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ABSTRACT

The fractional-order Boussinesq equations (FBSQe) are investigated in this work to see if they can effectively
improve the situation where the shallow water equation cannot directly handle the dispersion wave. The fuzzy
forms of analytical FBSQe solutions are first derived using the Adomian decomposition method. It also occurs on
the sea floor as opposed to at the functionality. A set of dynamical partial differential equations (PDEs) in this
article exemplify an unconfined aquifer flow implication. This methodology can accurately simulate climatological
intrinsic waves, so the ripples are spread across a large demographic zone. The Aboodh transform merged with the
mechanism of Adomian decomposition is implemented to obtain the fuzzified FBSQe in R̃, R̃n and (2nth)-order
involving generalized Hukuhara differentiability. According to the system parameter, we classify the qualitative
features of the Aboodh transform in the fuzzified Caputo and Atangana-Baleanu-Caputo fractional derivative
formulations, which are addressed in detail. The illustrations depict a comparison analysis between the both
fractional operators under gH-differentiability, as well as the appropriate attributes for the fractional-order and
unpredictability factors σ ∈ [0, 1]. A statistical experiment is conducted between the findings of both fractional
derivatives to prevent changing the hypothesis after the results are known. Based on the suggested analyses,
hydrodynamic technicians, as irrigation or aquifer quality experts, may be capable of obtaining an appropriate
storage intensity amount, including an unpredictability threshold.

KEYWORDS
Fuzzy set theory; aboodh transform; adomian decomposition method; boussinesq equation; fractional derivative
operators; analysis of variance test

1 Introduction

Numerous multidimensional algorithms have previously been efficaciously constructed to study
physical phenomena. The Korteweg-de Vries (KdV) equation, for example, is primarily utilized
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to study the transmission of waves that propagate in one region of space, whilst the Boussinesq
equation (BSQe) characterizes physical phenomena in multiple directions. The BSQe is furthermore
applied to investigate various mechanisms that occur in magnetic fields in electrode materials [1],
magnetosound vibrations in fluid [2] and ferroelectric vibrations in superparamagnetic [3]. Since
the 1970s, these formulas and numerous others have piqued the interest of a huge proportion of
theoretical physicists and cosmologists due to their usage in discovering the intrinsic structures of some
intricate physical processes. As a result, various researchers have innovated and revealed a diversity of
innovative strategies for creating numerical solutions for the majority of nonlinear PDEs. The finite
difference method [4], the iterative process [5], the sine-cosine principle [6], the Weierstrass elliptic
function approach [7], the tanh-sech technique [8], the F-expansion technique [9] and Hirota’s bilinear
principle [10] are certain formulated instruction in ways and fundamentals. Other methodologies’
documentation can all be found in [11–13]. In this research, we will apply the fuzzified Aboodh
transform in connection with the Adomian decomposition method to procure analytical findings of
fourth-order time-FBSQe. In 1978, Bear [14] defined the conventional BSQe shown as:

∂
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∂ϒ
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)
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(
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where Qu signifies swamped flowability in the u manner (W/T); The concentrated permeability in the ξ

way is denoted by Qξ , (W/T); ϒ denotes the hydraulic gradient (S); U denotes the accurate production
(dimensionless); and P indicates the recharge/discharge rate (W/T).

When calculating the FBSQe, the following hypothesis are considered:

i. Assume that the Dupuit-Forchhimer assumptions, along with Darcy’s law, are valid.

ii. The liquid (water) is non-compressible in the constant volume.

iii. A power-law component governs the flux perturbations in the monitoring volume.

The (1) estimation was created as conducting an investigation into acoustic waves in tropical
waters. This was later improved to address purification filtration issues in highly permeable ground-
water structures. In addition, (1) is commonly used in oceanic and seaside renovation to rectify
seawater desalination challenges in nanostructured subsurface structures. BSQe also has the potential
to develop a procedure for an assortment of configurations that communicate with shallow aquifers’
liquidity and irrigation channels [15–17]. To calculate the FBSQe, the researchers [18] considered
the index-law variability of fluid flow in detection capacity and fractional Taylor encapsulates.
Studying BSQe [19] intermittent, nonlinear and concussive flow remedies were studied using fractional
variational methods. Zhuang et al. [20] implemented two unique supercomputing methodologies for
FBSQe: finite volume and finite element strategies relying on bifurcation-facilitating capabilities.
Abassy et al. [21] used an re-configured VIM to generate an FBSQe. Wu et al. [22] optimised transfer
function BSQe strategies for a concentration of underground water with interactively changeable
floods. Mainstream calculus, however, is incompetent at addressing a situation like this. As a
consequence, naturalistic explanations are needed to identify this issue. One of the most influential
methodologies for attempting to articulate this situation is fuzzy set theory [23].

The researchers presented an innovative notion of fractional integral and derivative, known as the
Atangana-Baleanu-Caputo fractional derivative (ABCFD) and integral, in [24], which extrapolates
the Riemann-Liouville and Caputo integral and derivative into a standard pattern. The researchers
suggested a discrete variant of the ABCFD and achieved a quantitative methodology for solving
a linear FDE with ABCFD in [25,26]. The authors [27] looked into the chaotic behaviour and
stabilization effects of FDEs within the ABCFD operator. In recent times, fuzzy interpretation and
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fuzzified DEs have been envisioned to tackle the unpredictability resulting from inadequate data in
several quantitative or mathematical simulations of such predetermined real-world manifestations. So
far, this hypothesis has also been established and a wide range of implementations have been considered
in [28–30] and the descriptions herein. The notion of fuzzified sort Riemann-Liouville differentiability
predicated on Hukuhara differentiability (HD) was introduced in [31], and the researchers developed
the presence of certain fuzzified iterative methods utilizing adequate compressibility type prerequisites
utilizing the Hausdorff estimate of non-compactness. Numerous techniques and strategies premised
on HD or generalized HD (see [32]) were then recognized in a variety of studies in the literature [33,34],
and we are currently analyzing several of these findings momentarily. Allahviranloo et al. [35] helped in
providing an expressive approximate solutions to the fuzzified conic equations. The suggested system’s
authenticity and perseverance were evaluated in attempt to show that it was intrinsically rigorous.
Arqub et al. [36] developed the fuzzified FDE by incorporating the non-singular component into the
differential implementation of the AB operator. Zhao et al. [37] considered a fuzzied-based method
for dealing with the new therapeutic Corona-virus epidemic.

The Adomian decomposition method (ADM) is an operational approach for interacting with
nonlinear functions that emerge in scientific domains; Adomian [38] became the best to introduce
it. The outcome is interpreted as the cumulative of an infinite series that inevitably culminates in
the intended correctness. Because this technique is precise and convenient, it does not require the
use of an irreducible matrix, composite multivariable calculus, or infinite series viewpoints. There are
no negative instances associated with this methodology. This approach has been utilized by many
researchers [39,40].

Because of the foregoing tendency, figuring out the exact-approximate findings of fuzzified
fractional PDEs is a complicated process. The objective of this scientific work was to establish a
reliable technique for obtaining predicted values for a fuzzified FBSQe, such that a generalized BSQe
with propagation components that are imprecise in initial conditions (ICs) due to the AADM, which
designs the progression under consideration, so the AADM and the Aboodh transform are closely
correlated and the ADM is referred to as the fuzzified AADM. The FBSQe has been investigated
employing novel methodology. Furthermore, the truly innovative fractional derivative notion makes
it easier to evaluate fuzzy FDEs rather than examining specific challenges with CFD and ABCFD
operators. In addition, introducing the computational underpinnings for the fuzzy CFD and ABC
fractional HD research findings necessitates a fuzzy derivative of fractional-order. In summary, we
presented the comparison techniques for the aforementioned fractional derivatives using the analysis
of variance technique. Illustrative findings suggest that both the techniques are reliable when fuzzy set
theory is involved.

The organization of this paper is to clarify the influence of FBSQe as follows: Section 2 demon-
strates the preliminary concepts of fractional calculus and fuzzy set theory. Section 3 elaborates on
the roadmap of the semi-analytical technique in the convolution of fuzzy set theory, the Adomian
decomposition method, and the Aboodh transform. Section 4 presents the test examples of the
fourth-order FBSQe in R̃, R̃n and 2ndth-order in R̃ with their graphical illustrations and physical
interpretations. Statistical analysis also shows the efficacy of the proposed technique. Section 5
presents the concluding remarks based on experimental and numerical results.
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2 Preliminaries

This section will attempt to make some basic observations about the Aboodh transform, in
addition to certain key features pertaining to fuzzy set and fractional calculus theory. We refer to
[24,26] for further documentation.

Definition 2.1. ([41,42]) A fuzzy set � : R̃ �→ [0, 1] is said to be the fuzzy number (Fn), if the
following suppositions are true:

1. � is normal (for some �0 ∈ R̃; �(u0) = 1),

2. � is upper semi continuous,

3. �(u1ϒ + (1 − ϒ)u2) ≥ (
�(u1) ∧ �(u2)

)∀ϒ ∈ [0, 1], u1, u2 ∈ R̃, i.e., � is convex;

4. cl
{
u ∈ R̃, �(u) > 0

}
is compact.

Definition 2.2. ([41]) A Fn � is said to be the σ -level set presented as follows:

[�]σ = {
ϒ ∈ R̃ : �(ϒ) ≥ 1

}
, (2)

where σ ∈ [0, 1] and ϒ ∈ R̃.

Definition 2.3. ([41]) A parametric representation of an Fn is denoted by
[
�(σ), �̄(σ )

]
such that

σ ∈ [0, 1] if the following suppositions are true:

1. �(σ) is non-decreasing, left continuous, bounded over (0, 1] and left continuous at 0.

2. �̄(σ ) is non-increasing, right continuous, bounded over (0, 1] and right continuous at 0.

3. �(σ) ≤ �̄(σ ).

Also, σ is defined to be crisp number if �(σ) = �̄(σ ) = σ .

Definition 2.4. ([43]) For σ ∈ [0, 1] and a scalar ϒ . Assume that for two Fns ϑ̃1 = (ϑ1, ϑ̄1), ϑ̃2 =
(ϑ2, ϑ̄2), then the algebraic properties are presented as

1. ϑ̃1 ⊕ ϑ̃2 = (
ϑ1(σ ) + ϑ2(σ ), ϑ̄1(σ ) ⊕ ϑ̄2(σ )

)
,

2. ϑ̃1 
 ϑ̃2 = (
ϑ1(σ ) − ϑ2(σ ), ϑ̄1(σ ) − ϑ̄2(σ )

)
,

3. ϒ � ϑ̃1 =
{

(ϒϑ1, ϒϑ̄1) ϒ ≥ 0,

(ϒϑ̄1, ϒϑ1) ϒ < 0.

Definition 2.5. ([44]) Suppose a fuzzy function ϒ : Ẽ × Ẽ �→ R̃ containing two fuzzy numbers
ϑ̃1 = (ϑ1, ϑ̄1), ϑ̃2 = (ϑ2, ϑ̄2), then ϒ-distance between ϑ̃1 and ϑ̃2 is stated as

ϒ(ϑ̃1, ϑ̃2) = sup
σ∈[0,1]

[
max

{|ϑ1(σ ) − ϑ2(σ )|, |ϑ̄1(σ ) − ϑ̄2(σ )|}]. (3)

Definition 2.6. ([44]) Assume that a fuzzy function ϒ : R̃ �→ Ẽ, if for any ε > 0 ∃ δ > 0 and the
fixed value of u0 ∈ [a1, a2], we have

ϒ(w(u), w(u0)) < ε; whenever |u − u0| < δ, (4)

then ϒ is said to be continuous.

Definition 2.7. ([45]) Let δ1, δ2 ∈ Ẽ, if δ3 ∈ Ẽ and δ1 = δ2 + δ3. The H-difference δ3 of δ1 and δ2 is
presented as δ1 
H δ2. Clearly, δ1 
H δ2 = δ1 + (−1)δ2.
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Definition 2.8. ([45]) Consider ϒ : (b1, b2) �→ Ẽ and ε0 ∈ (b1, b2). Then, ϒ is known as strongly
generalized differentiable at ε0 if ϒ ′(ε0) ∈ Ẽ exists such that

(i) ϒ ′(ε0) = lim
σ �→0

ϒ(ε0 + σ) 
gH ϒ(ε0)

σ
= lim

σ �→0

ϒ(ε0) 
gH ϒ(ε0 − σ)

σ
,

(ii) ϒ ′(ε0) = lim
σ �→0

ϒ(ε0) 
gH ϒ(ε0 + σ)

−σ
= lim

σ �→0

ϒ(ε0 − σ) 
gH ϒ(ε0)

−σ
.

All through this inquiry, we will employ the representation ϒ is (1)-differentiable and (2)-
differentiable, respectively, if it is differentiable under the supposition (i) and (ii) stated in the aforesaid
notion.

Theorem 2.9. ([43]) Surmise that a fuzzy valued mapping ϒ : R̃ �→ Ẽ such that ϒ(ε0; σ) =[
ϒ(ε0; σ), ϒ̄(ε0; σ)

]
and σ ∈ [0, 1]. Then

I. ϒ(ε0; σ) and ϒ̄(ε0; σ) are differentiable, if ϒ is a (1)-differentiable, and[
ϒ ′(ε0)

]σ = [
ϒ

′
(ε0; σ), ϒ̄ ′(ε0; σ)

]
. (5)

II. ϒ(ε0; σ) and ϒ̄(ε0; σ) are differentiable, if ϒ is a (2)-differentiable, and[
ϒ ′(ε0)

]σ = [
ϒ̄ ′(ε0; σ), ϒ ′

(ε0; σ)
]
. (6)

Definition 2.10. ([44]) Surmise that a fuzzy mapping ϒ
(r)
gH = ϒ(r) ∈ C

F [0, p]
⋂

L
F [0, p]. Then, fuzzy

gH-fractional Caputo differentiability of fuzzy-valued mapping ϒ is stated as(
c
gHDβϒ

)
(ζ ) = J r−β

a1
� (ϒ(r))(ε)

= 1
�(r − β)

�
ζ∫

a1

(ζ − u)r−β−1 � ϒ(r)(u)du, β ∈ (r − 1, r], r ∈ N, ζ > a1. (7)

Thus, the parametric formulations of ϒ = [
ϒ

σ
(ζ ), ϒ̄σ (ζ )

]
, σ ∈ [0, 1] and ζ0 ∈ (0, p), then

fuzzified CFD is defined as[
Dβ

(i)−gHϒ(ζ0)
]

σ
= [

Dβ

(i)−gHϒ(ζ0), Dβ

(i)−gHϒ̄(ζ0)
]
, σ ∈ [0, 1], (8)

where r = [σ ].

[
Dβ

(i)−gHϒ(ζ0)
] = 1

�(r − β)

[ ζ∫
0

(ζ − u)r−β−1 dr

dur
ϒ

(i)−gH(u)du
]

ζ=ζ0

,

[
Dβ

(i)−gHϒ̄(ζ0)
] = 1

�(r − β)

[ ζ∫
0

(ζ − u)r−β−1 dr

dur
ϒ̄(i)−gH(u)du

]
ζ=ζ0

. (9)
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Definition 2.11. Consider a fuzzy function ϒ̃(ζ ) ∈ H̃
1(0, T) and β ∈ [0, 1], then fuzzy gH-

fractional Atangana-Baleanu differentiabilty of fuzzy-valued mapping is defined as

(
gHDβϒ

)
(ζ ) = ABC(β)

1 − β
�

[ ζ∫
0

ϒ
′
(u) � Eβ

[−β(ζ − u)β

1 − β

]
du

]
. (10)

Therefore, the parametric version of ϒ = [
ϒ

σ
(ζ ), ϒ̄σ (ζ )

]
, σ ∈ [0, 1] and ζ0 ∈ (0, p), then the

fuzzy Atangana-Baleanu derivative in the Caputo context is described as[
ABCDβ

(i)−gHϒ̃(ζ0; σ)
]

=
[

ABCDβ

(i)−gHϒ(ζ0; σ), ABCDβ

(i)−gHϒ̄(ζ0; σ)
]
, σ ∈ [0, 1], (11)

where

ABCDβ

(i)−gHϒ(ζ0; σ) = ABC(β)

1 − β

[ ζ∫
0

ϒ
′
(i)−gH(u)Eβ

[−β(ζ − u)β

1 − β

]
du

]
ζ=ζ0

,

ABCDβ

(i)−gHϒ̄(ζ0; σ) = ABC(β)

1 − β

[ ζ∫
0

ϒ̄ ′
(i)−gH(u)Eβ

[−β(ζ − u)β

1 − β

]
du

]
ζ=ζ0

, (12)

where the normalized function is denoted by ABC(β) and ABC(0) = ABC(1) = 1. Furthermore, type
(i) − gH exists. Consequently, there is no supposition to let (ii) − gH differentiability.

Initially, authors [46] described the novel transform. This notion is extended to fuzzy set analysis.

Definition 2.12. Aboodh transform for mapping ϒ(ζ ) of exponential order over the set of
mappings is stated as

A =
{
ϒ :

∣∣ϒ(ζ )
∣∣ < M exp(κ)ι|ζ |, if ζ ∈ (−1)� × [0, ∞), � = 1, 2; (M, κ1, κ1 > 0)

}
, (13)

as

A
[
ϒ̃(ζ ), ρ

] = H(ρ) = 1
ρ

+∞∫
0

exp
( − ρζ

) � ϒ̃(ζ )dζ , ζ ≤ 0, ρ ∈ [κ1, κ2]. (14)

In (14), ϒ̃ satisfied the supposition of the nonincreasing ϒ and nondecreasing diameter ϒ̄ ,
respectively, of a fuzzy function ϒ .

In view of Salahshour et al. [47], we have

1
ρ

+∞∫
0

exp(−ρζ ) � ϒ̃(ζ )dζ

=
(

1
ρ

+∞∫
0

exp(−ρζ )ϒ(ζ )dζ ,
1
ρ

+∞∫
0

exp(−ρζ )ϒ̄(ζ )dζ

)
. (15)
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Furthermore, taking into account the classical Aboodh transform [46], we find

A

[
ϒ(ζ ; σ)

]
= 1

ρ

+∞∫
0

exp(−ρζ )ϒ(ζ ; σ)dζ (16)

and

A

[
ϒ̄(ζ ; σ)

]
= 1

ρ

+∞∫
0

exp(−ρζ )ϒ̄(ζ ; σ)dζ . (17)

The aforementioned representations can then be documented as

A
[
ϒ̃(ζ )

] =
(
A

[
ϒ(ζ ; σ)

]
,A

[
ϒ̄(ζ ; σ)

])

=
(
A (ρ), ¯A (ρ)

)
. (18)

In the context of the Aboodh transform, Awuya et al. [48] suggested the ABCFD formulation.
Besides that, we apply the concept of fuzzified ABCFD in the context of a fuzzified Aboodh transform
as shown below:

Definition 2.13. Suppose that Y(ρ) is the aboodh transform of ϒ(ζ ) ∈ C and ϒ(ω) is te Laplace
transform of ϒ(ζ ) ∈ C, then the Aboodh transform of ABCFD is obtained as follows:

A
[

ABC
gH D β

ζ
ϒ̃(ζ )

] = ϕβ
ABC(β)

β + (1 − β)ϕβ(ρ)
�

(
ϒ̃(ρ) 
 ϕ−2 � ϒ̃(0)

)
. (19)

Also, implying the idea of Salahshour et al. [47], we have

ϕβ
ABC(β)

β + (1 − β)ϕβ(ρ)
�

(
ϒ̃(ρ) 
 ϕ−2 � ϒ̃(0)

)

=
(

ϕβ
ABC(β)

β + (1 − β)ϕβ(ρ)

(
ϒ(ρ) − ϕ−2ϒ(0)

)
,

ϕβ
ABC(β)

β + (1 − β)ϕβ(ρ)

(
ϒ̄(ρ) − ϕ−2ϒ̄(0)

))
. (20)

3 Configuration of Semi-Analytical Scheme in Fuzzy the Sense

The following is an investigation of an iterative mechanism for accumulating numerical solutions
to the one-dimensional FBSQe employing the CFD and ABCFD formulations in the fuzzified Aboodh
transform:

D(β)

ζ
ϒ̃(u, ζ ; σ) = χ � D(4)

u ϒ̃(u, ζ ; σ) ⊕ ϑ � D(2)

u ϒ̃(u, ζ ; σ) ⊕ � � D(4)

u ϒ̃ 2(u, ζ ; σ)


 4� � ϒ̃ 2(u, ζ ; σ), u ∈ R̃, ζ > 0, (21)

supplemented with ICs

ϒ̃(u, 0) = ϒ(σ) � g(u; σ), (22)

where σ ∈ [0, 1] denotes the fuzzy valued interval and ϒ̃(σ ) = [ϒ(σ), ϒ̄(σ )] = [σ − 1, 1 − σ ].
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The parametric extension of (21) is shown as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D(β)

ζ ϒ(u, ζ ; σ) = χD(4)

u ϒ(u, ζ ; σ) + ϑD(2)

u ϒ(u, ζ ; σ)

+�D(4)

u ϒ
2
(u, ζ ; σ) − 4�ϒ̃ 2(u, ζ ; σ),

ϒ(u, 0; σ) = (1 − σ)g(u; σ),

D(β)

ζ ϒ̄(u, ζ ; σ) = χD(4)

u ϒ̄(u, ζ ; σ) + ϑD(2)

u ϒ̄(u, ζ ; σ)

+�D(4)

u ϒ̄ 2(u, ζ ; σ) − 4�ϒ̄ 2(u, ζ ; σ),

ϒ̄(u, 0; σ) = (σ − 1)ḡ(u; σ).

(23)

Considering the Aboodh transform of the first foregoing scenario of (23), we get

A
[
D(β)

ζ
ϒ(u, ζ ; σ)

]
= A

[
χD(4)

u ϒ(u, ζ ; σ) + ϑD(2)

u ϒ(u, ζ ; σ) + �D(4)

u ϒ
2
(u, ζ ; σ) − 4�ϒ̃ 2(u, ζ ; σ)

]
.

Considering (22), then we have

ϕβU (u, ρ; σ) −
q−1∑
�=0

ϕβ−2−�ϒ
(�)

(u, 0; σ)

= A

[
χD(4)

u ϒ(u, ζ ; σ) + ϑD(2)

u ϒ(u, ζ ; σ) + �D(4)

u ϒ
2
(u, ζ ; σ) − 4�ϒ̃ 2(u, ζ ; σ)

]
.

Furthermore, the reconstructed mapping in the fuzzified ABCFD context

ϕβ
ABC(β)

β + (1 − β)ϕβ

[
U (u, ρ; σ) − ϕ−2ϒ(u, 0; σ)

]

= A

[
χD(4)

u ϒ(u, ζ ; σ) + ϑD(2)

u ϒ(u, ζ ; σ) + �D(4)

u ϒ
2
(u, ζ ; σ) − 4�ϒ̃ 2(u, ζ ; σ)

]
,

or likewise, we have

A
[
U (u, ρ; σ)

] = (σ − 1)ϕ−2g(u; σ)

+ 1
ϕβ

A

[
χD(4)

u ϒ(u, ζ ; σ) + ϑD(2)

u ϒ(u, ζ ; σ) + �D(4)

u ϒ
2
(u, ζ ; σ)

− 4�ϒ̃ 2(u, ζ ; σ)

]
(24)

and

A
[
U (u, ρ; σ)

] = (σ − 1)ϕ−2g(u; σ) +
(

β + (1 − β)ϕβ

ϕβABC(β)

)

A

[
χD(4)

u ϒ(u, ζ ; σ) + ϑD(2)

u ϒ(u, ζ ; σ) + �D(4)

u ϒ
2
(u, ζ ; σ)

− 4�ϒ̃ 2(u, ζ ; σ)

]
. (25)
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The solution to the unidentified sequence is written as

ϒ(u, ζ ; σ) =
+∞∑
q=0

ϒ(u, ζ ; σ), (26)

and the nonlinear component are treated by Â

N (u, ζ ; σ) =
+∞∑
q=0

Aq(u, ζ ; σ), (27)

where Aq is widely recognized that the Adomian polynomial is given as

Aq = 1
q!

dq

dλq

[
N

( +∞∑
q=0

λqϒ q(u, λ; σ)

)]
λ=0

. (28)

Merging (24), (26) and (27) with (25), yields the following expressions:

A

[ +∞∑
q=0

ϒ(u, ζ ; σ)

]
= (σ − 1)ϕ−2g(u; σ) + 1

ϕβ
A

[
χ

( +∞∑
q=0

ϒ q(u, ζ ; σ)

)
uuuu

+ ϑ

( +∞∑
q=0

ϒ q(u, ζ ; σ)

)
uu

+ �

( +∞∑
q=0

Aq(ϒ)

)
uuuu

− 4�

+∞∑
q=0

Bq(ϒ)

]
(29)

and

A

[ +∞∑
q=0

ϒ(u, ζ ; σ)

]
= (σ − 1)ϕ−2g(u; σ) +

(
β + (1 − β)ϕβ

ϕβABC(β)

)
A

[
χ

( +∞∑
q=0

ϒ q(u, ζ ; σ)

)
uuuu

+ ϑ

( +∞∑
q=0

ϒ q(u, ζ ; σ)

)
uu

+ �

( +∞∑
q=0

Aq(ϒ)

)
uuuu

− 4�

+∞∑
q=0

Bq(ϒ)

]
. (30)

We determine the aforementioned recursive expressions by fuzzified CFD and ABCFD operators
using the inverse Aboodh transform and considering both sides analogous exponents of (29) and (30),
respectively:

ϒ 0(u, ζ ; σ) = A
−1

[
(σ − 1)ϕ−2g(u; σ)

]
,

ϒ 1(u, ζ ; σ) = A
−1

[
1
ϕβ

A

[
χ

(
ϒ 0(u, ζ ; σ)

)
uuuu

+ ϑ
(
ϒ 0(u, ζ ; σ)

)
uu

+ �
(
A0(ϒ)

)
uuuu

− 4�B0(ϒ)

]]
,
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ϒ 2(u, ζ ; σ) = A
−1

[
1
ϕβ

A

[
χ

(
ϒ 1(u, ζ ; σ)

)
uuuu

+ ϑ
(
ϒ 1(u, ζ ; σ)

)
uu

+ �
(
A1(ϒ)

)
uuuu

− 4�B1(ϒ)

]]
,

...

ϒ q+1(u, ζ ; σ) = A
−1

[
1
ϕβ

A

[
χ

(
ϒ q(u, ζ ; σ)

)
uuuu

+ ϑ
(
ϒ q(u, ζ ; σ)

)
uu

+ �
(
Aq(ϒ)

)
uuuu

− 4�Bq(ϒ)

]]
.

As an outcome, we get

ϒ 0(u, ζ ; σ) = A
−1

[
(σ − 1)ϕ−2g(u; σ)

]
,

ϒ 1(u, ζ ; σ) = A
−1

[
β + (1 − β)ϕβ

ABC(β)ϕβ
A

[
χ

(
ϒ 0(u, ζ ; σ)

)
uuuu

+ ϑ
(
ϒ 0(u, ζ ; σ)

)
uu

+ �
(
A0(ϒ)

)
uuuu

− 4�B0(ϒ)

]]
,

ϒ 2(u, ζ ; σ) = A
−1

[
β + (1 − β)ϕβ

ABC(β)ϕβ
A

[
χ

(
ϒ 1(u, ζ ; σ)

)
uuuu

+ ϑ
(
ϒ 1(u, ζ ; σ)

)
uu

+ �
(
A1(ϒ)

)
uuuu

− 4�B1(ϒ)

]]
,

...

ϒ q+1(u, ζ ; σ) = A
−1

[
β + (1 − β)ϕβ

ABC(β)ϕβ
A

[
χ

(
ϒ q(u, ζ ; σ)

)
uuuu

+ ϑ
(
ϒ q(u, ζ ; σ)

)
uu

+ �
(
Aq(ϒ)

)
uuuu

− 4�Bq(ϒ)

]]
.

As a consequence, the intended approximation is composed as

ϒ(u, ζ ; σ) = ϒ 0(u, ζ ; σ) + ϒ 1(u, ζ ; σ) + · · · .

Practise the same procedure for the other part of (23). As a result, we display the solution as we
try to follow:{

ϒ(u, ζ ; σ) = ϒ 0(u, ζ ; σ) + ϒ 1(u, ζ ; σ) + · · · ,

ϒ̄(u, ζ ; σ) = ϒ̄0(u, ζ ; σ) + ϒ̄1(u, ζ ; σ) + · · · .
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4 Application to the Fuzzy FBSQe

In what follows, the sets of solutions to the FBSQe will be established here using an Aboodh
transform associated with the ADM, which is articulated by the fuzzified CFD and ABCFD
techniques.

4.1 Fourth-Order Fuzzy FBSQe in R̃
Example 1. Surmise that the general 1D fuzzified FBSQe is denoted by

D(β)

ζ
ϒ̃(u, ζ ; σ) = χ � D(4)

u ϒ̃(u, ζ ; σ) ⊕ ϑ � D(2)

u ϒ̃(u, ζ ; σ) ⊕ � � D(4)

u ϒ̃ 2(u, ζ ; σ)


 4� � ϒ̃ 2(u, ζ ; σ), u ∈ R̃, ζ > 0, (31)

supplemented with fuzzified ICs

ϒ̃(u, 0) = ϒ(σ) � exp(u), (32)

where σ ∈ [0, 1] denotes the fuzzy valued interval and ϒ̃(σ ) = [ϒ(σ), ϒ̄(σ )] = [σ − 1, 1 − σ ].

The parametric extension of (31) is shown as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

D(β)

ζ ϒ(u, ζ ; σ) = χD(4)

u ϒ(u, ζ ; σ) + ϑD(2)

u ϒ(u, ζ ; σ) + �D(4)

u ϒ
2
(u, ζ ; σ) − 4�ϒ̃ 2(u, ζ ; σ),

ϒ(u, 0; σ) = (1 − σ) exp(u)

D(β)

ζ ϒ̄(u, ζ ; σ) = χD(4)

u ϒ̄(u, ζ ; σ) + ϑD(2)

u ϒ̄(u, ζ ; σ) + �D(4)

u ϒ̄ 2(u, ζ ; σ) − 4�ϒ̄ 2(u, ζ ; σ),

ϒ̄(u, 0; σ) = (σ − 1) exp(u).

(33)

Case I. To begin, we apply the Aboodh transform to the first part of (33), as well as gH–
differentiability via the CFD formula.

Considering the Aboodh transform of the first foregoing scenario of (33), we have

A
[
D(β)

ζ
ϒ(u, ζ ; σ)

] = A

[
χD(4)

u ϒ(u, ζ ; σ) + ϑD(2)

u ϒ(u, ζ ; σ) + �D(4)

u ϒ
2
(u, ζ ; σ) − 4�ϒ̃ 2(u, ζ ; σ)

]
.

Considering (33), we have

ζ βU (u, ρ; σ) −
q−1∑
�=0

ζ β−2−�ϒ
(�)

(u, 0; σ)

= A

[
χD(4)

u ϒ(u, ζ ; σ) + ϑD(2)

u ϒ(u, ζ ; σ) + �D(4)

u ϒ
2
(u, ζ ; σ) − 4�ϒ̃ 2(u, ζ ; σ)

]
.

or likewise, we have

A
[
U (u, ρ; σ)

] = (σ − 1)ϕ−2 exp(u) + 1
ϕβ

A

[
χD(4)

u ϒ(u, ζ ; σ)

+ ϑD(2)

u ϒ(u, ζ ; σ) + �D(4)

u ϒ
2
(u, ζ ; σ) − 4�ϒ̃ 2(u, ζ ; σ)

]
. (34)
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The solution to the unidentified sequence is written as

ϒ(u, ζ ; σ) =
+∞∑
q=0

ϒ(u, ζ ; σ), (35)

and the nonlinear components are treated by

N (u, ζ ; σ) =
+∞∑
q=0

Aq(u, ζ ; σ), (36)

where Aq = ϒ
2
uuuu and Bq = ϒ

2 is widely recognized that the Adomian polynomials can be evaluated
by the scheme (28).

Inserting (35) and (36) into (34), yields the following expression:

A
[ +∞∑

q=0

ϒ(u, ζ ; σ)
] = (σ − 1)ϕ−2 exp(u) + 1

ϕβ
A

[
χ

( +∞∑
q=0

ϒ q(u, ζ ; σ)

)
uuuu

+ ϑ

( +∞∑
q=0

ϒ q(u, ζ ; σ)

)
uu

+ �

( +∞∑
q=0

A2
q(ϒ)

)
uuuu

− 4�

+∞∑
q=0

Bq(ϒ)

]
. (37)

Implementing the inverse Aboodh transform and comparing expressions on both sides of (37),
we determine the aforementioned recursive expressions by fuzzified CFD as follows:

ϒ 1(u, ζ ; σ) = A
−1

[
(σ − 1)ϕ−2 exp(u)

]
= (σ − 1) exp(u),

ϒ 1(u, ζ ; σ) = A
−1

[
1
ϕβ

A

[
χ

(
ϒ 0(u, ζ ; σ)

)
uuuu

+ ϑ
(
ϒ 0(u, ζ ; σ)

)
uu

+ �
(
A2

0(ϒ)
)

uuuu
− 4�B0(ϒ)

]]

=
[
(σ − 1) exp(u)(χ + ϑ) + 4�(σ − 1)2 exp(2u)

] ζ β

�(β + 1)
,

ϒ 2(u, ζ ; σ) = A
−1

[
1
ϕβ

A

[
χ

(
ϒ 1(u, ζ ; σ)

)
uuuu

+ ϑ
(
ϒ 1(u, ζ ; σ)

)
uu

+ �
(
A2

1(ϒ)
)

uuuu
− 4�B1(ϒ)

]]

=
[

exp(u)(χ + ϑ)2(σ − 1) + 2(1 − 4�) exp(2u)(σ − 1)2(χ + ϑ)

+ 8�(σ − 1)3(1 − �) exp(3u)
] ζ 2β

�(2β + 1)
.

As a consequence, the intended approximation is composed as

ϒ̃(u, ζ ; σ) = ϒ̃0(u, ζ ; σ) + ϒ̃1(u, ζ ; σ) + · · · ,
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implies that

ϒ(u, ζ ; σ) = ϒ 0(u, ζ ; σ) + ϒ 1(u, ζ ; σ) + · · ·

= (σ − 1) exp(u) +
[
(σ − 1) exp(u)(χ + ϑ) + 4�(σ − 1)2 exp(2u)

] ζ β

�(β + 1)

+
[

exp(u)(χ + ϑ)2(σ − 1) + 2(1 − 4�) exp(2u)(σ − 1)2(χ + ϑ)

+ 8ϒ(σ − 1)3(1 − �) exp(3u)
] ζ 2β

�(2β + 1)
+ · · · ,

ϒ̄(u, ζ ; σ) = ϒ̄0(u, ζ ; σ) + ϒ̄1(u, ζ ; σ) + · · ·

= (1 − σ) exp(u) +
[
(1 − σ) exp(u)(χ + ϑ) + 4�(1 − σ)2 exp(2u)

] ζ β

�(β + 1)

+
[

exp(u)(χ + ϑ)2(1 − σ) + 2(1 − 4�) exp(2u)(1 − σ)2(χ + ϑ)

+ 8�(1 − σ)3(1 − �) exp(3u)
] ζ 2β

�(2β + 1)
+ · · · .

Case II. To begin, we apply the Aboodh transform along with gH–differentiability under the
ABCFD formula to the first part of (33).

Considering the Aboodh transform of the first foregoing scenario of (33), we have

ϕβ
ABC(β)

β + (1 − β)ϕβ

[
U (u, ρ; σ) − ζ 2ϒ(u, 0; σ)

]

= A

[
χD(4)

u ϒ(u, ζ ; σ) + ϑD(2)

u ϒ(u, ζ ; σ) + �D(4)

u ϒ
2
(u, ζ ; σ) − 4�ϒ̃ 2(u, ζ ; σ)

]
,

or likewise, we have

A
[
U (u, ρ; σ)

] = (σ − 1)ϕ−2 exp(u) +
(

β + (1 − β)ϕβ

ϕβABC(β)

)

× A

[
χD(4)

u ϒ(u, ζ ; σ) + ϑD(2)

u ϒ(u, ζ ; σ) + �D(4)

u ϒ
2
(u, ζ ; σ)

− 4�ϒ̃ 2(u, ζ ; σ)

]
. (38)

The solution to the unidentified sequence is written as

ϒ(u, ζ ; σ) =
+∞∑
q=0

ϒ(u, ζ ; σ), (39)

and the nonlinear components are dealt by

N (u, ζ ; σ) =
+∞∑
q=0

Aq(u, ζ ; σ), (40)
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where Aq = ϒ
2
uuuu and Bq = ϒ

2 are the Adomian polynomials that can be determined by the
scheme (28).

Furthermore, by inserting (39) and (40) into (38), we have

A

[ +∞∑
q=0

ϒ(u, ζ ; σ)

]
= (σ − 1)ϕ−2 exp(u) +

(
β + (1 − β)ϕβ

ϕβABC(β)

)
A

[
χ

( +∞∑
q=0

ϒ q(u, ζ ; σ)

)
uuuu

+ ϑ

( +∞∑
q=0

ϒ q(u, ζ ; σ)

)
uu

+ �

( +∞∑
q=0

A2
q(ϒ)

)
uuuu

− 4�

+∞∑
q=0

Bq(ϒ)

]
. (41)

Implementing the inverse Aboodh transform and comparing expressions on both sides of (41),
we determine the aforementioned recursive expressions by fuzzified ABCFD as follows:

ϒ 0(u, ζ ; σ) = A
−1

[
(σ − 1)ϕ2 exp(u)

]
= (σ − 1) exp(u),

ϒ 1(u, ζ ; σ) = A
−1

[
β + (1 − β)ϕβ

ABC(β)ϕβ
A

[
χ

(
ϒ 0(u, ζ ; σ)

)
uuuu

+ ϑ
(
ϒ 0(u, ζ ; σ)

)
uu

+ �
(
A2

0(ϒ)
)

uuuu
− 4�B0(ϒ)

]]

= 1
ABC(β)

[
(σ − 1) exp(u)(χ + ϑ) + 4�(σ − 1)2 exp(2u)

]( βζ β

�(β + 1)
+ (1 − β)

)
,

ϒ 2(u, ζ ; σ) = A
−1

[
β + (1 − β)ϕβ

ABC(β)ϕβ
A

[
χ

(
ϒ 1(u, ζ ; σ)

)
uuuu

+ ϑ
(
ϒ 1(u, ζ ; σ)

)
uu

+ �
(
A2

1(ϒ)
)

uuuu
− 4�B1(ϒ)

]]

= 1

ABC
2
(β)

[
exp(u)(χ + ϑ)2(σ − 1) + 2(1 − 4�) exp(2u)(σ − 1)2(χ + ϑ)

+ 8�(σ − 1)3(1 − �) exp(3u)
]

×
(

β2ζ 2β

�(2β + 1)
+ 2β(1 − β)

ζ β

�(β + 1)
+ (1 − β)2

)
.

As a consequence, the intended approximation is composed as

ϒ̃(u, ζ ; σ) = ϒ̃0(u, ζ ; σ) + ϒ̃1(u, ζ ; σ) + · · · .

implies that

ϒ(u, ζ ; σ) = ϒ 0(u, ζ ; σ) + ϒ 1(u, ζ ; σ) + · · ·

= (σ − 1) exp(u) + 1
ABC(β)

[
(σ − 1) exp(u)(χ + ϑ) + 4�(σ − 1)2 exp(2u)

]

×
(

βζ β

�(β + 1)
+ (1 − β)

)
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+ 1

ABC
2
(β)

[
exp(u)(χ + ϑ)2(σ − 1) + 2(1 − 4�) exp(2u)(σ − 1)2(χ + ϑ)

+ 8ϒ(σ − 1)3(1 − ϒ) exp(3u)
]

×
(

β2ζ 2β

�(2β + 1)
+ 2β(1 − β)

ζ β

�(β + 1)
+ (1 − β)2

)
+ · · · ,

ϒ̄(u, ζ ; σ) = ϒ̄0(u, ζ ; σ) + ϒ̄1(u, ζ ; σ) + · · ·

= (1 − σ) exp(u) + 1
ABC(β)

[
(1 − σ) exp(u)(χ + ϑ) + 4�(1 − σ)2 exp(2u)

]

×
(

βζ β

�(β + 1)
+ (1 − β)

)

+ 1

ABC
2
(β)

[
exp(u)(χ + ϑ)2(σ − 1) + 2(1 − 4�) exp(2u)(1 − σ)2(χ + ϑ)

+ 8�(1 − σ)3(1 − �) exp(3u)
]

×
(

β2ζ 2β

�(2β + 1)
+ 2β(1 − β)

ζ β

�(β + 1)
+ (1 − β)2

)
+ · · · .

• Fig. 1 demonstrates a 3D comparative assessment of the coupled solutions of ϒ̃(u, ζ ; σ) for
Example 1 when β = 1 and ambiguity component σ ∈ [0, 1] using gH-differentiability of
CFD and ABCFD supplemented to fuzzified initial settings whenever real fixed terms are χ =
10, ϑ = 20 and � = 5. The predicted findings have a significant link, including both fractional
operators.

Figure 1: Analysis of 3D plots of Example 1 provided by (a) fuzzified CFD (b) fuzzified ABCFD
technique when β = 1 and fuzzy number lies in σ ∈ [0, 1]
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• The combination of various structural illustrations for varying fractional-orders, including
the fuzzified CFD and ABCFD formulations, is shown in Figs. 2a and 2b. Furthermore, at
σ = 0.7, it is possible to demonstrate improved depiction of re-circulation regime and aquifer
complexities on mountainsides in plasma.

Figure 2: Analysis of several 3D profiles of Example 1 provided by (a) fuzzified CFD (b) fuzzified
ABCFD techniques when fractional-order varies and fuzzy number lies in σ ∈ [0, 1]

• The evaluation of the coupled inconsistencies between the fuzzified CFD and ABCFD for-
mulations for distinctive fractional orders when σ ∈ [0, 1] for broadening hydrogeological
documentation at drainage basin levels is shown in Fig. 3.
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Figure 3: Analysis of several 2D profiles of Example 1 provided by (a) fuzzified CFD (b) fuzzified
ABCFD techniques when fractional-order varies and fuzzy number lies in σ ∈ [0, 1]
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• Fig. 4 depicts the two-dimensional correlation of the upper precision of the fuzzified CFD and
ABCFD formulations when β = 0.7. This makes it easier to study the geographic connections
between subsurface geomorphology and groundwater threshold.
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Figure 4: Analysis of several 2D profiles of Example 1 provided by (a) fuzzified CFD (b) fuzzified
ABCFD techniques when ambiguity parameter varies and fractional-order β ∈ [0, 1]

• The surface and two-dimensional comparisons by the fuzzified CFD and ABCFD techniques
that exhibit the associations between the cloud cover and rainwater phase are shown in Fig. 5.
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Figure 5: Analysis of several 3D and 2D profiles of Example 1 provided by fuzzified CFD and ABCFD
techniques when ambiguity parameter σ ∈ [0, 1] and β = 1
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The major aspect is that the AADM has supplied a couple of solutions for the BSe, one of the
best-known frameworks in groundwater resources in terms of mathematical complexity and intensity.
Whenever the formulae in these strategies take on a special significance, they can be employed to
classify relatively new structures of evapotranspiration contours, irrigation and external phenomena.

4.2 Generalized Fuzzy FBSQe in R̃
n

Example 2. Surmise that the general one-dimensional fuzzified FBSQe is denoted by

D(β)

ζ
ϒ̃(ū, ζ ; σ) =

n∑
�=0

χ� � D(4)

u�
ϒ̃(ū, ζ ; σ) ⊕

n∑
�=0

ϑ� � D(2)

u�
ϒ̃(ū, ζ ; σ) ⊕

n∑
�=0

�� � D(4)

u�
ϒ̃ 2(ū, ζ ; σ)


 4
n∑

�=0

�� � ϒ̃ 2(ū, ζ ; σ),

ū = (u1, u2, · · · , un) ∈ R̃
n, ζ > 0, χ�, ϑ�, �� ∈ R̃, (� = 1, 2, · · · , n), (42)

supplemented with fuzzified ICs

ϒ̃(u, 0) = ϒ(σ) � exp
( n∑

�=0

u�

)
, (43)

where ϒ̃(σ ) = [ϒ(σ), ϒ̄(σ )] = [σ − 1, 1 − σ ] for σ ∈ [0, 1] is fuzzy number.

The parametric extension of (42) is shown as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D(β)

ζ ϒ(u, ζ ; σ) =
n∑

�=0

χ�D(4)

u�
ϒ(ū, ζ ; σ) +

n∑
�=0

ϑ�D(2)

u�
ϒ(ū, ζ ; σ) +

n∑
�=0

��D(4)

u�
ϒ

2
(ū, ζ ; σ)

−4
n∑

�=0

��ϒ
2
(ū, ζ ; σ),

ϒ(u, 0; σ) = (1 − σ) exp
( n∑

�=0

u�

)
,

D(β)

ζ ϒ̄(u, ζ ; σ) =
n∑

�=0

χ�D(4)

u�
ϒ̄(ū, ζ ; σ) +

n∑
�=0

ϑ�D(2)

u�
ϒ̄(ū, ζ ; σ) +

n∑
�=0

��D(4)

u�
ϒ̄ 2(ū, ζ ; σ)

−4
n∑

�=0

��ϒ̄
2(ū, ζ ; σ),

ϒ̄(u, 0; σ) = (σ − 1) exp
( n∑

�=0

u�

)
.

Case I. To begin, we implement the Aboodh transform to the initial part of (44) along with gH-
differentiability under the CFD formula. Considering the Aboodh transform of the first foregoing
scenario of (44), we have

A
[
D(β)

ζ
ϒ(u, ζ ; σ)

] = A

[ n∑
�=0

χ�D(4)

u�
ϒ(ū, ζ ; σ) +

n∑
�=0

ϑ�D(2)

u�
ϒ(ū, ζ ; σ) +

n∑
�=0

��D(4)

u�
ϒ

2
(ū, ζ ; σ)

− 4
n∑

�=0

��ϒ
2
(ū, ζ ; σ)

]
.
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Considering (44), we have

ϕβU (u, ρ; σ) −
q−1∑
�=0

ϕβ−2−�ϒ
(�)

(u, 0; σ)

= A

[ n∑
�=0

χ�D(4)

u�
ϒ(ū, ζ ; σ) +

n∑
�=0

ϑ�D(2)

u�
ϒ(ū, ζ ; σ) +

n∑
�=0

��D(4)

u�
ϒ

2
(ū, ζ ; σ)

− 4
n∑

�=0

��ϒ
2
(ū, ζ ; σ)

]
.

or likewise, we have

A
[
U (u, ρ; σ)

] = (σ − 1)ϕ−2 exp
( n∑

�=0

u�

)

+ 1
ϕβ

A

[ n∑
�=0

χ�D(4)

u�
ϒ(ū, ζ ; σ) +

n∑
�=0

ϑ�D(2)

u�
ϒ(ū, ζ ; σ) +

n∑
�=0

��D(4)

u�
ϒ

2
(ū, ζ ; σ)

− 4
n∑

�=0

��ϒ
2
(ū, ζ ; σ)

]
. (44)

The solution to the unidentified sequence is written as

ϒ(ū, ζ ; σ) =
+∞∑
q=0

ϒ(ū, ζ ; σ), (45)

and the nonlinear components dealt by Â

N (ū, ζ ; σ) =
+∞∑
q=0

Aq(ū, ζ ; σ), (46)

where Aq = ϒ
2
ūūūūū and Bq = ϒ

2 are widely recognized Adomian polynomials that can be evaluated by
the scheme (28).

Inserting (45) and (46) into (44), yields the following expression:

A
[ +∞∑

q=0

ϒ(ū, ζ ; σ)
] = (σ − 1)ϕ−2 exp

( n∑
�=0

u�

)
+ 1

ϕβ

× A

[ n∑
�=0

χ�

( +∞∑
q=0

ϒ q(ū, ζ ; σ)

)
ūūūū

+
n∑

�=0

ϑ�

( +∞∑
q=0

ϒ q(ū, ζ ; σ)

)
ūū

+
n∑

�=0

��

( +∞∑
q=0

A2
q(ϒ)

)
ūūūū

− 4
n∑

�=0

��

+∞∑
q=0

Bq(ϒ)

]
. (47)
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Implementing the inverse Aboodh transform and comparing expressions on both sides of (46),
we determine the aforementioned recursive expressions by fuzzified CFD as follows:

ϒ 0(ū, ζ ; σ) = A
−1

[
(σ − 1)ϕ−2 exp

( n∑
�=0

u�

)]
= (σ − 1) exp

( n∑
�=0

u�

)
,

ϒ 1(ū, ζ ; σ) = A
−1

[
1
ϕβ

A

[ n∑
�=0

χ�

(
ϒ 0(ū, ζ ; σ)

)
ūūūū

+
n∑

�=0

ϑ�

(
ϒ 0(ū, ζ ; σ)

)
ūū

+
n∑

�=0

��

(
A2

0(ϒ)
)

ūūūū

− 4
n∑

�=0

��B0(ϒ)

]]

=
[
(σ − 1) exp

( n∑
�=0

u�

)( n∑
�=0

χ� +
n∑

�=0

ϑ�

)
+ 4

n∑
�=0

��(σ − 1)2 exp
(

2
n∑

�=0

u�

)] ζ β

�(β + 1)
,

ϒ 2(ū, ζ ; σ) = A
−1

[
1
ϕβ

A

[ n∑
�=0

χ�

(
ϒ 1(ū, ζ ; σ)

)
ūūūū

+
n∑

�=0

ϑ�

(
ϒ 1(ū, ζ ; σ)

)
ūū

+
n∑

�=0

��

(
A2

1(ϒ)
)

ūūūū

− 4
n∑

�=0

��B1(ϒ)

]]

=
[

exp
( n∑

�=0

u�

)( n∑
�=0

χ� +
n∑

�=0

ϑ�

)2

(σ − 1) + 2
(

1 − 4
n∑

�=0

��

)
exp

(
2

n∑
�=0

u�

)
(σ − 1)2

×
( n∑

�=0

χ� +
n∑

�=0

ϑ�

)
+ 8

n∑
�=0

��(σ − 1)3
(

1 −
n∑

�=0

��

)
exp

(
3

n∑
�=0

u�

)] ζ 2β

�(2β + 1)
.

As a consequence, the intended approximation is composed as

ϒ̃(ū, ζ ; σ) = ϒ̃0(ū, ζ ; σ) + ϒ̃1(ū, ζ ; σ) + · · · ,

indicates that

ϒ(ū, ζ ; σ) = ϒ 0(ū, ζ ; σ) + ϒ 1(ū, ζ ; σ) + · · ·

= (σ − 1) exp
( n∑

�=0

u�

)
+

[
(σ − 1) exp

( n∑
�=0

u�

)( n∑
�=0

χ� +
n∑

�=0

ϑ�

)

+ 4
n∑

�=0

��(σ − 1)2 exp
(

2
n∑

�=0

u�

)] ζ β

�(β + 1)

+
[

exp
( n∑

�=0

u�

)( n∑
�=0

χ� +
n∑

�=0

ϑ�

)2

(σ − 1) + 2
(

1 − 4
n∑

�=0

��

)
exp

(
2

n∑
�=0

u�

)
(σ − 1)2

×
( n∑

�=0

χ� +
n∑

�=0

ϑ�

)
+ 8

n∑
�=0

��(σ − 1)3
(

1 −
n∑

�=0

��

)
exp

(
3

n∑
�=0

u�

)] ζ 2β

�(2β + 1)
+ · · · ,
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ϒ̄(ū, ζ ; σ) = ϒ̄0(ū, ζ ; σ) + ϒ̄1(ū, ζ ; σ) + · · ·

= (1 − σ) exp
( n∑

�=0

u�

)
+

[
(1 − σ) exp

( n∑
�=0

u�

)( n∑
�=0

χ� +
n∑

�=0

ϑ�

)

+ 4
n∑

�=0

��(1 − σ)2 exp
(

2
n∑

�=0

u�

)] ζ β

�(β + 1)

+
[

exp
( n∑

�=0

u�

)( n∑
�=0

χ� +
n∑

�=0

ϑ�

)2

(1 − σ) + 2
(

1 − 4
n∑

�=0

��

)
exp

(
2

n∑
�=0

u�

)
(1 − σ)2

×
( n∑

�=0

χ� +
n∑

�=0

ϑ�

)
+ 8

n∑
�=0

��(1 − σ)3
(

1 −
n∑

�=0

��

)
exp

(
3

n∑
�=0

u�

)] ζ 2β

�(2β + 1)
+ · · · .

Case II. To begin, we apply the Aboodh transform to the first part of (44) as well as gH-
differentiability using the ABCFD formula.

Considering the Aboodh transform of the first foregoing scenario of (44), we have

ϕβ
ABC(β)

β + (1 − β)ϕβ

[
U (ū, ρ; σ) − ϕ−2ϒ(ū, 0; σ)

]

= A

[ n∑
�=0

χ�D(4)

u�
ϒ(ū, ζ ; σ) +

n∑
�=0

ϑ�D(2)

u�
ϒ(ū, ζ ; σ) +

n∑
�=0

��D(4)

u�
ϒ

2
(ū, ζ ; σ)

− 4
n∑

�=0

��ϒ
2
(ū, ζ ; σ)

]
,

or likewise, we get

A
[
U (ū, ρ; σ)

] = (σ − 1)ϕ−2 exp
( n∑

�=0

u�

)
+

(
β + (1 − β)ϕβ

ϕβABC(β)

)

× A

[ n∑
�=0

χ�D(4)

u�
ϒ(ū, ζ ; σ) +

n∑
�=0

ϑ�D(2)

u�
ϒ(ū, ζ ; σ) +

n∑
�=0

��D(4)

u�
ϒ

2
(ū, ζ ; σ)

− 4
n∑

�=0

��ϒ
2
(ū, ζ ; σ)

]
. (48)

The solution to the unidentified sequence is written as

ϒ(ū, ζ ; σ) =
+∞∑
q=0

ϒ(ū, ζ ; σ), (49)

and the nonlinear components are dealt by

N (ū, ζ ; σ) =
+∞∑
q=0

Aq(ū, ζ ; σ), (50)
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where Aq = ϒ
2
ūūūū and Bq = ϒ

2 are the widely recognized Adomian polynomials that can be evaluated
by the scheme (28).

Inserting (47) and (50) into (48), then we have

A
[ +∞∑

q=0

ϒ(ū, ζ ; σ)
] = (σ − 1)ϕ−2 exp

( n∑
�=0

u�

)
+

(
β + (1 − β)ϕβ

ϕβABC(β)

)

× A

[ n∑
�=0

χ�

( +∞∑
q=0

ϒ q(ū, ζ ; σ)

)
ūūūū

+
n∑

�=0

ϑ�

( +∞∑
q=0

ϒ q(ū, ζ ; σ)

)
ūū

+
n∑

�=0

��

( +∞∑
q=0

A2
q(ϒ)

)
ūūūū

− 4
n∑

�=0

��

+∞∑
q=0

Bq(ϒ)

]
. (51)

Implementing the inverse Aboodh transform and comparing the expressions on both sides of (51),
we determine the aforementioned recursive expressions by fuzzified ABCFD as follows:

ϒ 1(ū, ζ ; σ) = A
−1

[
(σ − 1)ϕ−2 exp

( n∑
�=0

u�

)]
= (σ − 1) exp

( n∑
�=0

u�

)
,

ϒ 1(ū, ζ ; σ) = A
−1

[(
β + (1 − β)ϕβ

ϕβABC(β)

)
A

[ n∑
�=0

χ�

(
ϒ 0(ū, ζ ; σ)

)
ūūūū

+
n∑

�=0

ϑ�

(
ϒ 0(ū, ζ ; σ)

)
ūū

+
n∑

�=0

��

(
A2

0(ϒ)
)

ūūūū
− 4

n∑
�=0

��B0(ϒ)

]]

=
[
(σ − 1) exp

( n∑
�=0

u�

)( n∑
�=0

χ� +
n∑

�=0

ϑ�

)
+ 4

n∑
�=0

��(σ − 1)2 exp
(

2
n∑

�=0

u�

)]

×
(

βζ β

�(β + 1)
+ (1 − β)

)
,

ϒ 2(ū, ζ ; σ) = A
−1

[(
β + (1 − β)ϕβ

ϕβABC(β)

)
A

[ n∑
�=0

χ�

(
ϒ 1(ū, ζ ; σ)

)
ūūūū

+
n∑

�=0

ϑ�

(
ϒ 1(ū, ζ ; σ)

)
ūū

+
n∑

�=0

��

(
A2

1(ϒ)
)

ūūūū
− 4

n∑
�=0

��B1(ϒ)

]]

=
[

exp
( n∑

�=0

u�

)( n∑
�=0

χ� +
n∑

�=0

ϑ�

)2

(σ − 1) + 2
(

1 − 4
n∑

�=0

��

)
exp

(
2

n∑
�=0

u�

)

× (σ − 1)2
( n∑

�=0

χ� +
n∑

�=0

ϑ�

)

+8
n∑

�=0

��(σ −1)3
(

1−
n∑

�=0

��

)
exp

(
3

n∑
�=0

u�

)]( β2ζ 2β

�(2β + 1)
+2β(1−β)

ζ β

�(1 + β)
+(1−β)2

)
.



CMES, 2023, vol.137, no.2 1595

As a consequence, the intended approximation is composed as

ϒ̃(ū, ζ ; σ) = ϒ̃0(ū, ζ ; σ) + ϒ̃1(ū, ζ ; σ) + · · · ,

implies that

ϒ(ū, ζ ; σ) = ϒ 0(ū, ζ ; σ) + ϒ 1(ū, ζ ; σ) + · · ·

= (σ − 1) exp
( n∑

�=0

u�

)
+

[
(σ − 1) exp

( n∑
�=0

u�

)( n∑
�=0

χ� +
n∑

�=0

ϑ�

)

+ 4
n∑

�=0

��(σ − 1)2 exp
(

2
n∑

�=0

u�

)]

×
(

βζ β

�(β + 1)
+ (1 − β)

)
+

[
exp

( n∑
�=0

u�

)( n∑
�=0

χ� +
n∑

�=0

ϑ�

)2

(σ − 1)

+ 2
(

1 − 4
n∑

�=0

��

)
exp

(
2

n∑
�=0

u�

)
(σ − 1)2

( n∑
�=0

χ� +
n∑

�=0

ϑ�

)

+ 8
n∑

�=0

��(σ − 1)3
(

1 −
n∑

�=0

��

)
exp

(
3

n∑
�=0

u�

)]

×
(

β2ζ 2β

�(2β + 1)
+ 2β(1 − β)

ζ β

�(1 + β)
+ (1 − β)2

)
+ · · · ,

ϒ̄(ū, ζ ; σ) = ϒ̄0(ū, ζ ; σ) + ϒ̄1(ū, ζ ; σ) + · · ·

= (1 − σ) exp
( n∑

�=0

u�

)
+

[
(1 − σ) exp

( n∑
�=0

u�

)( n∑
�=0

χ� +
n∑

�=0

ϑ�

)

+ 4
n∑

�=0

��(1 − σ)2 exp
(

2
n∑

�=0

u�

)]

×
(

βζ β

�(β + 1)
+ (1 − β)

)
+

[
exp

( n∑
�=0

u�

)( n∑
�=0

χ� +
n∑

�=0

ϑ�

)2

(1 − σ)

+ 2
(

1 − 4
n∑

�=0

��

)
exp

(
2

n∑
�=0

u�

)
(1 − σ)2

( n∑
�=0

χ� +
n∑

�=0

ϑ�

)

+ 8
n∑

�=0

��(1 − σ)3
(

1 −
n∑

�=0

��

)
exp

(
3

n∑
�=0

u�

)]

×
(

β2ζ 2β

�(2β + 1)
+ 2β(1 − β)

ζ β

�(1 + β)
+ (1 − β)2

)
+ · · · .
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• Fig. 6 depicts a 3D correlation of the coupled solutions of ϒ̃(u, ζ ; σ) for Example 2 when β = 1
and ambiguity component σ ∈ [0, 1] using gH-differentiability of CFD and ABCFD operators
supplemented with fuzzified initial settings when real parameters are χ = 10, ϑ = 20 and
� = 5. The AADM solution is highly correlated, including both fractional operators.

Figure 6: Analysis of 3D plots of Example 2 provided by (a) fuzzified CFD (b) Fuzzified ABCFD
technique when β = 1 and fuzzy number lies in σ ∈ [0, 1]

• Evaluation of diverse structural graphs for various fractional orders with the fuzzified CFD and
ABCFD techniques is shown in Fig. 7. Furthermore, it can be demonstrated that by expanding
the accurate depiction of hydrological cycle and aquifer complexities on steep topography in
the fluid at σ = 0.7.

Figure 7: Analysis of several 3D profiles of Example 2 provided by (a) fuzzified CFD (b) fuzzified
ABCFD techniques when fractional-order varies and fuzzy number lies in σ ∈ [0, 1]
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• The correlation of the coupled precision between the fuzzified CFD and ABCFD techniques for
various fractional-orders, so if σ ∈ [0, 1] for spreading aquifer characterizations at hydrologic
levels is shown in Fig. 8.
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Figure 8: Analysis of several 2D profiles of Example 2 provided by (a) fuzzified CFD (b) fuzzified
ABCFD techniques when ambiguity parameter varies and fractional-order β ∈ [0, 1]

• Fig. 9 depicts the 2D correlation of the upper accuracy and reliability of the fuzzified CFD and
ABCFD techniques when β = 0.7. This simplifies the process of exploring the spatiotemporal
connections between surface geomorphology and aquifer threshold.
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Figure 9: Analysis of several 2D profiles of Example 2 provided by (a) fuzzified CFD (b) fuzzified
ABCFD techniques when ambiguity parameter varies and fractional-order β ∈ [0, 1]
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• Fig. 10 depicts the interfacial and 2D correlation by fuzzified CFD and ABCFD techniques
that demonstrate the communications between the rain and evaporation procedures.
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Figure 10: Analysis of several 3D and 2D profiles of Example 2 provided by fuzzified CFD and
ABCFD techniques when ambiguity parameter σ ∈ [0, 1] and β = 1

The key point is that AADM has furnished combinations of solutions for the FBSQe, being one
of the most effective configurations in groundwater with low processing complexity and intensity.
Whenever the elements in these solutions carry a specific meaning, they can be employed to identify
completely new frameworks of hydrology graphs, fertigation, and physical phenomena.

4.3 (2ndth)-Order Fuzzy FBSQe in R̃
Example 3. Surmise that the general one-dimensional (2nth)-order fuzzfied FBSQe is described as

D(β)

ζ
ϒ̃(u, ζ ; σ) = D(2n)

u ϒ̃(u, ζ ; σ) ⊕ D(2n−2)

u ϒ̃(u, ζ ; σ) ⊕ · · · ⊕ D(2)

u ϒ̃(u, ζ ; σ) ⊕ � � D(2)

u ϒ̃ 2(u, ζ ; σ)


 4� � ϒ
2
(u, ζ ; σ), u ∈ R̃, ζ > 0, (52)

supplemented with fuzzified ICs

ϒ̃(u, 0) = ϒ � exp(u), (53)

where ϒ̃(σ ) = [ϒ(σ), ϒ̄(σ )] = [σ − 1, 1 − σ ] for σ ∈ [0, 1] is fuzzy number.
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The parametric extension of (52) is shown as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D(β)

ζ ϒ(u, ζ ; σ) = D(2n)

u ϒ(u, ζ ; σ) + D(2n−2)

u ϒ(u, ζ ; σ) + · · · + D(2)

u ϒ(u, ζ ; σ) + �D(2)

u ϒ
2
(u, ζ ; σ)

−4�ϒ
2
(u, ζ ; σ),

ϒ(u, 0; σ) = (1 − σ) exp(u)

D(β)

ζ ϒ̄(u, ζ ; σ) = D(2n)

u ϒ̄(u, ζ ; σ) + D(2n−2)

u ϒ̄(u, ζ ; σ) + · · · + D(2)

u ϒ̄(u, ζ ; σ) + �D(2)

u ϒ̄ 2(u, ζ ; σ)

−4�ϒ̄ 2(u, ζ ; σ),

ϒ̄(u, 0; σ) = (σ − 1) exp(u).
(54)

Case I. To begin, we implement the Aboodh transform to the initial part of (54) along with gH
differentiability under the CFD formula.

Considering the Aboodh transform of the first foregoing scenario of (54), we have

A
[
D(β)

ζ
ϒ(u, ζ ; σ)

] = A

[
D(2n)

u ϒ(u, ζ ; σ) + D(2n−2)

u ϒ(u, ζ ; σ) + · · · + D(2)

u ϒ(u, ζ ; σ)

+ �D(2)

u ϒ
2
(u, ζ ; σ) − 4�ϒ

2
(u, ζ ; σ)

]
.

Considering (54), we have

ϕβU (u, ρ; σ) −
q−1∑
�=0

ϕβ−2−�ϒ
(�)

(u, 0; σ)

= A

[
D(2n)

u ϒ(u, ζ ; σ) + D(2n−2)

u ϒ(u, ζ ; σ) + · · · + D(2)

u ϒ(u, ζ ; σ) + �D(2)

u ϒ
2
(u, ζ ; σ) − 4�ϒ

2
(u, ζ ; σ)

]
.

or likewise, we have

A
[
U (u, ρ; σ)

] = (σ − 1)ϕ−2 exp(u)

+ 1
ϕβ

A

[
D(2n)

u ϒ(u, ζ ; σ) + D(2n−2)

u ϒ(u, ζ ; σ) + · · · + D(2)

u ϒ(u, ζ ; σ) + �D(2)

u ϒ
2
(u, ζ ; σ)

− 4�ϒ
2
(u, ζ ; σ)

]
. (55)

The solutions to the unidentified sequence is written as

ϒ(u, ζ ; σ) =
+∞∑
q=0

ϒ(u, ζ ; σ), (56)

and the nonlinear components dealt by

N (u, ζ ; σ) =
+∞∑
q=0

Aq(u, ζ ; σ), (57)
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where Aq = ϒ
2
uuuu and Bq = ϒ

2 are the widely recognized Adomian polynomials that can be evaluated
by the scheme (28).

Inserting (56) and (57) into (55), yields the following expression:

A
[ +∞∑

q=0

ϒ(u, ζ ; σ)
] = (σ − 1)ϕ−2 exp(u) + 1

ϕβ
A

[( +∞∑
q=0

ϒ q(u, ζ ; σ)

)
(2n)u

+
( +∞∑

q=0

ϒ q(u, ζ ; σ)

)
(2n−2)u

+ · · · +
( +∞∑

q=0

ϒ q(u, ζ ; σ)

)
u

+ �

( +∞∑
q=0

A2
q(ϒ)

)
uu

− 4�

+∞∑
q=0

Bq(ϒ)

]
. (58)

Implementing the inverse Aboodh transform and comparing expressions on both sides of (58),
we determine the aforementioned recursive expressions by fuzzified CFD as follows:

ϒ 0(u, ζ ; σ) = A
−1

[
(σ − 1)ϕ−2 exp(u)

]
= (σ − 1) exp(u),

ϒ 1(u, ζ ; σ) = A
−1

[
1
ϕβ

A

[(
ϒ 0(u, ζ ; σ)

)
(2n)u

+ (
ϒ 0(u, ζ ; σ)

)
(2n−2)u

+ · · · + (
ϒ 0(u, ζ ; σ)

)
u

+ �
(
A2

0(ϒ)
)

uu
− 4�B0(ϒ)

]]

=
[
n(σ − 1) exp(u)

] ϕβ

�(β + 1)
,

ϒ 2(u, ζ ; σ) = A
−1

[
1
ζ β

A

[(
ϒ 1(u, ζ ; σ)

)
(2n)u

+ (
ϒ 1(u, ζ ; σ)

)
(2n−2)u

+ · · · + (
ϒ 1(u, ζ ; σ)

)
u

+ �
(
A2

1(ϒ)
)

uu
− 4�B1(ϒ)

]]

= n exp(u)(σ − 1)
[
n + 2�(σ − 1) − 8�(σ − 1) exp(u)

] ζ 2β

�(2β + 1)
. (59)

As a consequence, the intended approximation is composed as

ϒ̃(u, ζ ; σ) = ϒ̃0(u, ζ ; σ) + ϒ̃1(u, ζ ; σ) + · · · ,

indicates that

ϒ(u, ζ ; σ) = ϒ 0(u, ζ ; σ) + ϒ 1(u, ζ ; σ) + · · ·

= (σ − 1) exp(u) +
[
n(σ − 1) exp(u)

] ζ β

�(β + 1)

+ n exp(u)(σ − 1)
[
n + 2�(σ − 1) − 8�(σ − 1) exp(u)

] ζ 2β

�(2β + 1)
+ · · · ,
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ϒ̄(u, ζ ; σ) = ϒ̄0(u, ζ ; σ) + ϒ̄1(u, ζ ; σ) + · · ·

= (1 − σ) exp(u) +
[
n(1 − σ) exp(u)

] ζ β

�(β + 1)

+ n exp(u)(1 − σ)
[
n + 2�(1 − σ) − 8�(1 − σ) exp(u)

] ζ 2β

�(2β + 1)
+ · · · .

Case II. To begin, we apply the Aboodh transform to the first part of (33), as well as gH-
differentiability using the ABCFD formula.

Considering the Aboodh transform of the first foregoing scenario of (33), we have

ζ β
ABC(β)

β + (1 − β)ζ β

[
U (u, ρ; σ) − ζ 2ϒ(u, 0; σ)

]

= A

[
D(2n)

u ϒ(u, ζ ; σ) + D(2n−2)

u ϒ(u, ζ ; σ) + · · · + D(2)

u ϒ(u, ζ ; σ) + �D(2)

u ϒ
2
(u, ζ ; σ)

− 4�ϒ
2
(u, ζ ; σ)

]
,

or likewise, we have

A
[
U (u, ρ; σ)

] = (σ − 1)ζ 2 exp(u) +
(

β + (1 − β)ζ β

ζ βABC(β)

)

× A

[
D(2n)

u ϒ(u, ζ ; σ) + D(2n−2)

u ϒ(u, ζ ; σ) + · · · + D(2)

u ϒ(u, ζ ; σ) + �D(2)

u ϒ
2
(u, ζ ; σ)

− 4�ϒ
2
(u, ζ ; σ)

]
. (60)

The solution to the unidentified sequence is written as

ϒ(u, ζ ; σ) =
+∞∑
q=0

ϒ(u, ζ ; σ), (61)

and the nonlinear components are dealt by

N (u, ζ ; σ) =
+∞∑
q=0

Aq(u, ζ ; σ), (62)

where Aq = ϒ
2
uu and Bq = ϒ

2 are the widely recognized Adomian polynomials that can be evaluated
by the scheme (28).
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Inserting (61) and (62) into (60), yields the following expression:

A
[ +∞∑

q=0

ϒ(u, ζ ; σ)
] = (σ − 1)ζ 2 exp(u) +

(
β + (1 − β)ζ β

ζ βABC(β)

)

× A

[( +∞∑
q=0

ϒ q(u, ζ ; σ)

)
(2n)u

+
( +∞∑

q=0

ϒ q(u, ζ ; σ)

)
(2n−2)u

+ · · · +
( +∞∑

q=0

ϒ q(u, ζ ; σ)

)
u

+ �

( +∞∑
q=0

A2
q(ϒ)

)
uu

− 4�

+∞∑
q=0

Bq(ϒ)

]
. (63)

Implementing the outlined in the preceding inverse Aboodh transform and then comparing
considerations on both sides of the aforementioned Eq. (63), we determine the respective recursive
expressions by the fuzzified ABCFD operator. Therefore, with the assistance of these derivative
features:

ϒ 0(u, ζ ; σ) = A
−1

[
(σ − 1)ζ 2 exp(u)

]
= (σ − 1) exp(u),

ϒ 1(u, ζ ; σ) = A
−1

[(
β + (1 − β)ζ β

ζ βABC(β)

)
A

[(
ϒ 0(u, ζ ; σ)

)
(2n)u

+ (
ϒ 0(u, ζ ; σ)

)
(2n−2)u

+ · · · + (
ϒ 0(u, ζ ; σ)

)
u

+ �
(
A2

0(ϒ)
)

uu
− 4�B0(ϒ)

]]

= n(σ − 1) exp(u)

ABC(β)

(
βζ β

�(β + 1)
+ (1 − β)

)
,

ϒ 2(u, ζ ; σ) = A
−1

[(
β + (1 − β)ζ β

ζ βABC(β)

)
A

[(
ϒ 1(u, ζ ; σ)

)
(2n)u

+ (
ϒ 1(u, ζ ; σ)

)
(2n−2)u

+ · · · + (
ϒ 1(u, ζ ; σ)

)
u

+ �
(
A2

1(ϒ)
)

uu
− 4�B1(ϒ)

]]

= n exp(u)(σ − 1)

ABC
2
(β)

[
n + 2�(σ − 1) − 8�(σ − 1) exp(u)

]

×
(

β2ζ 2β

�(2β + 1)
+ 2β(1 − β)

ζ β

�(β + 1)
+ (1 − β)2

)
.

As a consequence, the intended approximation is composed as

ϒ̃(u, ζ ; σ) = ϒ̃0(u, ζ ; σ) + ϒ̃1(u, ζ ; σ) + · · · ,

indicates that

ϒ(u, ζ ; σ) = ϒ 0(u, ζ ; σ) + ϒ 1(u, ζ ; σ) + · · ·

= (σ − 1) exp(u) + n(σ − 1) exp(u)

ABC(β)

(
βζ β

�(β + 1)
+ (1 − β)

)
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+ n exp(u)(σ − 1)

ABC
2
(β)

[
n + 2�(σ − 1) − 8�(σ − 1) exp(u)

]

×
(

β2ζ 2β

�(2β + 1)
+ 2β(1 − β)

ζ β

�(β + 1)
+ (1 − β)2

)
+ · · · ,

ϒ̄(u, ζ ; σ) = ϒ̄0(u, ζ ; σ) + ϒ̄1(u, ζ ; σ) + · · ·

= (1 − σ) exp(u) + n(1 − σ) exp(u)

ABC(β)

(
βζ β

�(β + 1)
+ (1 − β)

)

+ n exp(u)(1 − σ)

ABC
2
(β)

[
n + 2�(1 − σ) − 8�(1 − σ) exp(u)

]

×
(

β2ζ 2β

�(2β + 1)
+ 2β(1 − β)

ζ β

�(β + 1)
+ (1 − β)2

)
+ · · · .

Now, perform a two-way analysis of variance on these documentation and examine whether there
is a massive distinction between AADM’s ABCFD and CFD solutions.

(i) We develop the two null hypotheses that correlate to the challenges that

(a) there is no significant difference between the ABCFD data,

and

(b) there is no significant difference between the ABCFD data, as

H′
0: all μ.�, � = 1, 2, . . . , 6 are equal and

H′′
0: all μ.ι, ι = 1, 2, . . . , 4 are equal. (64)

(ii) The corresponding alternative hypothesis would be

H′
1: all μ.�, � = 1, 2, . . . , 6 are not equal and

H′′
1: all μ.ι, ι = 1, 2, . . . , 4 are not equal. (65)

(iii) The test-statistics to utilized with the level of significance is α = 0.05 is defined as

F1 = estimated variance from ABCFD data
estimated variance from error data

= s2
1

s2
3

, F2 = estimated variance from CFD data
estimated variance from error data

= s2
2

s2
3

,

(66)

which have F-distribution having degree of freedoms υ1 = 5, υ2 = 15 and υ1 = 3 and υ2 = 15,
respectively, when the null hypotheses are true.

(iv) The critical regions are F ≥ F0.05(5, 15) = 2.90,F ≥ F0.05(3, 15) = 3.29.

(v) Since the computed value of F1 does not fall in the critical region but the calculated value of F2

falls in the critical region, we accept the hypothesis relating to the ABCFD and reject the hypotheses
corresponding to the fact that there is no significant difference between CFD data.
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• The comparative assessment of coupled results calculated by employing the fuzzified CFD,
ABCFD technique, and Xu’s optimization technique is shown in Table 1. In addition, Tables 2
and 3 displays the comparison evaluation for the CFD and ABCFD techniques corresponding
with the AADM and the outcomes supplied by [49]. All our findings indicate that our
conclusions are concise and valid.

Table 1: The iterative comparison analysis of the coupled solutions utilizing the AADM via the
CFD and ABCFD operators of Example 3 for various values of u and σ presented with the findings
contemplated by [49]

u ζ uCFD ūCFD uABC ūABC u [49] Exact

0.2 −0.5405884001 0.2683967119 −3.966033270 −2.838758934 1.105171018 1.105170918
0.4 −1.035079264 −0.0536874887 −4.032343526 −2.772448678 1.105171018 1.105170918

0.1 0.6 −1.815023867 −0.6347013264 −4.098653781 −2.706138423 0.9048609657 0.9048374180
0.8 −2.880422210 −1.474644801 −4.164964036 −2.639828168 0.8188284089 0.8187307531
1.0 −4.231274291 −2.573517913 −4.231274291 −2.573517913 0.7411115693 0.7408182207

0.2 −0.6178856665 0.2761811523 −4.894221834 −3.648391021 1.349858930 1.349858808
0.4 −1.225711853 −0.1411062038 −4.967505999 −3.575106856 1.221406607 1.221402758

0.2 0.6 −2.189899387 −0.8854412412 −5.040790165 −3.501822690 1.105199680 1.105170918
0.8 −3.510448267 −1.956823960 −5.114074330 −3.428538525 1.000119278 1.000000000
1.0 −5.187358496 −3.355254359 −5.187358496 −3.355254359 0.9051957152 0.9048374180

0.2 −0.7078385141 0.2802581335 −6.033182751 −4.656326764 1.648721420 1.648721271
0.4 −1.454498072 −0.2558234502 −6.114174279 −4.575335236 1.491829399 1.491824698

0.3 0.6 −2.644936317 −1.203287109 −6.195165808 −4.494343707 1.349893936 1.349858808
0.8 −4.279153247 −2.562132842 −6.276157336 −4.413352179 1.221548443 1.221402758
1.0 −6.357148865 −4.332360650 −6.357148865 −4.332360650 1.105608543 1.105170918

0.2 −0.8127800441 0.2792356347 −7.430135711 −5.908474524 2.013752890 2.013752707
0.4 −1.729458984 −0.4047186528 −7.519645193 −7.519645193 1.822124542 1.822118800

0.4 0.6 −3.197584230 −1.604315454 −7.609154675 −5.729455560 1.648764178 1.648721271
0.8 −5.217155782 −3.319554769 −7.698664157 −5.639946078 1.492002638 1.491824698
1.0 −7.788173639 −5.550436596 −7.788173639 −5.550436596 1.350393324 1.349858808

0.2 −0.9355106028 0.2713533676 −9.142813288 −7.461117592 2.449603111 2.459603111
0.4 −2.060346715 −0.5962822262 −9.241736564 −7.362194316 2.225547944 2.225540928

0.5 0.6 −3.869124717 −2.108290400 −9.340659840 −7.263271040 2.013805114 2.013752707
0.8 −6.361844609 −4.264671154 −9.439583116 −7.164347764 1.822336137 1.822118800
1.0 −9.538506393 −7.065424487 −9.538506393 −7.065424487 1.649374132 1.648721271
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Table 2: Computations for the exact and approximate solutions ϒ(u1, �; σ) of Example 3

1 2 3 4 5 6 Tι. T2
ι.

∑
�
Xι�

1 9 (81) 10 (100) 9 (81) 10 (100) 11 (121) 11 (121) 60 3600 604
2 12 (144) 11 (121) 9 (81) 11 (121) 10 (100) 10 (100) 63 3969 667
3 11 (121) 10 (100) 10 (100) 12 (144) 11 (121) 10 (100) 64 4096 686
4 12 (144) 13 (169) 11 (121) 14 (196) 12 (144) 10 (100) 72 5184 874
T.� 44 44 39 47 44 41 259 16849 2831
T2

.� 1936 1936 1521 2209 1936 1681 11219∑
ι

X2
ι�

490 490 383 561 486 421 2831

Table 3: The analysis of variance computations are presented as

Source of variation d.f Sum of squares Mean square Computed F

CFD data 5 9.71 1.94 2.28
ABCFD data 3 13.13 4.38 5.03
Error 15 13.12 0.87 ...

• Fig. 11a depicts a 3D analysis of the coupled solutions of ϒ̃(u, ζ ; σ) for Example 3 when
β = 1 and ambiguity parameter σ ∈ [0, 1] using gH-differentiability of CFD and ABCFD
supplemented to fuzzified ICs even before real parameters are χ = 10, ϑ = 20 and � = 5. All
fractional operators have a straightforward connection to the AADM solution.

Figure 11: Analysis of 3D plots of Example 3 provided by (a) fuzzified CFD (b) fuzzified ABCFD
technique when β = 1 and fuzzy number lies in σ ∈ [0, 1]
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• The distinction of various structural graphs for distinct fractional-orders to the fuzzified CFD
and ABCFD techniques is shown in Figs. 12a and 12b. Furthermore, at σ = 0.7, improving the
accuracy of watershed and aquifer interactions on mountainsides can be demonstrated.

Figure 12: Analysis of several 3D profiles of Example 3 provided by (a) fuzzified CFD (b) fuzzified
ABCFD techniques when fractional-order varies and fuzzy number lies in σ ∈ [0, 1]

• The correlation of the coupled accuracies between the fuzzified CFD and ABCFD techniques
for various fractional-orders when σ ∈ [0, 1] for diversifying streamflow profiles at flood risk
levels is shown in Fig. 13.
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Figure 13: Analysis of several 2D profiles of Example 3 provided by (a) fuzzified CFD (b) fuzzified
ABCFD techniques when ambiguity parameter varies and fractional-order β ∈ [0, 1]

• Fig. 14 depicts the 2D correlation of the upper precision of the fuzzified CFD and ABCFD
techniques when β = 0.7. This enables it to study the spatiotemporal features between
subsurface topography and aquifer threshold.
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• The horizon and 2D comparisons by the fuzzified CFD and ABCFD techniques that exhibit
the connections between the snowfall and groundwater methodology are illustrated in Fig. 15.

• The key point is that AADM has furnished a couple of findings for the FBSQe, among which
the tendencies for effective models in groundwater, to low processing complexity and density.
Whenever the parameters in these strategies take on a special significance, they may be employed
to identify completely new frameworks of rainfall-runoff peaks, drainage systems, and physical
phenomena.
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Figure 14: Analysis of several 2D profiles of Example 3 provided by (a) fuzzified CFD (b) fuzzified
ABCFD techniques when ambiguity parameter varies and fractional-order β ∈ [0, 1]
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Figure 15: Analysis of several 3D and 2D profiles of Example 3 provided by fuzzified CFD and
ABCFD techniques when ambiguity parameter σ ∈ [0, 1] and β = 1
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5 Conclusion

This relatively new family of results enables the exploration and advancement of geothermal
regimens using FBSE in accordance with the fuzzy concept. While other techniques are influenced
by ū in some ways, the findings presented here explicitly rely on the ū control point. This produces an
extremely constructive system for analyzing intricate components, including enchantment formulation
and aquifer topography. Understanding how to categorize the interconnection in both the Aboodh
transform and the analytical schema (ADM) simplifies the investigation of ambiguous fractional
formulations. These observations were developed using a sophisticated technique. The features and
drawbacks of the provided techniques are discussed. The outcomes go into greater detail about
the commonalities and discrepancies between the two fuzzified fractional formulation techniques.
The AADM technique is advantageous for significantly bringing down computation overhead. The
AADM, on the other hand, has a privilege compared to other analytical simulations because it avoids
the application of the Lagrange multiplier, stationary requirements, and complex formulae that are
extremely noisy. The suggested technique has an additional advantage over the wavelet transform in
terms of its entitlements. To avoid adjusting the research hypotheses after the outcomes are known,
a statistical experiment is carried out between the research results of both fractional derivatives. This
indicates that the findings of ABCFD are more reliable than the CFD technique. Furthermore, because
ripples have a major influence on ecological concerns as well as oceanfront coasts and underwater, the
discussed observations facilitate comprehensive and pragmatic investigations into the essence of these
shock waves, which can be utilized to cultivate weather forecasting trend scenarios.
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