
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2023.028098

ARTICLE

A Novel Collaborative Evolutionary Algorithm with Two-Population
for Multi-Objective Flexible Job Shop Scheduling

Cuiyu Wang, Xinyu Li and Yiping Gao*

State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology,
Wuhan, 430074, China

*Corresponding Author: Yiping Gao. Email: gaoyiping@hust.edu.cn

Received: 29 November 2022 Accepted: 13 February 2023 Published: 28 June 2023

ABSTRACT

Job shop scheduling (JS) is an important technology for modern manufacturing. Flexible job shop scheduling (FJS)
is critical in JS, and it has been widely employed in many industries, including aerospace and energy. FJS enables
any machine from a certain set to handle an operation, and this is an NP-hard problem. Furthermore, due to the
requirements in real-world cases, multi-objective FJS is increasingly widespread, thus increasing the challenge of
solving the FJS problems. As a result, it is necessary to develop a novel method to address this challenge. To achieve
this goal, a novel collaborative evolutionary algorithm with two-population based on Pareto optimality is proposed
for FJS, which improves the solutions of FJS by interacting in each generation. In addition, several experimental
results have demonstrated that the proposed method is promising and effective for multi-objective FJS, which has
discovered some new Pareto solutions in the well-known benchmark problems, and some solutions can dominate
the solutions of some other methods.

KEYWORDS
Multi-objective flexible job shop scheduling; Pareto archive set; collaborative evolutionary; crowd similarity

1 Introduction

Planning is a very crucial problem in modern industries [1]. Through the elimination of scheduling
conflicts, the decrease of flow time, the improvement of production resource usage, and the adaptation
to unpredictable shop floor disruptions, the optimization of production scheduling can lead to
considerable improvements. Job shop scheduling (JS) is a challenging problem for production planning
[2]. This problem is an NP-hard problem, which is difficult to solve [3]. However, traditional JS, which
assumes no flexibility of the resources for each operation of every job, might not be able to fulfill
the demand of modern industries, because manufacturing systems have become increasingly flexible,
and a considerable amount of automation equipment has been used [4,5]. Therefore, flexible job shop
scheduling (FJS) is increasingly interesting for both industry and research.

FJS is a kind of JS that enables any machine from a certain set to process an operation, and
it was first introduced in the 1990s by Bruker et al. [6]. Compared with JS, FJS is more complex,
which means that JSP is NP-hard as well. Recently, a considerable amount of research has been

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2023.028098
https://www.techscience.com/doi/10.32604/cmes.2023.028098
mailto:gaoyiping@hust.edu.cn


1850 CMES, 2023, vol.137, no.2

examined, most of which has focused on a single object. However, different departments of a company
expect to maximize their objectives, such as cost and efficiency. Therefore, a single objective is not
sufficient to meet the requirements of realistic production, and there is a need for further research
on multi-objective FJS (MOFJS). Recently, MOFJS has attracted increasing attention from both the
industrial and academic, and several methods, including evolutionary algorithms [7], and ant colony
algorithms [8]. Traditionally, MOFJS contains 2 subproblems: operation sorting (OS) and machine
selection (MS). Most of the related work employs integrated encoding to solve MOFJS [9]. However,
OS and MS are quite different, thereby limiting the global searching ability of the current methods
and seriously affecting the solving effect. Therefore, a novel collaborative evolutionary algorithm with
two populations based on Pareto optimality is proposed for MOFJS. The proposed method uses
Pareto optimality to address the Mutli-objectives problems, and develops a collaborative optimization
strategy, which simulates the optimization process of OS and MS wherein the subsystems interact with
each other. The interaction with each other in every generation can improve the solution of FJS. Thus,
the proposed method takes the merits of collaborative optimization and evolutionary algorithms,
and combines them to prompt the solving. The experimental results also show the availability of the
proposed method.

The rest of this paper is organized as follows. Section 2 is the literature review. Section 3 is the
problem formulation. Section 4 is the proposed method and Section 5 presents the experimental
results. Section 6 is the conclusion.

2 Literature Review

FJS has been a research hotspot for many years, and a considerable amount of research has been
conducted in recent years. For the single objective, the FJS can be categorized by exact approaches,
such as mathematical programming, and approximation approaches, such as GA [10]. Meng et al. [11]
presented a novel integer linear programming for FJS. Alvarez-Valdes et al. [12] developed a heuristic
algorithm and applied it to glass production.

Currently, MOFJS has attracted an increasing amount of attention from both academia and
industry, and several approaches have been proposed, involving evolutionary algorithms, local search
methods, and swarm intelligence. Tay et al. [13] evolved the dispatching rules by genetic programming.
Baykasoğlu et al. [14] performed a deep analysis of the effects of dispatching rules. Rajkumar et al. [15]
introduced a greedy adaptive search, which considered the maintenance and limited resource con-
straints. Caldeira et al. [16] developed a multi-objective discrete Jaya by maximizing the makespan,
and workload. Li et al. [17] introduced a rescheduling method with a Monte Carlo tree search, and it
considered the MOFJS with dynamic events.

In summary, most of the existing approaches use an integrated encoding. However, the two
subproblems in FJS (MS and OS) are quite different, and the integrated encoding might cause the
solution space to be more complex, and lead to a worse solution. Thus, this paper aims to address this
drawback by proposing a novel collaborative evolutionary algorithm with two populations.

3 Problem Formulation

The formulation of an n × m FJS is defined as follows.

Given a set with n jobs J = {J1, J2, J3, . . . , Jn} and a set of m M = {M1, M2, M3, . . . , Mm}, a job
ji has an operation series {Oi1, Oi2, Oi3, . . . , OiOni}. And Oni is the total number of operations of job Ji.
Oij(i = 1, 2, . . . , n; j = 1, 2, . . . , Oni) must be handled by one in the given set M. In other words, FJS
can be regarded as deciding the sequence of assignment and operation under the criteria.



CMES, 2023, vol.137, no.2 1851

In this research, the following criteria are involved:

Makespan: the maximal finish time;

Maximal machine workload (MMW ): the maximal time on a machine.

Total workload of machines (TWM): the total running time of all machines.

Based on these criteria, the MOFJS in this research has three objectives, and the descriptions of
these objectives are shown below. n denotes the number of jobs. m presents the number of machines.
oij means the j-th operation of the job i. Oni is the total number of the operations of job i. cijk denotes
the earliest finish time. ci denotes the earliest finish time of job i. Wk denotes the workload of machine
k. All the objectives are formulated below:

f1 = Makespan = maxi=1 {ci} i ∈ [1, n] ci = maxj=1

{
cijk

}
j ∈ {1, 2, . . . , Oni} (1)

f2 = MMW = maxk=1 {Wk} k ∈ {1, 2, . . . , m} (2)

f3 = TWM =
∑m

k=1
Wk k ∈ {1, 2, . . . , m} (3)

The model of FJS is followed to [18], and the summary of the notations is presented in Table 1.

Table 1: Summary of the notations in the proposed method

Symbol Notation

J Jobs
M Machine
O Operation
Makespan The maximal finish time
MMW Maximal machine workload
TWM Total workload of machines
Wk Workload of machine k
n Number of Jobs
m Number of machines

4 Proposed Method for MOFJS
4.1 Basic Concepts

Generally, the formulation of a multi-objective optimization [19,20] (contains n variables, k
objectives and m constraints) can be defined as:

Min y = f (x) = {f1 (x) , f2 (x) , . . . , fk (x)}
s.t. e (x) = {e1 (x) , e2 (x) , . . . , em (x)} ≤ 0

x = (x1, x2, . . . , xn) ∈ X
y = (y1, y2, . . . , yn) ∈ Y

(4)

x and X are the variable and variable space, respectively. y and Y denote the objective and objective
space, respectively. e (x) means the constraints, and xf = {x ∈ X |e (x) ≤ 0} is the feasible space.

Non-dominated solution: if the objective function fi(a) is all better than fi(b), then solution b is
dominated by solution a. For example, for a minimization problem, if fi (a) ≤ fi(b), the solution b is



1852 CMES, 2023, vol.137, no.2

dominated by solution a. Otherwise, solution b is not dominated by solution a. This is a non-dominated
solution. Fig. 1a shows a group of solutions for a two-objective problem.

Pareto-optimal: when the solution cannot be dominated, it is called Pareto-optimal (PO). Fig. 1b
shows the Pareto front of a two objectives problem.

Figure 1: NDS and Pareto front

4.2 Proposed Method
4.2.1 The Optimization Strategy for Collaborative Evolution

The proposed method uses a collaborative strategy to search for a solution in both the OS and
MS. The OS and MS are optimized alternatively, and evaluated together. Moreover, it should be noted
that this strategy is generic, and it can be suitable to combine with various algorithms, such as GA. In
this paper, the proposed method uses an evolutionary algorithm (EA) for both OS and MS, and the
optimization strategy is shown in Fig. 2 and below:

1): Parameter Initialization. Assum given n jobs. Generating two initial populations for OS and
MS individually;

2): Fitness Evaluation. Select the Popsize randomly, and calculate the solutions population. After
that, evaluate each solution individually and choose the NDS (NDS);

3): Condition judgement. If it meets the end condition, just terminate and output the solution.
Otherwise, going to 4);

4): Collaborative evolution. Generate some new individuals. Go back to 2).

Figure 2: Optimization strategy of the proposed method



CMES, 2023, vol.137, no.2 1853

4.2.2 Pareto Archive Set

For the diversity, a Pareto archive set (PAS) is employed in the proposed method, which can retain
the quantity of the NDS with the user requirement [21]. When optimizing, the PAS is moving to the
Pareto-optimality front by replenishing some new NDS and eliminating some dominant solutions.
Once the number of NDSs is sufficient, a crowding similarity in Eq. (5) is employed (CD) to remove
the redundant solutions and guarantee diversity. Individuals with higher CD are preferentially kept in
the PAS.

CDp =
∑k

i=1
(fi(p+1) − fi(p−1)) (5)

where p denotes the number of the individuals and i is the i-th objective.

4.2.3 Pareto Sort Algorithm

In MO problems, one objective is not enough to evaluate the quality of the solution individually,
and all of the objectives must be involved. Thus, a sorting algorithm is essential, and the non-
dominated sorting method [22] is adopted. The sorting algorithm separates the solutions into different
levels. For example, as shown in Fig. 3, the solutions have three levels, and the lower level has the better
fitness. For the same levels, the solutions that have higher CDs are also a priority. With this separation,
the good solutions can be retained as a priority by the PAS.

Figure 3: NDS levels

4.2.4 Encoding and Decoding Method

The encoding method is essential for an EA, and the proposed method adopts the method in [23]
for encoding. Moreover, since the OS and MS are quite different, the details of the encoding method
for each subproblem are also different. The encoding for OS is based on the operation representation.
In addition, the representation employs an undivided arrangement. With this encoding, each job can
be selected by Oni times. The f -th occurrence of a work number refers to the f -th operation of that
work number, and thus, any arrangement of chromosomes can convert into a viable solution.

The MS chromosome refers to the M, and the length of this chromosome is
∑

Oni. The i-th part
means the chosen set of machines for the operation corresponding to job i. Assuming that Oh of Ji can
be handled by a machine set sih = {mih1, mih2, . . . , mihcih

}, the i-th part is denoted as {gi1gi2 . . . gih . . . giOni}.
This denotes that Oh is assigned to the gih-th machine.



1854 CMES, 2023, vol.137, no.2

An encoding solution contains an OS chromosome and an MS chromosome, and the decoding
manner involves semi-active, active, non-delay, and hybrid. In the proposed method, to achieve a better
solution, an active schedule is used. The decoding process is shown below:

m: number of the machines.

oij: the j-th operation of the i-th job.

asij: the valid start time of oij.

sij: the earliest start time of oij.

k: the alternative machine corresponding to oij.

tijk: the processing time of operation oijon machine k.

cij: the earliest finish time of operation oij, i.e., cij = sij + tijk.

The process of decoding in the proposed method:

1): Generate the machine of each operation by the MS chromosome.

2): Choose a set of the operations for each machine: ma = {
oij

}
1 ≤ a ≤ m.

3): Choose a set of machines for each job: Jmd = {machine} 1 ≤ d ≤ n.

4): The allowable begin time for every operation: asij = ci(j−1)

(
oij ∈ ma

)
, ci(j−1) is the finish time of

the pre-operation of oij for the same job.

5): Checking the unused time of the machine of oij, and getting the unused areas [ts, te], checking
the areas in turn (if: max (asit, ts)+ tijk ≤ te, the earliest begin time is sij = ts, else: check the next
area), if the area cannot meet the condition: sij = max

(
asij, c

(
oij − 1

))
, c

(
oij − 1

)
is the finish

time of the pre-operation of oij for the same machine.

6): Calculate the finish time of each operation by cij = sij + tijk.

7): Generate the sets of the begin time and finish time for each operation of each job by
Td

(
sij, cij

)
1 ≤ d ≤ n.

In the decoding process, it can obtain the set of start time and finish time for each operation of
each job, and it is a schedule solution for the workshop. Fig. 4 gives an example of the encoding and
decoding in the proposed method. Fig. 4a is the background of this case, which involves 3 jobs and 3
machines. Fig. 4b presents an OS chromosome with repetitions of job numbers, and Fig. 4c is an MS
chromosome. The OS and MS chromosomes in Fig. 4 form a solution of FJS. And this solution can
be converted into a schedule by decoding, as shown in Fig. 4d. The decoding steps are as follows:

1): Generate the machine of each operation, O11 on M2, O12 on M1, O21 on M3, O22 on M1, O31 on
M3, O32 on M2;

2): Choose the set of operations for each machine: M1 = {O12, O22}, M2 = {O11, O32}, M3 =
{O21, O31};

3): Choose the set of machines for each job: J1 = {M2, M1}, J2 = {M3, M1}, J3 = {M3, M2};
4): The allowable begin time for each operation is calculated as follows: asij = ci(j−1)

(
oij ∈ ma

)
. ci(j−1)

is the finish time of the pre-operation of oij for the same job. For example, the allowable start
time of O12 is the finish time of O11. This can guarantee that the obtained schedule is feasible.
However, this cannot ensure that the schedule is active. Therefore, on the premise of avoiding
destroying the feasibility of the schedule, Step 5 tries to insert the following operations into the
earlier hole in schedule;



CMES, 2023, vol.137, no.2 1855

5): Check the unused time of the machine of oij, and give the idle areas [ts, te], check these areas
in turn (if: max (asit, ts) + tijk ≤ te, the earliest begin time is sij = ts, else: checking the another
area), if there is no area that can meet this condition: sij = max

(
asij, c

(
oij − 1

))
, c

(
oij − 1

)
is

the finish time of the pre-operation of oij for the same machine. For example, for arranging O22

on M1, its allowable stating time is 6 (as22 = 6). However, before time 6 in M1, there is a hole
(from time 1 to 3). Now, we need to consider whether this operation can be inserted into the
hole or not. Because this hole is smaller than the processing time of O22, this operation cannot
be inserted into this hole. Its earliest begin time is 6 (s22 = 6);

Step 6: The finish time of each operation is calculated as follows: cij = sij + tijk. For example, for
the O22, its finish time is 13 (c22 = s22 + t221 = 6 + 7 = 13);

Step 7: Generate the sets of begin time and finish time: Td

(
sij, cij

)
1 ≤ d ≤ n.

Figure 4: Encoding and decoding example

4.2.5 Genetic Operators

The genetic operator (GO) is important for good individuals and solutions. Generally, GO is
classified into three categories: selection, crossover and mutation. In the proposed method, for a better
solution, OS and MS use different genetic operators. The details of the genetic operations are shown
below:

(1) Selection

OS and MS randomly select the individuals.

(2) Crossover

A precedence operation (PO) is used for the crossover in the OS. The PO crossover can retain the
good of the parents and propagate it to the offspring. The flowchart of the PO is shown below (P1
and P2 are parents, and O1 and O2 are offspring).

1): Dividing the job set J = {J1, J2, J3, . . . , Jn} into two parts Jobset1 and Jobset2.

2): For an element belonging to Jobset1 in P1, it is retained in the same position in O1 and removed
in P1. For an element belonging to Jobset2 in P1, it is retained in the same position in O2 and
removed in P2.

3): Remains in P2 are moved to the empty positions in O1, while the remainder in P1 are moved
to O1.

The MS population uses a two-point crossover, which selects two positions randomly first, and
the two strings swap all elements.



1856 CMES, 2023, vol.137, no.2

Fig. 5a is an example of the PO for OS and Fig. 5b is for MS.

Figure 5: The crossover operations for OS and MS

(3) Mutation

The OS uses a neighborhood mutation operator.

1): Select three elements in a parent (each element has different value), and generate the neighbor-
hood chromosomes.

2): Choose a chromosome randomly for the chromosome.

MS uses the mutation operator below.

1): Select r positions in a parent (r is the 1/2 of the chromosome);

2): For each position, change the value of the chosen position to the corresponding operations.

4.2.6 Stop Condition

If the iteration has reached the maximum epoch, the proposed method stops running.

4.2.7 Framework of the Proposed Method

Fig. 6 presents the flowchart, and the description of the proposed method is shown below:

1): Setting the parameters, including Popsize1, Popsize2, PopsizeSP, PopsizeAS, maxGen, crossover
rate of OS (pc1), crossover rate of MS population (pc2), mutation probability of OS population
(pm1), mutation probability of MS population (pm2).

2): Initialization. For n jobs, the encoding methods are used to generate two populations for OS
with Popsize1 individuals and MS with Popsize2 individuals.

3): Evaluation. Randomly select PopsizeSP individuals from every population separately to form
an FJSP solution population with PopsizeSP FJSP solutions. The considered objectives of each
solution are calculated, and the Pareto sort algorithm is used to sequence the population and
divide these solutions into several levels. If Gen = 1, generate the PAS, copy all the NDS to
the PAS. If the number of solutions SizeSL ≥ PopsizeAS, selecting the solutions with bigger CD
to copy into the PAS until the PAS is full; if SizeSL < PopsizeAS, select the NDS to the PAS
and set the other positions in PAS is NULL; If Gen > 1, update the PAS: compare each new



CMES, 2023, vol.137, no.2 1857

non-dominant solution with the PAS in turn. If the new solution dominates the PAS, it can be
retained in the PAS.

4): If the model meets the stop condition, go to 6), otherwise, go to Step 5).

5): Collaboration evaluating. Upgrade the populations: generate new individuals for each popu-
lation;

5.1): For the q-th population, use the genetic operator to generate the new population;

5.2): If q ≤ 2, go to 5.3), else, set Gen = Gen + 1 and go to 3).

5.3): Set q = q + 1 and go to 5.1).

6): Output the NDS in PAS.

Figure 6: Work flow of the proposed method

5 Experimental Results of the Proposed Method
5.1 Experimental Setting and Results

The proposed method codes in C++ on a laptop. To evaluate the proposed method, six experi-
ments were selected. The five experiments are adopted from the related papers, and the last experiment
is employed by the author themselves. For the parameters, the sizes of the OS and MS populations are
Popsize1 = 400 and Popsize2 = 400. The PopsizeSP is 400 and PopsizeAS is 5, and the maxGEN is set to
200. The crossover rates of OS and MS are 0.9 and 0.9, and the crossover rate of OS and MS are 0.9.
The mutation rate of OS and MS are 0.1.

5.1.1 Experiment 1

This experimental problem is from [24], which includes 5 kinds of problems. Tables 2 and 3 show
the comparison results. From Table 2, the proposed method finds another new Pareto solution for
problem 4 × 5, which is (13, 7, 33), as shown in Fig. 7a. For problem 10 × 7, compared with other
algorithms, the proposed algorithm also finds two Pareto solutions. Based on Table 2, the proposed
method finds two solutions that dominate the P-DABC. One solution (11, 11, 61) is shown in Fig. 7b.



1858 CMES, 2023, vol.137, no.2

Table 2: The experimental results of 4 × 5 and 10 × 7

Makespan MMW TWM Makespan MMW TWM

Problem 4×5 10 × 7

HPSO [25] 11 10 32 – – –
SM [26] 11 10 32 11 11 61

11 9 34 11 10 62
12 8 32 12 12 60

SACO [27] 12 8 32 11
11

11
10

61
62

GAIE [28] 11
11

10 32 – – –
9 34

12 8 32
P-DABC [29] 11 10 32 12 11 61

12 8 32 11 11 63
13 7 33 12 12 60

Proposed method 11 10 32 11 10 62
12 8 32 11 11 61
13 7 33

Note: - means the result was not given by the author.

Table 3: Experimental results of the proposed method in Experiment 1

Makespan MMW TWM Makespan MMW TWM Makespan MMW TWM
Problem 8 × 8 10 × 10 15 × 10

MOEA-GLS
[30]

16 13 73 8 7 41 11 10 93
15 12 75 8 5 42 11 11 91
14 12 77 7 5 43
16 11 77 7 6 42

PSO-SA [31] 16 13 73 7 6 44 12 11 91
15 12 75

moGA [32] 15 14 73 – – – – – –
hGA [33] 15 12 75 7 5 43 11 11 91
HPSO [25] 15 12 75 6 7 43 11 11 93

14 12 77
SM [34] 16 13 73 8 5 42 11 11 91

16 11 77 7 6 42
14 12 77 8 7 41

GA-IE [28] 15 11 81 8 5 42 11 11 91
15 12 75 7 6 42 12 10 95
16 13 73 8 7 41 11 10 98

(Continued)



CMES, 2023, vol.137, no.2 1859

Table 3 (continued)

Makespan MMW TWM Makespan MMW TWM Makespan MMW TWM
Problem 8 × 8 10 × 10 15 × 10

7 5 45
PSO-LS [35] 15 12 75 8 7 41 12 10 93

16 13 73 7 6 42 11 11 91
14 12 77 8 5 42
16 11 78 7 5 43
17 11 77

GA-VND [35] 14 12 77 7 5 43 11 11 91
Proposed
method

16 13 73 7 5 43 11 11 91
14 12 77 7 6 42 11 10 93
15 12 75

Figure 7: Gantt charts for problem 4 × 5 and problem 10 × 7



1860 CMES, 2023, vol.137, no.2

Table 3 is the comparisons with the other methods for problems 8 × 8, 10 × 10 and 15 × 10. From
Table 3, the proposed method finds several solutions that dominate the other methods. Fig. 8 is the
Gantt chart with different solutions that are solved by the proposed method. From the experimental
results, it can be seen that the proposed method achieves the best performance. Compared with the
other methods, the results of the proposed method are improved for the makespan, MMW and TWM,
which means that the proposed method can find new Pareto solutions.

Figure 8: Gantt charts solved by the proposed method

5.1.2 Experiment 2

This experimental problem is from [15], which includes 3 kinds of problems. Table 4 is the
comparison with the other algorithms. From Table 4, the proposed method finds several solutions that
dominate the other methods. Fig. 9 is the Gantt chart of a solution for problem 12 × 5. Similar to the
experimental results in Section 5.1.1, the experimental results also suggest that the proposed method



CMES, 2023, vol.137, no.2 1861

has improved performance. Compared with the other methods, the proposed method can find a better
solution.

Table 4: Experimental results of the proposed method in Experiment 2

Makespan MMW TWM Makespan MMW TWM Makespan MMW TWM

Problem 8 × 5 12 × 5 8 × 8

GA [15] 27 27 109 33 33 145 – – –
GRASP [15] 24 24 101 33 33 138 16 13 73
Proposed
method

24 24 101 33 33 137 14 12 77
27 25 100 31 30 140 16 13 73

Note: - in the table denotes that the result was not given in the related work.

Figure 9: Gantt chart of one solution for problem 12 × 5 (33, 33, 137)

5.1.3 Experiment 3

This experimental problem is from [36], which is the famous benchmark instance for the single
objective FJS. This data contains 10 problems. Table 5 is the comparison with the other method, which
also shows that the proposed method finds several dominant solutions.



1862 CMES, 2023, vol.137, no.2

Table 5: The experimental results of problem MK01-MK10

Makespan MMW TWM Makespan MMW TWM

Problem MK01 (10 × 6) MK02 (10 × 6)

Efficient search [26] 42 42 162 28 28 155
HGA [33] 40 36 167 26 26 151
HTSA [37] 40 36 167 26 26 151

Proposed method 40 37 165 31 31 141
42 38 160 26 26 151
46 46 153

Problem MK03 (15 × 8) MK04 (15 × 8)

Efficient search [26] 204 204 852 68 67 352
HGA [33] 204 204 850 60 60 375
HTSA [37] 204 204 852 61 61 366

Proposed method 204 204 850 65 63 349
66 66 345

Problem MK05 (15 × 4) MK06 (10 × 10)

Efficient search [26] 177 177 702 75 67 431
HGA [33] 172 172 687 58 56 427
HTSA [37] 172 172 687 65 62 398
Proposed method 173 173 685 61 55 427

Problem MK07 (20 × 5) MK08 (20 × 10)

Efficient search [26] 150 150 717 523 523 2524
HGA [33] 139 139 693 523 523 2524
HTSA [37] 140 140 695 523 523 2524

Proposed method 140 140 686 523 523 2524
139 139 693 526 524 2521

Problem MK09 (20 × 10) MK10 (20 × 15)

Efficient search [26] 311 299 2374 227 221 1989
HGA [33] 307 299 2312 197 197 2029
HTSA [37] 310 301 2294 214 210 2053
Proposed method 328 316 2276 200 199 2020

240 214 1953



CMES, 2023, vol.137, no.2 1863

5.1.4 Experiment 4

This experimental problem is from [38], which is another famous benchmark instance for the single
objective FJS and is very hard to solve. The data contain 18 problems, and the range of the problems
is from 8 × 5 to 20 × 10. Table 6 shows the experimental results. The results indicate that the proposed
method can address the multi-objective FJS well.

Table 6: Experimental results of problem 01a–18a

Problem Makespan MMW TWM

01a (10 × 5) 2528 2505 11137
02a (10 × 5) 2236 2234 11137
03a (10 × 5) 2232 2232 11137
04a (10 × 5) 2510 2503 11088
05a (10 × 5) 2228 2222 11054
06a (10 × 5) 2219 2219 11037
07a (15 × 8) 2301 2288 16485
08a (15 × 8) 2082 2072 16485
09a (15 × 8) 2084 2072 16485
10a (15 × 8) 2295 2276 16536
11a (15 × 8) 2089 2077 16439
12a (15 × 8) 2045 2045 16202
13a (20 × 10) 2270 2253 21610
14a (20 × 10) 2173 2172 21610
15a (20 × 10) 2176 2174 21610
16a (20 × 10) 2255 2239 21579
17a (20 × 10) 2159 2159 21407
18a (20 × 10) 2148 2147 21374

5.1.5 Experiment 5

This experimental problem is from [39], which is another famous benchmark instance for the single
objective FJSP and is very hard to solve. The experiment contains 21 problems and Table 7 presents
the experimental results. The experimental results indicate the proposed method has significant
improvement.

Table 7: The results of Experiment 5

Problem Makespan MMW TWM

mt10c1 (10 × 11) 928 631 5109
mt10cc (10 × 12) 910 631 5109
mt10x (10 × 11) 918 556 5109
mt10xx (10 × 12) 918 556 5109

(Continued)



1864 CMES, 2023, vol.137, no.2

Table 7 (continued)

Problem Makespan MMW TWM

mt10xxx (10 × 13) 918 556 5109
mt10xy (10 × 12) 906 548 5109
mt10xyz (10 × 13) 851 534 5109
setb4c9 (15 × 11) 914 857 7727
setb4cc (15 × 12) 916 857 7727
setb4x (15 × 11) 925 846 7727
setb4xx (15 × 12) 925 846 7727
setb4xxx (15 × 13) 925 846 7727
setb4xy (15 × 12) 916 845 7727
setb4xyz (15 × 13) 905 838 7727
seti5c12 (15 × 16) 1174 1027 11472
seti5cc (15 × 17) 1136 888 11472
seti5x (15 × 16) 1204 938 11472
seti5xx (15 × 17) 1199 938 11472
seti5xxx (15 × 18) 1199 938 11472
seti5xy (15 × 17) 1136 888 11472
seti5xyz (15 × 18) 1126 835 11472

5.1.6 Experiment 6

The experimental problems are built by the authors. The range of the problems involves 10 × 8
and 16 × 8, which are shown in Table 8. The data of problem 16 × 8 are shown in Table 9. Table 10
shows the experimental results. From Table 10, the proposed method provides several Pareto solutions
for each problem.

Table 8: The data of problem 10 × 8

Job Operations M1 M2 M3 M4 M5 M6 M7 M8

1 O1,1 5 4 5 7 8 6 4 4
O1,2 3 3 3 4 3 2 5 2
O1,3 7 6 8 6 5 7 7 8

2 O2,1 2 1 3 2 1 1 2 3
O2,2 8 9 8 7 6 9 7 6
O2,3 3 3 2 3 4 5 4 3

3 O3,1 7 5 8 9 6 8 5 7
O3,2 5 4 6 4 5 6 3 3
O3,3 7 5 6 8 5 6 4 5

4 O4,1 2 3 1 3 2 1 2 2
O4,2 4 5 6 4 4 6 5 4
O4,3 8 5 8 6 7 6 5 6

(Continued)



CMES, 2023, vol.137, no.2 1865

Table 8 (continued)

Job Operations M1 M2 M3 M4 M5 M6 M7 M8

5 O5,1 6 7 8 6 7 8 5 6
O5,2 3 4 5 4 6 4 3 5
O5,3 9 10 9 8 9 11 9 10
O5,4 8 9 7 8 9 9 8 9

6 O6,1 10 11 12 9 8 9 7 10
O6,2 7 6 7 8 5 9 6 5
O6,3 12 13 10 9 8 9 7 7
O6,4 5 6 4 6 4 5 7 4

7 O7,1 3 4 5 3 4 2 3 4
O7,2 4 5 6 3 4 3 5 4
O7,3 8 5 6 8 9 10 6 7
O7,4 1 2 3 2 1 1 2 1

8 O8,1 3 6 4 7 5 7 5 6
O82 2 3 2 4 5 1 1 2
O83 3 3 3 2 3 4 4 2
O84 9 10 12 11 13 12 10 11

9 O9,1 9 8 9 10 14 12 9 10
O9,2 2 2 1 3 2 1 1 1
O9,3 5 6 4 6 4 6 5 4
O9,4 9 8 9 8 7 10 9 12
O9,5 2 1 3 2 2 2 1 3

10 O10,1 5 4 6 7 4 5 6 4
O10,2 7 8 6 9 7 6 6 7
O10,3 4 4 4 3 5 6 5 5
O10,4 3 4 2 4 2 2 1 3
O10,5 5 6 7 5 4 5 6 5

Table 9: The data of problem 16 × 8

Job Operations M1 M2 M3 M4 M5 M6 M7 M8

1 O1,1 6 7 5 6 8 5 6 8
O1,2 8 7 4 5 7 4 5 7
O1,3 3 5 6 3 5 6 5 3

2 O2,1 8 6 5 8 5 6 7 4
O2,2 2 3 1 1 2 2 1 1
O2,3 10 12 11 13 12 14 9 10

3 O3,1 3 3 4 2 1 1 2 1
O3,2 8 7 9 7 6 9 7 7
O3,3 6 6 5 3 4 6 6 5

4 O4,1 10 9 8 9 8 7 6 9

(Continued)



1866 CMES, 2023, vol.137, no.2

Table 9 (continued)

Job Operations M1 M2 M3 M4 M5 M6 M7 M8

O4,2 1 1 2 3 1 2 3 1
O4,3 3 4 3 4 2 2 3 4

5 O5,1 7 6 9 6 9 9 8 8
O5,2 5 6 4 6 6 3 3 4
O5,3 6 5 3 7 3 5 4 3

6 O6,1 2 1 2 3 4 2 1 3
O6,2 9 8 10 11 12 8 9 7
O6,3 4 4 5 3 5 3 4 3

7 O7,1 6 5 7 8 5 7 6 5
O7,2 5 4 6 7 5 4 7 5
O7,3 5 4 3 6 4 4 3 5
O7,4 10 11 9 8 10 9 7 8

8 O8,1 10 11 13 12 10 11 14 13
O8,2 2 3 3 2 1 2 1 1
O8,3 2 3 4 2 5 5 4 3
O8,4 1 2 1 2 3 4 2 1

9 O9,1 10 7 8 9 7 8 7 8
O9,2 10 12 13 15 12 10 11 12
O9,3 2 3 1 3 2 1 2 1
O9,4 6 7 5 7 6 5 6 6

10 O10,1 3 4 5 3 4 5 3 3
O10,2 2 1 3 2 1 2 2 2
O10,3 9 8 7 9 7 10 7 8
O10,4 4 3 6 4 5 3 6 7

11 O11,1 11 12 15 16 17 14 15 13
O11,2 2 1 1 2 3 4 2 1
O11,3 5 4 5 4 6 4 6 4
O11,4 8 9 8 9 8 9 7 7

12 O12,1 7 8 5 4 9 10 11 8
O12,2 4 6 7 3 7 5 3 7
O12,3 2 2 2 1 3 4 1 1
O12,4 3 4 3 2 4 2 4 2

13 O13,1 6 5 4 3 5 7 4 5
O13,2 4 6 5 7 4 5 5 7
O13,3 4 6 8 5 4 5 4 6
O13,4 2 3 4 5 1 3 1 1
O13,5 7 8 5 5 6 5 6 5

14 O14,1 10 11 12 13 14 15 16 10
O14,2 2 3 4 1 5 1 3 1
O14,3 4 4 6 7 2 4 7 2
O14,4 3 5 6 2 6 6 2 5

(Continued)



CMES, 2023, vol.137, no.2 1867

Table 9 (continued)

Job Operations M1 M2 M3 M4 M5 M6 M7 M8

O14,5 4 2 2 3 3 2 3 3
15 O15,1 5 7 7 5 8 5 5 4

O15,2 1 2 1 2 3 1 4 1
O15,3 4 5 3 5 3 6 3 3
O15,4 10 9 8 7 8 9 7 8
O15,5 13 12 12 11 13 13 14 15

16 O16,1 9 8 10 8 7 8 7 9
O16,2 10 11 13 12 10 11 9 12
O16,3 9 8 7 9 10 11 9 9
O16,4 2 1 1 3 2 4 2 3
O16,5 4 3 2 5 6 3 4 5

Table 10: The experimental results of problem 10 × 8 and problem 16 × 8

Makespan MMW TWM Makespan MMW TWM

Problem 10 × 8 16 × 8

Proposed method 28 24 153 33 33 259
24 21 160 35 33 257

5.2 Discussion
In the experimental results, the proposed method finds some dominant solutions of the other

methods. These results suggest that the proposed method addresses the MOFJS well. The main reasons
for the good performance are because the OS and MS are quite different, and the integrated encoding
might cause solution space intricacy and complexity. The complex space might prevent the search
ability of the existing methods. Moreover, the proposed method evolves OS and MS separately, which
can improve the overall searching ability. With this improvement, the proposed method achieves the
more effective results. Furthermore, the proposed method uses PAS to save the solutions, and uses
crowd similarity for diversity, which is also effective for the improvement of MOFJS.

6 Conclusions

FJS is very important for production, and a novel collaborative evolutionary algorithm with two-
population based on Pareto optimality is proposed for MOFJS. The experimental results suggest that
the proposed method is feasible for improving the solution of MOFJS, and several dominant solutions
are found by the proposed method, which achieved significant improvement. The main contributions
of this paper are as follows:

• With the problem features of MOFJS, a collaborative evolutionary method is designed. The
proposed method reflects the essential feature of MOFJS, and the PAS is used to save the
Pareto solutions. The comparison demonstrates that the proposed method can address MOFJS
successfully with a promising result.



1868 CMES, 2023, vol.137, no.2

• The proposed method combines the merits of collaborative optimization and EA. It uses crowd
similarity to guarantee diversity. It provides a novel way to solve MO problems by containing
several sub-problems. The experimental results of the multi-objective FJSP show that the
proposed method may solve these problems effectively.

Funding Statement: This research work is the Key R&D Program of Hubei Province under Grant No.
2021AAB001, and National Natural Science Foundation of China under Grant No. U21B2029.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Zhou, J., Li, P., Zhou, Y., Wang, B., Zang, J. et al. (2018). Toward new-generation intelligent manufacturing.

Engineering, 4(1), 11–20. https://doi.org/10.1016/j.eng.2018.01.002
2. Wang, J., Wang, L. (2022). A cooperative memetic algorithm with feedback for the energy-aware dis-

tributed flow-shops with flexible assembly scheduling. Computers & Industrial Engineering, 168(4), 108126.
https://doi.org/10.1016/j.cie.2022.108126

3. Liu, Q., Li, X., Gao, L. (2021). A novel MILP model based on the topology of a network
graph for process planning in an intelligent manufacturing system. Engineering, 7(6), 807–817.
https://doi.org/10.1016/j.eng.2021.04.011

4. Gao, Y., Gao, L., Li, X. (2023). A hierarchical training-convolutional neural network with feature align-
ment for steel surface defect recognition. Robotics and Computer-Integrated Manufacturing, 81, 102507.
https://doi.org/10.1016/j.rcim.2022.102507

5. Gao, Y., Gao, L., Li, X., Yan, X. (2020). A semi-supervised convolutional neural network-based method
for steel surface defect recognition. Robotics and Computer-Integrated Manufacturing, 61(1), 101825.
https://doi.org/10.1016/j.rcim.2019.101825

6. Brucker, P., Schlie, R. (1990). Job-shop scheduling with multi-purpose machines. Computing, 45(4), 369–
375. https://doi.org/10.1007/BF02238804

7. Sun, J., Zhang, G., Lu, J., Zhang, W. (2021). A hybrid many-objective evolutionary algorithm for flexible job-
shop scheduling problem with transportation and setup times. Computers & Operations Research, 132(3),
105263. https://doi.org/10.1016/j.cor.2021.105263

8. Gu, X. (2021). Application research for multiobjective low-carbon flexible job-shop scheduling
problem based on hybrid artificial bee colony algorithm. IEEE Access, 9, 135899–135914.
https://doi.org/10.1109/ACCESS.2021.3117270

9. Zhang, P., Song, S., Niu, S., Zhang, R. (2021). A hybrid artificial immune-simulated annealing algorithm
for multiroute job shop scheduling problem with continuous limited output buffers. IEEE Transactions on
Cybernetics, 52(11), 12112–12125. https://doi.org/10.1109/TCYB.2021.3081805

10. Park, J. S., Ng, H. Y., Chua, T. J., Ng, Y. T., Kim, J. W. (2021). Unified genetic algorithm approach for solving
flexible job-shop scheduling problem. Applied Sciences, 11(14), 6454. https://doi.org/10.3390/app11146454

11. Meng, L., Zhang, C., Ren, Y., Zhang, B., Lv, C. (2020). Mixed-integer linear programming and constraint
programming formulations for solving distributed flexible job shop scheduling problem. Computers &
Industrial Engineering, 142(19), 106347. https://doi.org/10.1016/j.cie.2020.106347

12. Alvarez-Valdes, R., Fuertes, A., Tamarit, J. M., Giménez, G., Ramos, R. (2005). A heuristic to sched-
ule flexible job-shop in a glass factory. European Journal of Operational Research, 165(2), 525–534.
https://doi.org/10.1016/j.ejor.2004.04.020

https://doi.org/10.1016/j.eng.2018.01.002
https://doi.org/10.1016/j.cie.2022.108126
https://doi.org/10.1016/j.eng.2021.04.011
https://doi.org/10.1016/j.rcim.2022.102507
https://doi.org/10.1016/j.rcim.2019.101825
https://doi.org/10.1007/BF02238804
https://doi.org/10.1016/j.cor.2021.105263
https://doi.org/10.1109/ACCESS.2021.3117270
https://doi.org/10.1109/TCYB.2021.3081805
https://doi.org/10.3390/app11146454
https://doi.org/10.1016/j.cie.2020.106347
https://doi.org/10.1016/j.ejor.2004.04.020


CMES, 2023, vol.137, no.2 1869

13. Tay, J. C., Ho, N. B. (2008). Evolving dispatching rules using genetic programming for solv-
ing multi-objective flexible job-shop problems. Computers & Industrial Engineering, 54(3), 453–473.
https://doi.org/10.1016/j.cie.2007.08.008

14. Baykasoğlu, A., Özbakır, L. (2010). Analyzing the effect of dispatching rules on the scheduling performance
through grammar based flexible scheduling system. International Journal of Production Economics, 124(2),
369–381. https://doi.org/10.1016/j.ijpe.2009.11.032

15. Rajkumar, M., Asokan, P., Anilkumar, N., Page, T. (2011). A GRASP algorithm for flexible job-shop
scheduling problem with limited resource constraints. International Journal of Production Research, 49(8),
2409–2423. https://doi.org/10.1080/00207541003709544

16. Caldeira, R. H., Gnanavelbabu, A. (2021). A Pareto based discrete Jaya algorithm for multi-
objective flexible job shop scheduling problem. Expert Systems with Applications, 170(1), 114567.
https://doi.org/10.1016/j.eswa.2021.114567

17. Li, K., Deng, Q., Zhang, L., Fan, Q., Gong, G. et al. (2021). An effective MCTS-based algorithm for
minimizing makespan in dynamic flexible job shop scheduling problem. Computers & Industrial Engineering,
155(1), 107211. https://doi.org/10.1016/j.cie.2021.107211

18. Fattahi, P., Saidi Mehrabad, M., Jolai, F. (2007). Mathematical modeling and heuristic approaches
to flexible job shop scheduling problems. Journal Intelligent Manufacturing, 18(3), 331–342.
https://doi.org/10.1007/s10845-007-0026-8

19. Lei, D., Yuan, Y., Cai, J. (2021). An improved artificial bee colony for multi-objective distributed
unrelated parallel machine scheduling. International Journal of Production Research, 59(17), 5259–5271.
https://doi.org/10.1080/00207543.2020.1775911

20. Xia, W., Wu, Z. (2005). An effective hybrid optimization approach for multi-objective
flexible job-shop scheduling problems. Computers & Industrial Engineering, 48(2), 409–425.
https://doi.org/10.1016/j.cie.2005.01.018

21. Lei, D., Yuan, Y., Cai, J. (2021). An improved artificial bee colony for multi-objective distributed
unrelated parallel machine scheduling. International Journal of Production Research, 59(17), 5259–5271.
https://doi.org/10.1080/00207543.2020.1775911

22. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T. (2002). A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.
https://doi.org/10.1109/4235.996017

23. Gao, L., Peng, C., Zhou, C., Li, P. (2006). Solving flexible job-shop scheduling problem using general
particle swarm optimization. Proceedings of the 36th CIE Conference on Computers & Industrial Engineering,
pp. 3018–3027. Taipei, China.

24. Kacem, I., Hammadi, S., Borne, P. (2002). Approach by localization and multiobjective evolutionary opti-
mization for flexible job-shop scheduling problems. IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), 32(1), 1–13. https://doi.org/10.1109/TSMCC.2002.1009117

25. Zhang, G., Shao, X., Li, P., Gao, L. (2009). An effective hybrid particle swarm optimization algorithm for
multi-objective flexible job-shop scheduling problem. Computers & Industrial Engineering, 56(4), 1309–
1318. https://doi.org/10.1016/j.cie.2008.07.021

26. Xing, L., Chen, Y., Yang, K. (2009). An efficient search method for multi-objective flexible job shop schedul-
ing problems. Journal Intelligent Manufacturing, 20(3), 283–293. https://doi.org/10.1007/s10845-008-0216-z

27. Xing, L., Chen, Y., Yang, K. (2009). Multi-objective flexible job shop schedule: Design and evaluation by
simulation modeling. Applied Soft Computing, 9(1), 362–376. https://doi.org/10.1016/j.asoc.2008.04.013

28. Wang, X., Gao, L., Zhang, C., Shao, X. (2010). A multi-objective genetic algorithm based on immune and
entropy principle for flexible job-shop scheduling problem. International Journal Advanced Manufacturing
Technology, 51(5–8), 757–767. https://doi.org/10.1007/s00170-010-2642-2

https://doi.org/10.1016/j.cie.2007.08.008
https://doi.org/10.1016/j.ijpe.2009.11.032
https://doi.org/10.1080/00207541003709544
https://doi.org/10.1016/j.eswa.2021.114567
https://doi.org/10.1016/j.cie.2021.107211
https://doi.org/10.1007/s10845-007-0026-8
https://doi.org/10.1080/00207543.2020.1775911
https://doi.org/10.1016/j.cie.2005.01.018
https://doi.org/10.1080/00207543.2020.1775911
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/TSMCC.2002.1009117
https://doi.org/10.1016/j.cie.2008.07.021
https://doi.org/10.1007/s10845-008-0216-z
https://doi.org/10.1016/j.asoc.2008.04.013
https://doi.org/10.1007/s00170-010-2642-2


1870 CMES, 2023, vol.137, no.2

29. Li, J., Pan, Q., Gao, K. (2011). Pareto-based discrete artificial bee colony algorithm for multi-objective
flexible job shop scheduling problems. International Journal Advanced Manufacturing Technology, 55(9–
12), 1159–1169. https://doi.org/10.1007/s00170-010-3140-2

30. Ho, N., Tay, J. (2008). Solving multiple-objective flexible job shop problems by evolution and local search.
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 38(5), 674–685.
https://doi.org/10.1109/TSMCC.2008.923888

31. Xia, W. J., Wu, Z. M. (2005). An effective hybrid optimization approach for multi-objective
flexible job shop scheduling problems. Computers & Industrial Engineering, 48(2), 409–425.
https://doi.org/10.1016/j.cie.2005.01.018

32. Zhang, H., Gen, M. (2005). Multistage-based genetic algorithm for flexible job-shop scheduling problem.
Journal of Complexity International, 11, 223–232.

33. Gao, J., Gen, M., Sun, L., Zhao, X. (2007). A hybrid of genetic algorithm and bottleneck shifting for
multiobjective flexible job shop scheduling problems. Computers & Industrial Engineering, 53(1), 149–162.
https://doi.org/10.1016/j.cie.2007.04.010

34. Xing, L. N., Chen, Y. W., Yang, K. W. (2009). An efficient search method for multi-objective
flexible job shop scheduling problems. Journal of Intelligent Manufacturing, 20(3), 283–293.
https://doi.org/10.1007/s10845-008-0216-z

35. Moslehi, G., Mahnam, M. (2011). A Pareto approach to multi-objective flexible job-shop scheduling
problem using particle swarm optimization and local search. International Journal of Production Economics,
129(1), 14–22. https://doi.org/10.1016/j.ijpe.2010.08.004

36. Brandimarte, P. (1993). Routing and scheduling in a flexible job shop by taboo search. Annals of Operations
Research, 41(3), 157–183. https://doi.org/10.1007/BF02023073

37. Li, J., Pan, Q., Liang, Y. (2010). An effective hybrid tabu search algorithm for multi-objective
flexible job-shop scheduling problems. Computers & Industrial Engineering, 59(4), 647–662.
https://doi.org/10.1016/j.cie.2010.07.014

38. Peres, S. D., Paulli, J. (1997). An integrated approach for modeling and solving the general mul-
tiprocessor job shop scheduling using tabu search. Annals of Operations Research, 70, 281–306.
https://doi.org/10.1023/A:1018930406487

39. Barnes, J. (1996). Flexible job shop scheduling by tabu search (Ph.D. Thesis). University of Texas at Austin.

https://doi.org/10.1007/s00170-010-3140-2
https://doi.org/10.1109/TSMCC.2008.923888
https://doi.org/10.1016/j.cie.2005.01.018
https://doi.org/10.1016/j.cie.2007.04.010
https://doi.org/10.1007/s10845-008-0216-z
https://doi.org/10.1016/j.ijpe.2010.08.004
https://doi.org/10.1007/BF02023073
https://doi.org/10.1016/j.cie.2010.07.014
https://doi.org/10.1023/A:1018930406487

	A Novel Collaborative Evolutionary Algorithm with Two-Population for Multi-Objective Flexible Job Shop Scheduling
	1 Introduction
	2 Literature Review
	3 Problem Formulation
	4 Proposed Method for MOFJS
	5 Experimental Results of the Proposed Method
	6 Conclusions
	References


