFusion module, and then 1×1 convolution is used to reduce the
number of channels and obtain the predicted result images. Every component of TC-Fuse is elaborately
described as following sections.
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Figure 1: Architecture of TC-Fuse

3.2 Transformer Branch
As shown in Fig. 1, the transformer branch consists of convolutional block, encoders, Mix-FFN,

and decoders. The convolution block contains three convolutional layers. After every convolutional
layer, there are batch normalization and ReLU activation function. The encoder is an axial transformer
layer, as shown in Fig. 2. So as to overcome the complexity of the original self-attention, the
axial attention used in Medical Transformer [7] is adopted to decompose the self-attention into
two self-attention modules [25]. And Mix-FFN is used to replace the relative position encoding of
axial attention. The decoder block consists of a convolutional layer, followed by an upsampling layer
and a ReLU activation function.

Figure 2: The architecture of the encoder
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3.2.1 Axial Attention

The self-attention mechanism can effectively use all the feature information of the images, learn
the input context information and capture their relationship, so as to deal with the long-range
dependencies in the images and better generate the details of each position in the images. Self-attention
mechanism can be expressed as:

yij =
H∑

h=1

W∑
w=1

softmax
(
qT

ij khw

)
vhw (1)

where q = WQx, k = WKx and v = WV x are all projections calculated by multiplying the input x by
the matrix W . Here, matrices WQ, WK , WV ∈ RCin×Cout are learnable parameters and qij, kij, vij represent
respectively query, key, and value at any location i ∈ {1, . . . , H} and j ∈ {1, . . . , W}.

However, the original self-attention needs to calculate the relationship between each token with
all other tokens, which makes the cost of calculation very high. In order to reduce the complexity
of the original self-attention, the self-attention is decomposed into axial attention that performs self-
attention along the height axis and width axis of the feature maps. There are two self-attention modules
in the encoder. The first module performs self-attention on the height axis of the feature maps, which
is represented by Eq. (2). The second module operates on the width axis and is represented by Eq. (3).

yij =
H∑

h=1

softmax
(
qT

ij khw

)
vhw (2)

yij =
W∑

w=1

softmax
(
qT

ij khw

)
vhw (3)

where i and j are the pixel position along the width and height axes. The complexity is reduced from
O(H2W2) of traditional self-attention to O(H2W + HW2

) [34].

3.2.2 Mix-FFN

Translation invariance is very important for the semantic segmentation tasks because the pixels
in the original images should correspond with the pixels in the labeled images in the semantic segmen-
tation tasks. Nevertheless, absolute position encoding may destroy the translation invariance of the
model. Although the relative position encoding has the advantage of translation invariance, the relative
position encoding carries out additional calculation, and the standard transformer implementation
needs to be modified [35]. Inspired by Xie et al. [28], Mix-FFN which transmits position information
through 3 × 3 depth-wise convolution, is introduced to replace the relative position encoding of
the global branch of Medical Transformer [7]. Since the convolution operation itself has translation
invariance and the zero-padding during convolution provides position information, Mix-FFN can
replace position encoding. The structure of Mix-FFN is shown in Fig. 3, which can be expressed as:

Fout = MLP (GELU (Depth-wiseConv3×3 (MLP (Fin )))) + Fin (4)

where Fin is a feature map from the encoder, Fout is the output of the Mix-FFN module, GELU
denotes GELU activation function, and MLP is the fully connected layer. Depth-wiseConv3×3 denotes
3×3 depth-wise convolution. Depth-wise convolution is used to reduce the number of parameters and
operations and improve the efficiency of the model.
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Figure 3: The structure of Mix-FFN

3.3 CNN Branch
Usually, deep CNNs use hundreds of convolutional layers to extract information, which may lead

to the overstaffing of the model, gradient disappearance and feature reuse. To address these problems,
only four ResBlocks [14] were introduced into the CNN branch instead of the usual five ResBlocks
found in the ResNet-based model. This modification aims to reduce computation and memory
consumption. There are two convolution operations in each ResBlock. After each convolutional layer,
there are batch normalization and ReLU activation function, and there are skip connections in each
ResBlock to solve the problem of the degradation of network. In addition, the CNN branch is not
down-sampled to better extract the details. The purpose of this design is to maintain the balance
between the consumption of computation and memory with the segmentation performance of the
network. In addition, ResBlock can be replaced by other blocks such as the vanilla convolutional layer
[11] and DenseBlock [16]. Hence, CNN branch is flexible and convenient for ablation experiments to
verify the performance of ResBlock.

3.4 BiFusion Module
Although it is simple to directly add the outputs of CNN branch with the outputs of the

transformer branch, directly adding the pixels value representing the masks with the pixels value
representing the background may cause mis-segmentation. Hence, the output features of the two
branches cannot be fused effectively. To solve the problem, inspired by Zhang et al. [32], the BiFusion
fusion module is introduced to fuse the output features of the two branches. The BiFusion fusion
module combines complementary information, and improves data quality [36], and can effectively fuse
the encoding features of CNN and transformer. The detailed configurations of BiFusion are shown
in Table 1. Its structure is shown in Fig. 4 and can be expressed as follows:

Ĉ = SpatialAttention (C)

T̂ = ChannelAttention (T)

B = Conv(W1C ⊗ W2T)

F = Residual
(

Concat
(

Ĉ, T̂, B
)) (5)
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where T is the output feature maps from the transformer branch, C is the output feature maps from the
CNN branch, ⊗ denotes Hadamard product, W1 and W2 are learnable parameters. Channel attention
is implemented as an SE block [37] that enhances global information from transformer branches.
Spatial attention is introduced from CBAM block [38] to enhance local details and suppress irrelevant
areas. Then, the Hadamard product is used to model the cross relationship between the features of the
two branches. Finally, the interaction features B and the attended features Ĉ and T̂ are concatenated
and are input into the residual block. The generated features effectively capture the global and local
context information from the two branches.

Table 1: Detailed configurations of BiFusion

Component Operation Component Operation

Channel attention FC Conv 1 ∗ 1 Residual

ReLU BatchNorm
Conv 1 ∗ 1 ReLU

Bi-linear modelling W1 Conv 1 ∗ 1 Conv 1 ∗ 1
BatchNorm BatchNorm

W2 Conv 1 ∗ 1 ReLU
BatchNorm Conv 3 ∗ 3

Conv Conv 3 ∗ 3 BatchNorm
ReLU ReLU
BatchNorm Conv 1 ∗ 1

Spatial attention Conv Conv 3 ∗ 3 Add
BatchNorm

Figure 4: BiFusion module
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4 Experiments
4.1 Datasets

So as to evaluate the performance of TC-Fuse, this study adopts three datasets: Gland Segmen-
tation (GlaS) dataset [39], Colorectal adenocarcinoma gland (CRAG) dataset [21] and COVID-19
CT Images Segmentation dataset [40]. The Gland Segmentation (GlaS) dataset consists of 165 H&E
stained histopathological images, 65 images of which are used for training, 20 images for validation
and 80 images for testing. The resolution of the images is adjusted to 128 × 128. The Colorectal
adenocarcinoma gland (CRAG) dataset is composed of 213 H&E stained histopathological images,
133 images of which are used for training, 40 images for validation and 40 images for testing. The
resolution of the images is adjusted to 192 × 192. The COVID-19 CT Images Segmentation dataset
consists of 100 CT images, 80 images of which are used for training, 10 images for validation and 10
images for testing. The resolution of the images is adjusted to 256 × 256. Details of the datasets above
are shown in Table 2.

Table 2: Details of the datasets used in the experiments

Dataset Images Size Train Augment Validation Test

Gland Segmentation
(GlaS) [39]

165 128 × 128 65 Random horizontal
flipping

20 80

Colorectal
adenocarcinoma
gland (CRAG) [21]

213 192 × 192 133 Random horizontal
flipping

40 40

COVID-19 CT
images
segmentation [40]

100 256 × 256 80 Random horizontal
flipping

10 10

4.2 Implementation Details
The proposed TC-Fuse model is implemented based on the deep learning framework PyTorch,

and trained and tested on NVIDIA GeForce RTX 3080Ti GPU and Intel Xeon E5-2686 v4 CPUs.
Adam optimizer with a learning rate of 0.0001 is adopted in training. The batchsize is set to 4 and the
epoch is set to 400. The data augment method of random horizontal flipping is applied to the training
stage. In addition, the whole network is trained end-to-end by the binary cross entropy loss function,
which can be written as:

LBCE = −
(

1
wh

w−1∑
x=0

h−1∑
y=0

(g (x, y) log (p (x, y))) + (1 − g (x, y)) log (1 − p (x, y))

)
(6)

where w and h are the width and height of the images, g(x, y) and p(x, y) denote the label image and
predicted image at the location (x, y), respectively.

4.3 Evaluation Metrics
To further illustrate the performance of the proposed TC-Fuse, F1-score (F1), Intersection over

Union (IoU), Hausdorff distance 95% (HD) and Pixel Accuracy (PA) are used as the metrics in the
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comparison with different methods. In addition to the above metrics, Sensitivity is introduced into
ablation experiments. F1, IoU and Sensitivity are expressed by Eqs. (7)–(9), respectively:

F1 = 2 × TP
2 × TP + FN + FP

(7)

IoU = TP
TP + FN + FP

(8)

Sensitivity = TP
TP + FN

(9)

where TP, FP and FN devote true-positive, false-positive, and false-negative, respectively.

The calculation equation of PA is:

PA =
∑n

i=0 pii∑n

i=0

∑n

j=0 pij

(10)

where pii devotes a pixel whose real label is i and whose predicted label is also i, and pij devotes a pixel
whose real label is i and whose predicted label is j.

The calculation equation of HD is:

H(P, GT) = 95% × max(h(P, GT), h(GT , P))

h(P, GT) = maxx∈P

{
miny∈GT ‖x − y‖}

h(GT , P) = maxy∈GT {minx∈P ‖y − x‖}
(11)

where H is Hausdorff distance 95%, P is prediction map, GT is ground truth, ||·|| devotes distance
normal form between point-set P and point-set GT .

4.4 Ablation Experiments
4.4.1 Ablation Experiments on the Structure of TC-Fuse

In order to verify the effects of transformer branch, CNN branch and BiFusion module in TC-
Fuse on improving the performance of gland segmentation, ablation experiments are conducted on
GlaS and CRAG datasets, and the results are shown in Tables 3 and 4. At first, Mix-FFN in the
transformer branch is removed. The experimental results show that Mix-FFN greatly improves the
performance of the model with 6.78%, 7.38%, 15.17% and 2.62% increasement in F1, IoU, Sensitivity
and PA on GlaS dataset, respectively and 0.92%, 1.34% and 4.95% increasement in F1, IoU and
Sensitivity on CRAG dataset, respectively, because Mix-FFN can effectively improve the transformer’s
perception of location information and make up for the lack of location information in the self-
attention mechanism. Then, without Mix-FFN, we replace the encoder with Gated Axial-Attention
[7] to verify the effectiveness of the traditional relative position encoding. The results show that relative
position encoding causes 1.34%, 0.20% and 3.16% decrease in F1, IoU and Sensitivity on GlaS dataset,
and increases 0.87%, 1.26% and 0.25% in F1, IoU and Sensitivity on CRAG dataset, but not as
good as TC-Fuse. This indicates that Mix-FFN is more effective than relative position encoding in
gland segmentation tasks. Secondly, the effectiveness of the transformer branch and CNN branch are
respectively verified. F1, IoU, Sensitivity and PA by the proposed model without CNN branch on
GlaS dataset is 3.27%, 7.08%, 3.26% and 4.66% lower than those without the transformer branch.
The F1, IoU and PA scores of the one without CNN branch on CRAG dataset are 10.44%, 13.50%
and 15.49% lower than those of without the transformer branch, while the Sensitivity scores improve
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just 1.51%. This indicates that the transformer may perform worse than CNN on small-scale datasets,
which highlights the importance of combining transformer with CNN. Finally, BiFusion module is
removed. This comparison demonstrates that the BiFusion module improves 2.00%, 2.41%, 2.19%
and 2.20% in F1, IoU, Sensitivity and PA on GlaS dataset and 3.24%, 4.62%, 8.08% and 0.55% in F1,
IoU, Sensitivity and PA on CRAG dataset. It shows that BiFusion module can effectively combine the
encoding features of CNN and transformer.

Table 3: Ablation experiments on GlaS

Model F1 IoU Sensitivity PA Params (M) GFLOPs FPS

TC-Fuse w/o
Mix-FFN

77.23% 66.42% 67.77% 68.59% 1.65 26.41 14.3

TC-Fuse w/o
Mix-FFN with
gated

75.89% 66.22% 64.61% 68.96% 1.65 26.48 11.4

TC-Fuse w/o
Transformer
branch

81.75% 69.64% 79.22% 69.25% 1.60 26.15 17.2

TC-Fuse w/o
CNN branch

78.47% 62.56% 75.96% 64.59% 0.09 0.29 94.8

TC-Fuse w/o
BiFusion

82.01% 71.39% 80.75% 69.01% 1.68 26.41 14.6

TC-Fuse (ours) 84.01% 73.80% 82.94% 71.21% 1.69 26.48 14.1

Table 4: Ablation experiments on CRAG

Model F1 IoU Sensitivity PA

TC-Fuse w/o Mix-FFN 82.21% 69.79% 75.49% 77.49%
TC-Fuse w/o Mix-FFN
with gated

83.08% 71.05% 75.74% 78.53%

TC-Fuse w/o Transformer
branch

80.72% 67.67% 73.43% 76.20%

TC-Fuse w/o CNN branch 70.27% 54.17% 74.94% 60.71%
TC-Fuse w/o BiFusion 79.89% 66.51% 72.36% 75.55%
TC-Fuse (ours) 83.13% 71.13% 80.44% 76.10%

From Table 3, it can be seen that the number of parameters of TC-Fuse is 0.04 M slightly higher
than that of TC-Fuse without Mix-FFN. The GFLOPs and FPS of them are very close. These
indicate that the structure of Mix-FFN is simple but the performance of the model can be well
improved by it. The FPS of TC-Fuse w/o Mix-FFN with Gated is 2.9 lower than 14.3 of TC-Fuse
w/o Mix-FFN, which indicates that the computational complexity of relative position encoding is
higher than that of Mix-FFN. Although GFLOPs and FPS of TC-Fuse w/o Transformer Branch have
increased by 0.33 and decreased by 3.1, respectively after adding transformer branch, the segmentation
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effect has been improved significantly. This shows that the long-range dependencies extracted by
transformer branch can significantly improve the segmentation performance, and there is little impact
on the computational complexity. After adding BiFusion to the TC-Fuse w/o BiFusion, the Params,
GFLOPs have increased by 0.01 and 0.07, respectively, and FPS decreased by 0.5. But the segmentation
performance improved greatly by BiFusion indicating the effectiveness of this fusion module.

4.4.2 Ablation Experiments on the Location of Mix-FFN

In order to verify the influence of Mix-FFN at different locations of transformer branch, the
following ablation experiments are conducted on GlaS and CRAG datasets. The experiments results
are shown in Tables 5 and 6, respectively. The first encoder is called as TransBlock1 and the second
encoder is called as TransBlock2 in the transformer branch of TC-Fuse. The Mix-FFN is inserted after
TransBlock1, after TransBlock2, after TransBlock1 and after TransBlock2, respectively. The results on
GlaS and CRAG datasets show that the best results are obtained by Mix-FFN after TransBlock1.On
GlaS dataset, F1, IoU, Sensitivity and PA respectively increased by 2.85%, 3.90%, 7.14% and 1.58%
compared with placing Mix-FFN after TransBlock2, as well as 2.55%, 5.01%, 1.33% and 3.86%
compared with placing Mix-FFN after TransBlock1 and after TransBlock2. On CRAG dataset, F1,
IoU and Sensitivity respectively increased by 4.54%, 6.40% and 13.24% compared with placing Mix-
FFN after TransBlock1 and after TransBlock2. Hence, the proposed TC-Fuse is placed in this way. The
reason is that if Mix-FFN is placed after TransBlock2, the resolution of the input is not large enough
to provide sufficient position information. If Mix-FFN is placed after TransBlock1 and TransBlock2,
the model has not better performance due to the location information provided by twice Mix-FFN.
The location information provided by Mix-FFN placed after TransBlock1 is just enough.

Table 5: Ablation study on the location of Mix-FFN on GlaS

Location of Mix-FFN F1 IoU Sensitivity PA

After TransBlock2 81.16% 69.90% 75.80% 69.63%
After TransBlock1 & after
TransBlock2

81.46% 68.79% 81.61% 67.35%

After TransBlock1 (ours) 84.01% 73.80% 82.94% 71.21%

Table 6: Ablation study on the location of Mix-FFN on CRAG

Location of Mix-FFN F1 IoU Sensitivity PA

After TransBlock2 74.96% 59.94% 61.44% 75.85%
After TransBlock1 & after
TransBlock2

78.59% 64.73% 67.20% 76.87%

After TransBlock1 (ours) 83.13% 71.13% 80.44% 76.10%
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4.4.3 Ablation Experiments on the Type of CNN Backbones

CNN can help the network to have better performance on small-scale datasets. Therefore, CNN
branch is introduced into the network to extract features together with the transformer branch. So as
to verify the impact of different kinds of CNN backbones, three different CNN backbones are verified
on GlaS and CRAG datasets. The results of the ablation experiments are shown in Tables 7 and 8. The
structures of the residual convolution block [14], vanilla convolution block [11] and dense convolution
block [16] are shown in Fig. 5. Vanilla convolution block is simple in structure and powerful in
performance. However, as its depth increases, it will lead to the degradation of network. Residual
convolution block by adding a skip connection on the basis of vanilla convolution block can solve
the degradation of network while retaining the advantages of vanilla convolution block [14]. Dense
convolution block uses a large number of skip connections, but the number of its parameter is less
than that of residual convolution block, and its generalization performance is stronger. The results
in Tables 7 and 8 show that the effect of residual convolution block is better than those of vanilla
convolution block and dense connection block. On the GlaS dataset, F1, IoU, Sensitivity and PA
are 2.42%, 4.90%, 6.05% and 1.54% higher than those using dense connection block, and are 5.20%,
8.78%, 13.22% and 1.05% higher than those using vanilla convolution block. On CRAG dataset, F1,
IoU and Sensitivity respectively increased by 4.11%, 5.81% and 12.69% compared with the method
using dense connection block, and increased by 5.17%, 7.25% and 9.27% respectively compared with
the method using vanilla convolution block. The reason of dense convolution block superior to vanilla
convolution block in TC-Fuse is that skip connection suppresses the degradation of network and
improves performance. TC-Fuse using residual convolution block is better than TC-Fuse using dense
convolution block indicating that a large number of skip connections may not improve segmentation
performance.

Table 7: Ablation study on the type of CNN branch on GlaS

Type of CNN branch F1 IoU Sensitivity PA

Vanilla 78.81% 65.02% 69.72% 70.16%
Densely connected 81.59% 68.90% 76.89% 69.67%
Residual connection (ours) 84.01% 73.80% 82.94% 71.21%

Table 8: Ablation study on the type of CNN branch on CRAG

Type of CNN branch F1 IoU Sensitivity PA

Vanilla 77.96% 63.88% 71.17% 74.63%
Densely connected 79.02% 65.32% 67.75% 76.88%
Residual connection (ours) 83.13% 71.13% 80.44% 76.10%
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Figure 5: The type of CNN backbones: (A) residual convolution block. (B) vanilla convolution block.
(C) dense convolution block

4.5 Comparison with Other Methods
In order to verify the effectiveness and progressiveness of our model, the proposed TC-Fuse model

is compared with several methods including convolution-based segmentation network Segnet [41], U-
Net [11], U-Net++ [17], and Attention U-Net [42], MLP-based segmentation network UNeXt [19],
and self-attention-based segmentation network Axial Attention U-Net [25] and Medical Transformer
[7] on GlaS and CRAG datasets. In addition, the proposed model is also compared with the above
methods on COVID-19 CT Images Segmentation Dataset. The experimental results are shown in
Tables 9–11.

Table 9: Comparison with different models on GlaS

Network F1 IoU HD PA

Segnet [41] 80.88% 67.89% 10.98 65.48%
U-Net [11] 77.78% 65.34% 9.88 70.36%
U-Net++ [17] 78.03% 65.55% 10.68 67.51%
Attention U-Net [42] 79.16% 65.51% 10.96 68.45%
UNeXt [19] 80.60% 65.53% 8.63 58.96%
Axial Attention U-Net [25] 76.26% 63.03% 12.02 63.32%
Medical transformer [7] 81.02% 69.61% 9.08 68.07%
TC-Fuse (ours) 84.01% 73.80% 8.95 71.21%
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Table 10: Comparison with different models on CRAG

Network F1 IoU HD PA

Segnet [41] 80.59% 67.49% 16.27 74.52%
U-Net [11] 79.58% 66.08% 19.34 73.88%
U-Net++ [17] 80.99% 68.05% 18.30 73.78%
Attention U-Net [42] 81.06% 68.15% 17.41 74.41%
UNeXt [19] 79.44% 65.89% 19.77 63.26%
Axial Attention U-Net [25] 74.81% 59.75% 15.14 72.21%
Medical transformer [7] 79.71% 66.26% 18.89 69.12%
TC-Fuse (ours) 83.13% 71.13% 12.60 76.10%

Table 11: Comparison with different models on COVID-19 CT images segmentation

Network F1 IoU HD PA

Segnet [41] 58.30% 41.15% 29.05 89.62%
U-Net [11] 70.39% 54.31% 19.05 93.36%
U-Net++ [17] 71.16% 55.67% 19.02 93.37%
Axial Attention U-Net [25] 69.10% 52.78% 24.11 92.43%
Medical transformer [7] 68.15% 51.69% 18.39 93.16%
TC-Fuse (ours) 72.10% 56.37% 18.72 93.57%

It can be seen from Table 9 that the proposed TC-Fuse model ranks first on the GlaS dataset with
F1 scores of 84.01%, IoU scores of 73.80% and PA scores of 71.21%. F1, IoU and PA by TC-Fuse
model is 2.99%, 4.19% and 0.85% higher than those by the Medical Transformer model. The HD by
the proposed TC-Fuse on the GlaS dataset is 8.95, ranks second in these several method, and is 0.32
higher than it by the UNeXt method. As shown in Fig. 6, the segmentation effect of our model is
the best. In the first, second and fourth rows of Fig. 6, the glands predicted by TC-Fuse are the most
intact. And in the third row of Fig. 6, TC-Fuse segments the small glands at the bottom of the image
closest to the ground truth.

It can be seen from Table 10 that our model ranks first on CRAG dataset with F1 scores of 83.13%,
IoU scores of 71.13% and PA scores of 76.10%, and is 2.07%, 2.98% and 1.58% higher than Medical
Transformer method which rank second. The HD by the proposed TC-Fuse on the CRAG dataset
ranks first and is 2.54 lower than it by Axial Attention U-Net which ranks second. As shown in Fig. 7,
the proposed TC-Fuse model has the best segmentation performance. The glands segmented by TC-
Fuse in the first and third rows of Fig. 7 are the most intact. In the second row of Fig. 7, the glands
segmented by Medical Transformer are fragmentary, and Attention U-Net, UNeXt and U-Net++
are not as effective as TC-Fuse in segmenting the glands at the bottom left part of the image. In
the fourth row of Fig. 7, all of Attention U-Net, U-Net++, UNeXt and TC-Fuse predict the wrong
segmentation. But the segmented image by TC-Fuse is most similar to the ground truth.
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Figure 6: Segmentation results on sample test images from GlaS

Figure 7: Segmentation results on sample test images from CRAG

U-Net++ adds more skip connections between the encoder and decoder of U-Net. Attention
U-Net adds an attention mechanism on the basis of U-Net. UNeXt replaces the deepest two-layer
convolution blocks of U-Net with MLP block. According to Tables 9 and 10, Figs. 6 and 7, the
performance improvement by these variant structures based on U-Net is limited compared with U-
Net. This shows that it is difficult for simple U-Net variants to extract long-range dependencies of
images and achieve better performance improvement. For transformer-based baselines, both Axial
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Attention U-Net and Medical Transformer used Axial Attention, but Medical Transformer has a
much better segmentation effect than Axial Attention U-Net, which shows the effectiveness of dual
branch structure. The proposed TC-Fuse achieves relatively better performance on GlaS and CRAG
datasets. The excellent prediction results can be attributed to modeling capability of long-range
dependencies and powerful perception of location information of Mix-FFN and Axial Attention,
which are necessary in medical image segmentation, as well as CNNs’ feature extraction capability
on small-scale datasets and feature fusion capability of the fusion module.

It can be seen from Table 11 that the proposed TC-Fuse model ranks first on COVID-19 CT
Images Segmentation Dataset in terms of F1 scores of 72.10%, IoU scores of 56.37% and PA scores
of 93.57%. Compared with Medical Transformer, TC-Fuse increased by 3.95%, 4.68% and 0.41% in
terms of F1, IoU and PA, respectively. The HD by the proposed TC-Fuse on the COVID-19 CT Images
Segmentation Dataset ranks second and is 0.33 lower than it by Medical Transformer which ranks first.

For Segnet, the segmentation ability of COVID-19 CT images is far inferior to that of the gland.
The reason should be that Segnet’s classification pixel by pixel makes it lack of spatial consistency, and
it is difficult to extract COVID-19 CT images with high similarity. To sum up, small number of images
in COVID-19 CT Images Segmentation Dataset also make the performance of transformer-based
network Axial Attention U-Net and Medical Transformer inferior to that of U-Net and U-Net++.
The comprehensive performance of the proposed TC-Fuse exceeds that of other models mentioned
above, which indicates the proposed fusion model is effective on COVID-19 CT Image Segmentation.
In the first row of Fig. 8, both Axial Attention U-Net and Medical Transformer fail to segment all
targets on the right, while TC-Fuse segmented them correctly. The second row of Fig. 8 shows Medical
Transformer is over-segmented and Axial Attention U-Net is under-segmented. The disease areas by
TC-Fuse are correctly segmented and are most similar to the labels. In the third row of Fig. 8, the
segmented image by TC-Fuse is more complete than those by Axial Attention U-Net and Medical
Transformer.

Figure 8: Segmentation results on sample test images from COVID-19 CT Images Segmentation
dataset
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The Receiver Operating Characteristic (ROC) curves of the different models on different datasets
are shown in Fig. 9. It can be found from Fig. 9 that the proposed TC-Fuse has the largest area, which
indicates that TC-Fuse can accurately distinguish the foreground from background of medical images.
The Precision-Recall (PR) curves of different models on different datasets are shown in Fig. 10. In
Figs. 10a and 10b, the areas of PR curves of the TC-Fuse on GlaS and CRAG datasets are the largest,
which indicates that the performance of TC-Fuse is better than the other models on GlaS and CRAG
datasets. In Fig. 10c, although the area of PR curves of the TC-Fuse is less than that of U-Net++
on COVID-19 CT Images Segmentation dataset, TC-Fuse has the largest area of ROC curves. Both
indicators of PR curve focus on positive examples, but both positive and negative examples are needed
to be considered in medical image segmentation. And ROC curve gives consideration to both positive
and negative examples.

(a) (b)

(c)

Figure 9: The ROC curves of different models: (a) GlaS dataset. (b) CRAG dataset. (c) COVID-19 CT
Images Segmentation dataset
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(a) (b)

(c)

Figure 10: The PR curves of the different models: (a) GlaS dataset. (b) CRAG dataset. (c) COVID-19
CT Images Segmentation dataset

Table 12 shows the numbers of parameters of different model. The number of parameters of TC-
Fuse is 1.69 M close to those of UNeXt, Axial Attention U-Net and Medical Transformer, but are
significantly less than those of Segnet, U-Net, U-Net++ and Attention U-Net. The reason is that
there are only two layers of encoders and decoders in the Transformer branch of TC-Fuse, and that
there are only four ResBlocks in its CNN branch. Moreover, the operations in the BiFusion module
are also very simple.

Table 12: Number of parameters of the different models

Network Params (M)

Segnet [41] 7.37
U-Net [11] 3.35

(Continued)
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Table 12 (continued)

Network Params (M)

U-Net++ [17] 9.16
Attention U-Net [42] 8.73
UNeXt [19] 1.47
Axial Attention U-Net [25] 1.30
Medical transformer [7] 1.49
TC-Fuse (ours) 1.69

5 Conclusion

In this work, how to fuse transformers and CNNs for medical image segmentation is explored.
Specifically, a dual branch structure composed of transformer branch and CNN branch, named as
TC-Fuse, is proposed. The output features of the two branches are fused by the BiFusion module. The
proposed TC-Fuse does not need to be pre-trained on large-scale datasets like other transformer-based
models. Moreover, the proposed transformer branch is composed of axial attention and Mix-FFN,
which can capture long-range dependencies without destroying the translation invariance of the model.
Furthermore, the BiFusion module effectively captures the long-range dependencies extracted from
the transformer branch and the details extracted from the CNN branch. A lot of experiments around
TC-Fuse on GlaS and CRAG datasets have been done, and TC-Fuse achieves good performance.
However, there are some limitations in TC-Fuse. The dependencies of the axial attention layer in
the transformer branch are not enough to capture enough context information. And Mix-FFN may
cause gradient exploding or gradient vanishing in deep networks. Besides, a lack of down-sampling
operation could make the training speed slow. In the future, more powerful transformer branches
can be introduced to replace the transformer branch of TC-Fuse to achieve better performance. And
more skip connections and layer norm could be added into Mix-FFN to alleviate gradient exploding
or vanishing caused by more powerful transformer branches. Besides, in order to better maintain the
detailed information, the atrous convolution could be introduced to expand the receptive field. Due to
the difficulty in labeling medical image, the proposed model did not be trained on large-scale datasets.
In the future, semi-supervised learning algorithm can be considered to train with labeled and unlabeled
images to further improve the performance.
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