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ABSTRACT

Through semi-supervised learning and knowledge inheritance, a novel Takagi-Sugeno-Kang (TSK) fuzzy system
framework is proposed for epilepsy data classification in this study. The new method is based on the maximum
mean discrepancy (MMD) method and TSK fuzzy system, as a basic model for the classification of epilepsy data.
First, for medical data, the interpretability of TSK fuzzy systems can ensure that the prediction results are traceable
and safe. Second, in view of the deviation in the data distribution between the real source domain and the target
domain, MMD is used to measure the distance between different data distributions. The objective function is
constructed according to the MMD distance, and the distribution distance of different datasets is minimized to
find the similar characteristics of different datasets. We introduce semi-supervised learning to further explore
the relationship between data. Based on the MMD method, a semi-supervised learning (SSL)-MMD method is
constructed by using pseudo-tags to realize the data distribution alignment of the same category. In addition,
the idea of knowledge dissemination is used to learn pseudo-tags as additional data features. Finally, for epilepsy
classification, the cross-domain TSK fuzzy system uses the cross-entropy function as the objective function and
adopts the back-propagation strategy to optimize the parameters. The experimental results show that the new
method can process complex epilepsy data and identify whether patients have epilepsy.

KEYWORDS
Takagi–Sugeno–Kang fuzzy systems; back propagation; semi-supervised learning; inheritance mechanism; transfer
learning

1 Introduction

Epilepsy is a disease caused by the abnormal discharge of neurons and can cause brain dys-
function. Electroencephalogram (EEG) detection is an effective way to identify epilepsy. At present,
traditional EEG signal analysis is mostly completed by human experts according to their experience
and is evaluated by means of the amplitude, frequency, and transient distribution of EEG. With the
development of machine learning and the introduction of time-domain and frequency-domain analysis
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into EEG signal processing methods, machines have gradually become smart tools that can assist
doctors in diagnosing epilepsy [1,2].

For original EEG signals, due to a large amount of data and the changeable characteristics, it is
unrealistic to directly use machine learning methods to identify them. Therefore, it is necessary to use
feature extraction methods to extract effective features for machine learning. In this regard, short-time
Fourier transform (STFT), wavelet packet decomposition (WPD), and kernel principal component
analysis (KPCA) are commonly used. Fuzzy systems refer to a category of inference models that
use fuzzy rules and offer interpretability. The membership function of fuzzy systems can match
linguistic variables, and each process of data transmission in these models can be depicted by artificially
designated linguistic variables. Such a white box model meets the interpretability requirement in the
field of medicine well. Consequently, we use the Takagi-Sugeno-Kang (TSK) fuzzy system as a basis
to design our model in this study [3,4]. TSK fuzzy systems usually optimize parameters via three
pathways: 1) by the genetic algorithm, 2) by the least square method, and 3) by back propagation
(BP)-based gradient descent. However, these methods have respective limitations. Genetic algorithms
evaluate numerous candidate solutions for identifying the optimal solutions, which leads to high
computing and memory costs [5]. The basic idea of the least squares method is to minimize the sum of
squares between measured data and estimated data. However, when facing the classification problem,
the label value is used as the estimation data, which cannot reflect its actual physical significance
[6]. The back-propagation method can use cross-entropy and the Softmax function to reflect the
probability that the data belong to a certain class, but the time complexity is high when dealing with
large amounts of data; moreover, gradient disappearance may occur, which easily leads to inaccurate
modelling results [7].

As deep learning has developed, its high-precision recognition rate makes deep learning attractive
for epilepsy EEG detection, but because the process of deep learning is unexplainable, we proposed
a back-propagation TSK fuzzy system. The backpropagation method can make a TSK fuzzy system
more flexible because deep learning applies iterative training, so it provides the possibility of com-
bining excellent deep learning algorithms with machine learning [8,9]. In addition, backpropagation
can use cross-entropy, which is more suitable for classification tasks, as the loss function. This is the
natural advantage of gradient descent TSK fuzzy systems compared with the first two solutions.

Two assumptions are made in traditional classification learning: 1) The learned training sample
and the new test sample must satisfy independent and identical distributions. 2) There must be
enough available training samples to learn a good classification model [10]. However, in practical
applications, we find that these two conditions are often not met. In this study, we use a parameter-free
method, called maximum mean discrepancy (MMD), to initially make the training data have the same
distribution as the future testing data [11]. Then, the model learns and obtains the predicted value as
a pseudolabel. The label information is used to further adjust the distribution. Thus, the model can
meet the conditions of assumption 1. On this basis, we use pseudolabels as extended features to increase
the data characterization information. To make the model satisfy the conditions of assumption 2, the
dataset information is increased horizontally, the model learns effective features, and the model fully
learns potential knowledge.

Our main contributions are as follows:

1) To reflect the probability distribution of the epilepsy EEG scenario, we firstly use the
cross-entropy function as the loss function of the TSK fuzzy system to achieve parameter
optimization.
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2) A flexible back-propagation TSK fuzzy system is proposed to handle complex EEG data. The
backpropagation method will make the TSK fuzzy system more flexible, because deep learning
is also iterative training, so it provides the possibility of combining excellent algorithms in deep
learning in future work.

3) Combining the concept of semi-supervised learning, a cross-domain TSK fuzzy system is
proposed, and the ability of the TSK fuzzy system is optimized from the perspective of data
characteristics and data distribution. It makes the proposed TSK model become a data-driven
learning model.

The detailed chapters are arranged as follows: Section 2 introduces epilepsy signal data, the feature
extraction method, the machine learning methods, and the back-propagation TSK fuzzy system.
Section 3 explores the proposed SSL-BP-TSK fuzzy system. Section 4 presents the experiments on
real-world epilepsy EEG signals. Section 6 is the conclusion.

2 Related Works
2.1 Epilepsy Signal Data

EEG records electrical signals from the cerebral cortex by measuring the electrical activity of a
group of neurons. Because the patterns of EEG signals are often superimposed by the electrical signals
from various parts of the brain in the direction of the electrode connections, different from ECG
waveforms, it is very difficult for EEG waveforms to distinguish PQRST waves directly in the time
domain and locate the specific excited region. Therefore, the analysis of brain waves in the frequency
domain is slightly more important. The basic structural features of the alpha, beta, theta, and delta
waves, which are roughly divided according to their frequency, can be summarized as follows: alpha
(8–13 Hz), beta (18–30 Hz), theta (4–7 Hz), and delta (1–3.5 Hz). These bands are closely related to
human behaviour, please see Table 1.

Table 1: Details of the original EEG data

EEG type Frequency Basic characteristics Waveform

β 18–30 Hz People in an excited state

α 8–13 Hz People in a waking state

θ 4–7 Hz People in a tired state

δ 1–3.5 Hz People in deep sleep

Based on the structural features of the four waveforms in the table, we can quickly conclude that
by using other feature extraction methods, such as the Fourier transform, we can derive the intensity
of the EEG signal at different frequency components, and the existence of these waveforms and their
intensity information are obtained.
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A real-world epilepsy EEG signal [2] is shown in Fig. 1. Group A and Group B are the EEG signals
of people without epilepsy with their eyes opened and closed, respectively. Group C and Group D are
the EEG signals of patients with epilepsy (without seizures) when their eyes are opened and closed,
respectively. Group E is the brain electrical signal of patients during epileptic seizures. From Fig. 1, it
can be seen that the signals of Groups A and B are stable and dense, and the signals of Groups C, D
and E have large amplitudes, and the intensity fluctuates from high to low, indicating that the neuron
discharge is abnormal.

Figure 1: Raw epilepsy electroencephalogram

In addition to the differences in EEG signal waveforms of different subjects in different states, the
EEG signals of subjects in a group are also different at different times. Therefore, we use the feature
extraction method to extract artificial features of the signal to reduce the amount of data and noise
data and facilitate model learning.

2.2 Extraction and Machine Learning Methods
As previously mentioned, on the original EEG signal, due to the large amount of data and

changeable characteristics, effective feature extraction methods are needed to extract informative
features for machine learning to reduce the computing cost. To this end, the traditional STFT, WPD
and KPCA methods are enlisted in our study. Numerous traditional algorithms have been used for
medical data analysis [12]. Nevertheless, one limitation of many well-established algorithms is that
they can work well only when the data distributions of the training and testing data are the same
or overall similar. Otherwise, they are commonly inefficient and even invalid. We briefly introduce
three time-frequency methods commonly used in signal analysis [13]. 1) Wavelet packet decomposition
(WPD). WPD is suitable for the analysis of nonstationary signals. It can be adapted according to
the characteristics of the signal. The wavelet basis function can analyse signals well. 2) Short-time
Fourier transform (STFT). Taking the STFT feature extraction method as an example, Fig. 2 shows
an epilepsy EEG signal after the feature extraction method. The signal of each group is reduced from
1000 dimensions to 6 dimensions, which not only reduces the number of features but also makes
the amplitude of the waveform more stable. Compared with Fig. 1, the amplitude decreases from
−200∼200 to 0∼40. This greatly reduces the calculation cost. The reserved 6-dimensional features
(especially the 6th dimension) have a unique signal structure, which is also conducive to machine
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learning. 3) Kernel principal component analysis (KPCA). This method introduces the concept of
a kernel function into PCA.

Figure 2: EEG data after STFT feature transformation

In the field of medicine, the interpretability of the employed machine learning models is indispens-
able. Doctors will not believe in the prediction results of machines unless they can well understand the
inference mechanisms of machines. Compared with SVM, KNN, and NB, TSK fuzzy systems have
the desired trait of good interpretability.

2.3 Maximum Mean Discrepancy Strategy
The maximum mean discrepancy (MMD) is a nonparametric method used to measure the distance

between two distributions [14]. Here, we use MMD to measure the distribution difference between the
training data (the source domain) and testing data (the target domain). Minimizing the MMD distance
facilitates the two distributions being closer, so that the knowledge learned by the model is compatible
with both the training and testing data [14].

Given source domain data DSource = {xi, yi}, i = 1, . . . , nS and target domain data DT arg et = {xi}, i =
1, . . . , nT , the MMD distance is defined as:

distance (DS, DT) =
∣∣∣∣
∣∣∣∣ 1
nS

φ (xS) − 1
nT

φ (xT)

∣∣∣∣
∣∣∣∣

2

H

= 1
n2

S

φ (xS)
2 + 1

n2
T

φ (xT)
2 − 2

nSnT

φ (xS) φ (xT) (1)

where φ(·) represents the kernel function.
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2.4 Back-Propagation TSK Fuzzy System
The rules in a back propagation TSK (BP-TSK) fuzzy system are equivalent to the neurons in

neural networks. The network structure of the BP-TSK fuzzy system is also similar to that of a neural
network, as shown in Fig. 3.

Figure 3: Structure of the BP-TSK fuzzy system. fr is calculated by (3.3), f r is calculated by (3.4), ∇qr

is included in ∇qg, which is calculated by (8), and ⊗ is the multiplication operator

Given training dataset DTrain = {xn, yn}, n = 1, . . . , N, where x ∈ Rnxd, d = 1, . . . , D, D is the
feature dimension, y ∈ Rnxc, c = 1, . . . , C, and C is the total number of categories. Assuming that the
BP-TSK fuzzy system has R rules, it is constructed as follows:

Ruler: IF x1 is Ar,1 and x2 is Ar,2 and · · · and xD is Ar,D

THEN yc
r(x) = qc

r,0 + qc
r,1x1 + · · · + qc

r,DxD
(2)

where Ar,d is the membership function, including the antecedent parameters, and qc
r,d denotes the

consequent parameters of class c.

The output of the BP-TSK fuzzy system is the weighted results of each rule:

yc (x) =
∑R

r=1

fr(x)yc
r(x)∑R

r′=1fr′(x)
=

∑R

r=1
f r (x) yc

r (x) (3.1)

The membership degree of d-dimensional features in rule r is:

μAr,d
(xd) = exp

(
−(xd − mr,d)

2

2σ 2
r,d

)
(3.2)

where mr,d and σr,d represent the centre and standard deviation of the Gaussian kernel function,
respectively, which are often obtained using fuzzy C-means (FCM) clustering or other similar
algorithms. In the formulation of rules, we assign semantic words at different levels according to the
level of the antecedent parameter σr,d in each rule.
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Trigger value of rule r:

fr (x) =
D∏

d=1

μAr,d
(xd) (3.3)

where f r (x) represents the normalization trigger level of the r-th rule:

f r (x) = fr(x)∑R

r=1fr(x)
(3.4)

The following formula is constructed according to [12]:

xe = (1dx1, xT)T (4.1)

xr = f r (x) xe (4.2)

xg = (
(x1)

T , (x2)
T , . . . , (xr)

T)T
(4.3)

qc
r = (qc

r,1, qc
r,2, . . . , qc

r,D)T (4.4)

qc
g = ((qc

1)
T, (qc

2)
T, . . . , (qc

r)
T)T (4.5)

Then, (3.1) can be expressed as [15]:

yc = xgqc
g (4.6)

For classification tasks, cross-entropy can be used to constitute the loss function of the BP-TSK
fuzzy system through the Softmax function:

p (yc (x)) = exp(yc(x))∑C

c=1 exp(yc(x))
(5)

Loss = −
N∑

n=1

ynp (yc (x)) (6)

The objective function of the BP-TSK fuzzy system can be formulated for all attributes xgi as
follows:

min L
qc

g

= −
N∑

n=1

yn ln αi + λ1

2

∣∣∣∣qc
g

∣∣∣∣2

= −
N∑

n=1

yn ln
exp(zi)∑C

c=1 exp(zi)
+ λ1

2

∣∣∣∣qc
g

∣∣∣∣2

= −
N∑

n=1

yn ln
exp(xgi

Tqc
g)∑C

c=1 exp(xgi
Tqc

g)
+ λ1

2

∣∣∣∣qc
g

∣∣∣∣2
(7)

where the former item is an empirical risk item and the latter is a structural risk item. qc
g is the

subsequent parameter of type c, and λ1 is the regularization parameter controlling the tolerance of
the classifier to errors and can be adjusted by cross-validation.
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Minimizing the objective function L requires obtaining the partial derivative of qc
g and setting the

derivative equal to 0:

∂L
∂qc

g

= ∂L
∂α

∂α

∂z
∂z
∂qc

g

=
N∑
i

xgi

(
exp(xgi

Tqc
g)∑C

c=1 exp(xgi
Tqc

g)
− yc

i

)
+ λ1qc

g (8)

We can use the AdaBelief optimizer [15] or other optimization methods [16] to update the
parameters and obtain the optimal parameters q∗

g after iterations.

The algorithm of the BP-TSK fuzzy system is as follows:

Algorithm 1: BP-TSK fuzzy system
Initialization: Training set Dtrain(xi, yi), testing set Dtest(xj), number of rules R, number of iterations T,
regularization parameters of λ1.
Parameter optimization
Step 1: Take the rule number R as the centre of the cluster, perform FCM clustering on the training
set xn, and obtain the antecedent parameters.
Step 2: Construct dataset Dtrain = {xgi, yi}, Dtest = {xgj} according to (3.1)–(3.3).
Step 3: Calculate the gradient of the subsequent parameters according to (7).
Step 4: Pass the gradient to the optimizer and update the parameters.
Output: Obtain the prediction result of the model according to (3.6).

3 SSL-BP-TSK Fuzzy Systems

This chapter introduces the MMD transfer learning items in the BP-TSK fuzzy system and adds
two semi-supervised learning items on this basis. One is used to adjust the data distribution, and the
other is used to expand the data characteristics.

3.1 MMD for the BP-TSK Fuzzy System
By introducing MMD into the TSK system, the distribution distance can be further defined as:

MMD(DS ,DT ) =
∣∣∣∣
∣∣∣∣ 1
nS
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gSqg
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S
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Let

M = 1
n2

S

xT
gSxgS + 1

n2
T

xT
gTxgT − 2

nSnT

xgS
TxgT (10)

Then, (9) can be rewritten as:

MMD(DS ,DT ) = qT
g M qg (11)
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The objective function of TSK after adding the MMD item is:

min L
qc

g

= −
N∑

i=1

yi ln αi + λ1

2

∣∣∣∣qc
g

∣∣∣∣2 + λ2(q
c
g)

TM qc
g (12)

The derivative corresponding to qg is:

∂L
∂qc

g

=
N∑
i
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(
exp(xgi

Tqc
g)∑C

c=1 exp(xgi
Tqc

g)
− yc

i

)
+ (λ1E + λ2M) qc

g (13)

3.2 SSL-MMD for BP-TSK Fuzzy Systems
The label information of the source domain and the target domain can provide more data

distribution information, so many experts have begun to study domain adaptation.

After the BP-TSK fuzzy system is added to the MMD item, it can learn the similar characteristics
of two-domain data, so the prediction result has a certain degree of reliability. Based on the MMD-BP-
TSK fuzzy system, we save the prediction results as pseudolabels. Then, we use pseudolabels to make
the data distributions of the two domains more similar according to categories so that the model can
learn more refined knowledge features.

Fig. 4 shows the three steps of data distribution processing: a) the unprocessed initial data
distribution, b) the data distribution after processing by the MMD method, and c) the data distribution
after processing by the SSL-MMD method.

In Fig. 4a, when the model has learned the data with labels, it is difficult for the model to adjust
its decision boundary when the distribution is different from the previous data distribution, that is,
when there is a chaotic data distribution.

In Fig. 4b, we can see that the chaotic data distribution has been improved, and the model can
find the appropriate decision boundary between the two domains.

In Fig. 4c, a pseudotag is added on the basis of Fig. 4b to guide the model to determine a more
appropriate decision boundary.

The objective function of SSL-MMD is:

SSL − MMD(DS ,DT ) =
C∑

c=1

∣∣∣∣∣
∣∣∣∣∣

nS∑
i=1

wc
i

(
xgi,S
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(14)

where

{
wc

i = yi/nS

wc
j = ŷj/nT

, yi is the known source domain label. ŷi is an unknown target domain label,

which is replaced by a pseudolabel.

Let

MC = 1
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S
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i xgSxgS

Twc
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Similarly, (14) can be rewritten as:

SSL − MMD(DS ,DT )= (qc
g)

TMC qc
g (16)
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Figure 4: (a): Because the data distributions of the source and target domains are fairly different, the
classifier trained in the source domain cannot predict the target domain data well. (b): MMD method
narrows the overall gap between two data distributions. (c): SSL-MMD method uses label information
to narrow the distribution of the same type of data
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The objective function of SSL-MMD-BP-TSK is:

min L
qc

g

= −
N∑

i=1

yi ln αi + λ1

2

∣∣∣∣qc
g

∣∣∣∣2 + λ2(q
c
g)

TM qc
g + λ3(q

c
g)

TMC qc
g (17)

The derivative corresponding to qc
g is:

∂L
∂qc

g

=
N∑
i

xgi

(
exp(xgi

Tqc
g)∑C

c=1 exp(xgi
Tqc

g)
− yc

i

)
+ (λ1E + λ2M + λ3MC) qc

g (18)

3.3 Semi-Supervised Inherited Learning
We use the idea of deep learning to try to transfer the knowledge learned in the previous round

to the next round. Therefore, the concept of a semi-supervised inheritance (SSL-I) mechanism is
introduced to increase the information interaction between different domains. Therefore, we proposed
a TSK fuzzy system for cross-domain learning, which includes SSL-MMD and SSL-I mechanisms.

Unlike the SSL-MMD method, which reduces the difference in data distributions, the SSL-I
method makes full use of pseudolabels to allow the model to learn additional feature representations.
The SSL-I method merges the existing tags and pseudo tags with the source domain data and target
domain data, respectively, to construct a new dataset.

Experiments show that pseudolabels can be used for effective feature representation, allowing the
model to learn deeper knowledge.

Suppose a given dataset is Dtrain(xi, yi), Dtest(xj); after learning by the MMD-BP-TSK fuzzy system,
the prediction result is obtained. The prediction result is used as a pseudolabel ŷ of the target domain
data to reconstruct the datasets ExDSource{xi, yi}, xi ∈ �n×(d+yi), i = 1, . . . , NS and ExDT arg et

{
xj, ŷj

}
, xj ∈

�n×(d+ŷj), j = 1, . . . , NT .

where yi and ŷj are labels in the form of one-hot vectors. The new dataset is learned again through the
SSL-MMD-BP-TSK fuzzy system. The structure of the CD-BP-TSK fuzzy system is shown in Fig. 5.

Figure 5: Structure of the CD-BP-TSK fuzzy system

The proposed new classification algorithm is summarized as follows:
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Algorithm 2: CD-BP-TSK fuzzy system
Initialization: Training set Dtrain(xi, yi), testing set Dtest(xj), number of rules R, number of iterations T,
regularization parameters λ1, λ2, and λ3, learning rate α = 0.01, optimizer parameters β1 = 0.9, β2 =
0.999 and ε = 10−8.
Parameter optimization
Step 1: Take the rule number R as the centre of the cluster, perform FCM clustering on the training
set xn, and obtain the antecedent parameters.
Step 2: Construct dataset Dtrain = {xgi, yi}, Dtest = {xgj} according to (4.1)–(4.3).
//MMD-BP-TSK-FS
Step 3: Use (10) to calculate the data distribution matrix M.
Step 4: Calculate the gradient of the subsequent parameters according to (13).
Step 5: Use (4.6) to obtain the prediction result and save it as a pseudolabel ŷ.
//SSL-MMD and SSL-I
Step 6: Use pseudolabels to construct a new dataset EXSource, EXT arg et, and calculate the weight wc.
Step 7: Use (18) to calculate the subsequent parameter qc

g.
Step 8: Pass the gradient to the optimizer and update the parameters.
Output: Obtain the prediction result of the model according to (4.6)

4 Experiment Analysis

In this section, we introduce the EEG datasets and perform performance tests. We compare the
new method with other machine learning methods and observe whether the experimental results are
significantly improved. Finally, the interpretability of the new model is discussed.

4.1 Experimental Setup
In this section, we build datasets in different scenarios to comprehensively test our methods. The

experiment was completed in the following working environment: Processor: Intel(R) Core(TM) i5-
8500 CPU@3.00 GHz; Memory: 12.0 GB; Software: MATLABR2021A.

1) Build the datasets

The datasets are divided into two categories. As shown in Table 2, one is a dataset with a similar
data distribution, and the other is a dataset with a chaotic data distribution.

2) Performance index

In classification problems, accuracy is used to judge whether a model’s performance is excellent.

4.2 Analysis of the Results
1) Comparison algorithm

We compared 6 traditional machine learning algorithms and 3 semi-supervised learning algo-
rithms, as shown in Table 3.

Among the compared methods, traditional methods, such as SVM, NB, KNN, and LDA, are
set according to [17,18], and the semi-supervised method, S4VM, is set according to [19]. The rule
number R in the TSK fuzzy system is selected from {5, 6, 7, 8, 9, 10}, and the regularization parameter
λ1, λ2, λ3 is obtained from {10−3, 10−2, 10−1, 0, 101, 102, 103}. The number of iterations of the BP-TSK
fuzzy systems is selected from {1000, 1500, 2000, 2500, 3000}.
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Table 2: Details of the constructed EEG dataset

Scenes Datasets Description

Similar distribution

AC-AC
50 positive classes and 50 negative classes

AE-AE

ADE-ADE
25 positive classes and 50 negative classes

ACD-ACD

Chaotic distribution

AC-AD
50 positive classes and 50 negative classesAC-AE

AE-AC

ABE-ABD
50 positive classes and 25 negative classes

ABD-ABE

ACE-ADE 25 positive classes and 50 negative classes

Table 3: Abbreviations for the comparison algorithms

Support vector machine SVM
Naive bayes NB
K-nearest neighbour KNN
Linear discriminant analysis LDA
Least squares TSK fuzzy system LS-TSK-FS
Backpropagation TSK fuzzy system BP-TSK-FS
Semi-supervised SVM S4VM
Our method 1 SSL-MMD-BP-TSK-FS
Our method 2 CD-BP-TSK-FS

2) Experimental results

The accuracies of each algorithm on the dataset after the three feature extraction methods are
shown in Tables 4–6. Obviously, all methods can achieve good accuracy for datasets with similar
distributions. However, the accuracies of the three semi-supervised learning methods are much higher
than those of the other algorithms. Although all data in the dataset are taken from the same defined
group, there is still a deviation in the data distribution.

Second, for datasets with chaotic data distributions, the performance of traditional methods
decreases significantly, and the minimum accuracy is only 51.4%, which is because they cannot be
classified correctly. There is also a case in which the traditional algorithm is effective for datasets
with chaotic data distributions, which reflects that although scenes with chaotic data distributions are
constructed according to different defined groups, the results are not scientific.
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Table 4: Accuracy value of each model after STFT feature extraction

Datasets SVM NB KNN LDA LS-TSK-
FS

BP-TSK-
FS

S4VM SSL-MMD-
BP-TSK-FS

CD-BP-
TSK-FS

Similar distribution

AC-AC
0.931 0.887 0.92 0.951 0.926 0.928 0.942 0.944 0.955

50–50
AE-AE

0.993 0.988 0.979 0.975 0.982 0.988 0.986 0.991 0.994
50–50
ADE-ADE

0.923 0.902 0.925 0.917 0.937 0.94 0.951 0.947 0.967
75–75
ACD-ACD

0.94 0.909 0.938 0.942 0.925 0.919 0.949 0.947 0.959
75–75

Chaotic distribution

AC-AD
0.904 0.879 0.906 0.904 0.891 0.896 0.934 0.948 0.96

50–50
AC-AE

0.838 0.92 0.853 0.861 0.837 0.856 0.904 0.957 0.961
50–50
AE-AC

0.509 0.547 0.507 0.511 0.541 0.547 0.846 0.952 0.969
50–50
ABE-ABD

0.687 0.688 0.6823 0.728 0.718 0.706 0.831 0.941 0.954
75–75
ABD-ABE

0.921 0.894 0.779 0.918 0.861 0.872 0.84 0.954 0.965
75–75
ACE-ADE

0.916 0.907 0.915 0.899 0.935 0.928 0.953 0.961 0.97
75–75

Table 5: Accuracy value of each model after WPD feature extraction

Datasets SVM NB KNN LDA LS-TSK-
FS

BP-TSK-
FS

S4VM SSL-MMD-
BP-TSK-FS

CD-BP-
TSK-FS

Similar distribution

AC-AC
0.902 0.877 0.885 0.934 0.914 0.912 0.916 0.955 0.977

50–50
AE-AE

0.878 0.848 0.839 0.904 0.885 0.891 0.862 0.939 0.956
50–50
ADE-ADE

0.826 0.741 0.857 0.898 0.905 0.905 0.901 0.931 0.947
75–75

(Continued)
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Table 5 (continued)

Datasets SVM NB KNN LDA LS-TSK-
FS

BP-TSK-
FS

S4VM SSL-MMD-
BP-TSK-FS

CD-BP-
TSK-FS

ACD-ACD
0.93 0.881 0.911 0.93 0.932 0.919 0.917 0.949 0.96

75–75

Chaotic distribution

AC-AD
0.915 0.819 0.885 0.909 0.88 0.884 0.876 0.951 0.972

50–50
AC-AE

0.679 0.463 0.556 0.706 0.583 0.611 0.750 0.93 0.947
50–50
AE-AC

0.514 0.523 0.531 0.664 0.781 0.799 0.823 0.944 0.953
50–50
ABE-ABD

0.739 0.691 0.707 0.803 0.87 0.879 0.781 0.953 0.964
75–75
ABD-ABE

0.811 0.598 0.777 0.876 0.752 0.77 0.762 0.932 0.959
75–75
ACE-ADE

0.812 0.726 0.856 0.878 0.897 0.895 0.893 0.924 0.951
75–75

Table 6: Accuracy value of each model after KPCA feature extraction

Datasets SVM NB KNN LDA LS-TSK-
FS

BP-TSK-
FS

S4VM SSL-MMD-
BP-TSK-FS

CD-BP-
TSK-FS

Similar distribution

AC-AC
0.9021 0.829 0.8469 0.8579 0.855 0.855 0.896 0.948 0.965

50–50
AE-AE

0.9545 0.949 0.909 0.895 0.943 0.958 0.96 0.998 0.985
50–50
ADE-ADE

0.957 0.903 0.921 0.834 0.928 0.949 0.975 0.963 0.999
75–75
ACD-ACD

0.909 0.875 0.862 0.811 0.892 0.917 0.944 0.946 0.981
75–75

Chaotic distribution

AC-AD
0.899 0.64 0.897 0.889 0.896 0.886 0.946 0.973 0.995

50–50
AC-AE

0.892 0.633 0.916 0.902 0.911 0.909 0.926 0.984 0.999
50–50
AE-AC

0.882 0.537 0.844 0.844 0.604 0.552 0.922 0.965 0.983
50–50
ABE-ABD

0.911 0.703 0.918 0.872 0.768 0.771 0.973 0.984 0.979
75–75

(Continued)
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Table 6 (continued)

Datasets SVM NB KNN LDA LS-TSK-
FS

BP-TSK-
FS

S4VM SSL-MMD-
BP-TSK-FS

CD-BP-
TSK-FS

ABD-ABE
0.936 0.743 0.932 0.897 0.952 0.955 0.964 0.979 0.996

75–75
ACE-ADE

0.952 0.839 0.887 0.839 0.904 0.911 0.957 0.961 0.994
75–75

In conclusion, it is a very common situation that there are differences in data distributions.
Although datasets are similar in different domains, there may still be differences in the data distri-
bution. Furthermore, in datasets with chaotic data distributions, there may still be small differences
in the data distribution.

It can be seen from Tables 4–6 that the average accuracy of the proposed CD-BP-TSK-FS method
reaches more than 95%, and the highest accuracy is 99.9% among the three feature extraction methods.
This proves that the new method can solve the problem of performance degradation caused by different
data distributions.

3) Statistical significance analysis

We use the newly proposed method and other methods to perform Friedman [20,21] and Holm
tests [22,23] to observe whether there are statistically significant differences. The results are shown in
Tables 7 and 8. CD-BP-TSK-FS ranks first in the Friedman test. For the Holm test, p < 0.05 represents
a significant difference between our method and other methods. The experimental results show that,
in addition to the comparison with the S4VM method under the KPCA characteristics, CD-BP-TSK-
FS has statistically significant differences. Although there is no significant difference in performance
with S4VM, our method is based on a fuzzy system, and its own explanatory nature can compensate
for this shortcoming.

Table 7: Friedman test

Average rankings of the Friedman test

STFT WPD KPCA

SVM 5.75 6.5 4.8
NB 6.8 8.8 8.35
KNN 7.3 7.2 6.35
LDA 5.75 4.45 7.4
LS-TSK-FS 6.5 5.05 6.25
BP-TSK-FS 5.7 4.85 5.75
S4VM 3.8 5.5 3
SSL-MMD-BP-TSK-FS 2.4 2 1.9
CD-BP-TSK-FS 1 1 1.2
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Table 8: Holm test

Post hoc comparisons (p values for α = 0.05)

CD-BP-TSK-FS STFT WPD KPCA

vs. z p z p z p

SVM 3.878359 0.000105 4.204957 0.000026 2.939388 0.003289
NB 4.73568 0.000002 6.368673 0 5.837951 0
KNN 5.143928 0 5.062279 0 4.204957 0.000026
LDA 3.878359 0.000105 2.816913 0.004849 5.062279 0.001471
LS-TSK-FS 4.490731 0.000007 3.306811 0.000944 4.123308 0.000037
BP-TSK-FS 3.837534 0.000124 3.143512 0.001669 3.715059 0.000203
S4VM 2.28619 0.022243 3.0674235 0.000239 1.469694 0.142
SSL-MMD-BP-TSK-FS 1.143095 0.253 0.816497 0.414 0.571548 0.568

4.3 Interpretability Analysis
Fuzzy rules can explain the execution process within the entire model through rules [24,25].

However, if the number of rules is too large, we need to define many semantics to describe the rules.
This will reduce the interpretation ability of the fuzzy system. Although our method is based on
backpropagation, it does not require a large number of rules to be superimposed, and only 5–10
rules are needed to obtain good accuracy. Therefore, our method can completely replace rules with
semantics to achieve interpretable functions.

The AE-AE dataset under STFT feature extraction is used to illustrate the execution process of
the fuzzy system. The antecedent and subsequent parameters are shown in Table 9.

Table 9: Antecedent and subsequent parameters in fuzzy systems

Antecedent parameters
Ar,d A1(m , σ) A2(m , σ) A3(m , σ) A4(m , σ) A5(m , σ)

d1
31.344 0.551 28.427 0.537 31.325 0.489 29.527 0.552 31.122 0.583

High Low Middle high Middle low Middle

d2
32.244 0.461 27.123 0.626 32.095 0.727 27.320 0.912 29.778 0.876

High Low Middle high Middle low Middle

d3
32.739 0.843 27.562 0.452 31.657 0.741 27.785 0.580 29.920 0.692

High Low Middle high Middle low Middle

d4
31.812 1.151 26.815 0.445 31.101 0.998 27.000 0.589 29.291 0.865

High Low Middle high Middle low Middle

d5
28.255 0.995 24.173 0.304 27.618 0.828 24.356 0.440 26.031 0.551

High Low Middle high Middle low Middle

(Continued)
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Table 9 (continued)

d6
11.917 7.391 0.405 0.961 5.137 3.163 0.283 1.373 1.464 2.838

High Low Middle high Middle low Middle

Subsequent parameters

q1
c 1 0.005 −0.074 −0.034 −0.035 −0.027 −0.010 −0.001
c 2 0.045 0.006 −0.006 0.038 0.022 0.010 0.001

q2
c 1 0.477 0.191 −0.184 −0.061 0.367 0.000 0.004
c 2 0.014 −0.343 −0.077 −0.284 0.066 0.000 −0.004

q3
c 1 −0.030 −0.030 −0.030 −0.029 −0.026 −0.005 −0.001
c 2 0.030 0.030 0.030 0.029 0.026 0.005 0.001

q4
c 1 0.264 −0.268 −0.016 −0.192 0.337 −0.489 0.009
c 2 0.226 0.163 −0.134 0.023 −0.270 0.489 −0.009

q5
c 1 −0.105 0.020 0.021 0.037 0.012 0.000 0.000
c 2 0.188 0.072 0.329 −0.091 −0.128 0.000 0.000

First, we use “High, Low, Middle, Middle High (MH), and Middle Low (ML)” to describe the
strength of each feature element. Then, we use these strength terms in the IF-part to describe the
strength of each feature element and use the corresponding linear expression in the Then-part to obtain
the value. Finally, the final decision value of the model can be obtained. The decision-making process
of the five rules is as follows:

1st rule:

IF: d1, d2, d3, d4, d5, and d6 are High,

THEN: f1 (x) =
[

0.005 − 0.074x1 − 0.034x2 − 0.035x3 − 0.027x4 − 0.010x5 − 0.001x6,
0.045 + 0.006x1 − 0.006x2 + 0.038x3 + 0.022x4 + 0.010x5 + 0.001x6

]
2nd rule:

IF: d1, d2, d3, d4, d5, and d6 are Low,

THEN: f2 (x) =
[

0.477 + 0.191x1 − 0.184x2 − 0.061x3 + 0.367x4 + 0.000x5 + 0.004x6,
0.014 − 0.343x1 − 0.077x2 − 0.284x3 + 0.066x4 + 0.000x5 − 0.004x6

]
3rd rule:

IF: d1, d2, d3, d4, d5, and d6 are MH,

THEN: f3 (x) =
[−0.030 − 0.030x1 − 0.030x2 − 0.029x3 − 0.026x4 − 0.005x5 − 0.001x6,

0.030 + 0.030x1 + 0.030x2 + 0.029x3 + 0.026x4 + 0.005x5 + 0.001x6

]
4th rule:

IF: d1, d2, d3, d4, d5, and d6 are ML,

THEN: f4 (x) =
[

0.264 − 0.268x1 − 0.016x2 − 0.192x3 + 0.337x4 − 0.489x5 + 0.009x6,
0.226 + 0.163x1 − 0.134x2 + 0.023x3 − 0.270x4 + 0.489x5 − 0.009x6

]
5th rule:

IF: d1, d2, d3, d4, d5, and d6 are Middle,
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THEN: f1 (x) =
[−0.105 + 0.020x1 + 0.021x2 + 0.037x3 + 0.012x4 + 0.000x5 + 0.000x6,

0.188 + 0.072x1 + 0.329x2 − 0.091x3 − 0.128x4 + 0.000x5 + 0.000x6

]
For ease of understanding, Fig. 6 shows the decision flow diagram of the model, where ‘⊕’

represents the value of the cumulative rules and ‘Max’ represents the principle of “winner takes all”.

Figure 6: Decision flow diagram of the model

4.4 Time Complexity Analysis
Taking the AC-AC dataset with STFT characteristics as an example, we show the time consump-

tion of different optimization methods in the TSK fuzzy system. The results are shown in Table 10. In
the experiment, the number of rules is set to 5, and the number of iterations in the BP solution method
is set to 1000. The least-squares method is the fastest to optimize, while the back-propagation method
requires more time. However, for medical data identification, it is acceptable that a more accurate
diagnosis requires more time.

Table 10: Time consumption (seconds) for each model

LS-TSK-FS 0.00021∗
BP-TSK-FS 0.05327
SVM 0.06481
S4VM 0.36716
CD-BP-TSK-FS 0.55132

Since the CD-BP-TSK-FS model is an optimization method using gradient descent to obtain the
optimal parameters after processing, more time is required for the parameter optimization process.
Furthermore, the comparison method uses the least square method, and they can obtain the analytic
solution directly, which makes them faster.

In terms of time consumption, compared with the other methods mentioned above, our method is
indeed at a disadvantage, but this is also an unavoidable problem of the backpropagation optimization
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method. We will carry out future work to address this problem and to find a new optimization method
to reduce the optimization time and improve the efficiency of the model.

5 Conclusion

The purpose of this paper is to develop an interpretable model for epileptic EEG signal recog-
nition. This model is based on the TSK-fuzzy system, combines the ideas of transfer learning and
semi-supervised learning, makes full use of false labels to enhance data features, and adjusts the data
distribution to better mine hidden information in data. To achieve this goal, we proposed CD-TSK
fuzzy systems. Experimental tests show that the new method can accurately predict epilepsy data in
different scenarios with only a small number of samples. Our future work will concentrate on reducing
computing costs and applying the model in related areas, such as brain-computer interfaces.
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