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ABSTRACT

The harmonic balance (HB) method is one of the most commonly used methods for solving periodic solutions of
both weakly and strongly nonlinear dynamical systems. However, it is confined to low-order approximations due
to complex symbolic operations. Many variants have been developed to improve the HB method, among which the
time domain HB-like methods are regarded as crucial improvements because of their fast computation and simple
derivation. So far, there are two problems remaining to be addressed. i) A dozen of different versions of HB-like
methods, in frequency domain or time domain or in hybrid, have been developed; unfortunately, misclassification
pervades among them due to the unclear borderlines of different methods. ii) The time domain HB-like methods
suffer from non-physical solutions, which have been shown to be caused by aliasing (mixture of the high-order
into the low-order harmonics). Although a series of dealiasing techniques have been developed over the past two
decades, the mechanism of aliasing and the final solution to dealiasing are still not well known to the academic
community. This paper aims to provide a comprehensive review of the development of HB-like methods and
enunciate their principal differences. In particular, the time domain methods are emphasized with the famous
aliasing phenomenon clearly addressed.
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Nomenclature

The commonly used abbreviations of the computing methods are shown below.

Abbreviations

AFT-HB Alternating frequency-time harmonic balance
ANM Asymptotic numerical method
ETDC Extended time domain collocation
GOIA Global optimal iterative algorithm
HB Harmonic balance
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HDHB High dimensional harmonic balance
HFT Hybrid frequency-time domain
IHB Incremental harmonic balance
IIHB Improved incremental harmonic balance
Pre-Co Predictor-corrector
RHB Reconstruction harmonic balance
TDC Time domain collocation
TPH Truncated polluted harmonics
TSV Time spectral viscosity

1 Introduction

Periodic responses occur in many science and engineering disciplines, ranging from mechanical
vibrations [1–5], nonlinear circuits [6,7], structural dynamics [8–10], to celestial dynamics [11–13].
There is a batch of ready-to-use methods for solving periodic solutions, including analytical, numerical
and semi-analytical methods [14–16]. The analytical methods cannot be applied in nonlinear systems
due to the nullification of the additivity and homogeneity properties [17]. Numerical integration
methods can be used to find periodic nonlinear solutions, but demand a small step size to constrain
accumulated computational error and sometimes lead to a lengthy calculation process in cases where
the interest is focused only on the stable periodic behaviour [18]. Semi-analytical methods consist of
perturbation and HB-like methods. The perturbation method requires weak nonlinearity, which leads
to limited applications. Thus, the HB-like methods play an important role in the periodic solution
of nonlinear systems [19–23] due to their high accuracy, multidisciplinary applications and ability to
handle strong nonlinearities.

The HB method is first proposed by Blondel in 1919 [24,25] and has been widely used in the past
100 years. However, it faces a major drawback: complicated symbolic operations caused by computing
the Fourier coefficients of nonlinear terms. Although the incremental harmonic balance (IHB) method
[26] can slightly reduce symbolic operations, it requires analytical derivation of the Jacobian matrix,
which is usually difficult. To avoid symbolic operations, a series of time domain methods have been
developed. First is the improved IHB method (IIHB) with discrete Fourier transform (DFT): the IHB-
DFT method [27]. It uses DFT to compute the Jacobian, which alleviates the burden of symbolic
operations. Next is the alternating frequency-time HB (AFT-HB) method [28]. The principle is to
calculate the nonlinear term in the time domain, and then transform it into the frequency domain to
obtain its Fourier coefficients. Such transformation needs to be carried out continuously during the
computation. Both methods dramatically reduce symbolic operations and are essentially semi-time
domain methods due to the coexistence of frequency and time domain quantities.

More efforts have been made to improve the efficiency of the HB method. Hall et al. [22] proposed
a more concise and elegant high dimensional harmonic balance (HDHB) method. The key idea
beneath the HDHB method is to transform Fourier coefficients into the same number of discrete
time domain collocation points. Different from the AFT-HB method, only one time-frequency domain
transformation is required at the beginning of the HDHB calculation, after which the entire computing
process is carried out in the time domain. Dai et al. [29] proved that the HDHB method is equivalent
to the time domain collocation (TDC) method [30], which is formed by letting the original differential
equation be zero at time domain collocation points. These two methods are full-time domain methods
because their computations are carried out in pure time domains. Full-time domain methods are
more concise than semi-time domain methods because they avoid the incremental process and the
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continuous time-frequency domain transformation. However, they are found to produce non-physical
solutions caused by the aliasing phenomenon [31].

To handle the aliasing phenomenon, some dealiasing techniques have been developed, which
can be divided into two categories: numerical-filtering [32,33] and collocation-manipulating methods.
Numerical-filtering methods can suppress non-physical solutions but suffer from low accuracy due
to the filtering-out of some meaningful parts of the true solution. Therefore, research interests have
been paid to collocation-manipulating methods in the past two decades. Dai et al. [34] developed an
extended TDC (ETDC) method with more collocation points than the TDC method to suppress the
aliasing. However, it cannot theoretically avoid the appearance of non-physical solutions. The AFT-
HB method [28] based on the Shannon sampling theorem [35] can eliminate the non-physical solutions,
but suffers from the oversampling problem which will cause a larger RAM and CPU computational
burden. Dai et al. [36] successfully uncovered the rules of aliasing and explained how the high-order
harmonics mixed into the lower ones. Based on the above studies, a powerful reconstruction harmonic
balance (RHB) method [37] was proposed by reconstructing the classical HB method via pure time
domain collocations. The RHB method, which successfully avoids the aliasing phenomenon and
oversampling problem, has been shown to be highly efficient for solving periodic solutions of nonlinear
dynamic systems.

Although the HB-like methods gain an increasing attention recently [38–42], they have not been
comprehensively reviewed so far. In literature, the related studies are mostly problem-oriented, such
as applications in the nonlinear circuit problems [6,43] and unsteady nonlinear periodic flows [44,45].
Some monographs [40,46] were dedicated to the HB-like methods, but they did not involve recent
advances. In general, the present study has two main purposes. First, this paper aims to give a
comprehensive review of the development of the HB-like methods with an emphasis on enunciating
their common properties and principal differences, as well as clarifying the misunderstandings
among different methods in various computing domains (time-domain, frequency-domain, and hybrid
domain). Second, the recent advances in the time domain methods are summarized with an emphasis
on the final solution of the famous non-physical solution problem caused by aliasing between high and
low order harmonics. In addition, the drawbacks and merits of different versions of HB-like methods
are discussed, and finally, some future developments are given.

2 The HB-Like Methods

The various HB-like methods can be divided into frequency and time domain methods. Classifica-
tion guidelines will be introduced in Section 3.6. The frequency domain methods consist of the HB and
IHB methods. They can obtain high accuracy solutions with just a few harmonics but involve complex
symbolic operations, especially for high-order cases. Thus, the research interest has been paid to the
time domain methods since the 1960s [47]. These methods replace expressions in frequency domain
with time domain quantities based on DFT and IDFT (inverse discrete Fourier transform) techniques.
They are subdivided into semi-time and full-time domain methods. Compared with frequency domain
methods, the time domain methods have a wider range of applications. Virtually, the frequency domain
methods cannot handle fractional and transcendental nonlinearities [48], while time domain methods
can be easily applied. In this section, the milestones of the development of the HB-like methods are
given.



1422 CMES, 2023, vol.137, no.2

2.1 Harmonic Balance Method
The HB method, which is also referred to as the spectral method [25], was first proposed by

Blondel. The describing function method developed by Kryloff et al. [49] is also shown as a variant
of the HB method. In addition, there is a certain connection between the homotopy analysis and
the HB method [50]. It uses Fourier-base functions (a combination of sinusoids) as both the test and
trial functions, i.e., approximate solution. Substituting the trial approximation into the differential
equation yields a residual term. Then, the HB method requires all the Fourier coefficients of the
residual term to vanish, which is called the harmonic balance procedure. Without loss of generality,
consider a nonlinear dynamical system

r(x, ẋ, t) = 0, (1)

where t is time. The state vector x consists of nx dependent variables, r is a nonlinear function. The
approximate periodic solution x is assumed as a truncated Fourier series, that is

x = h(ωt)x̂N, (2)

where h(ωt) = [1 cos(ωt) sin(ωt) · · · cos(Nωt) sin(Nωt)] ⊗ Inx , x̂N = [x̂0 x̂1 · · · x̂2N]T, x̂0, x̂1,
. . . , x̂2N are unknown Fourier coefficients. N is the order of the HB method employed. The symbol ⊗
represents Kronecker product. Inx is the identity matrix of dimension nx.

As Eq. (2) is only an approximation, it generally does not satisfy Eq. (1) for all t in a period [0, T ].
A residual rn generally remains. The HB method uses the trial functions also as test functions. Fourier
coefficients of residual are obtained from the zero inner product of the test function and residual within
a period. That is

1
T

∫ T

0

1 · rn(hx̂N, hωDx̂N, t)dt = 0,

1
T

∫ T

0

cos(nωt) · rn(hx̂N, hωDx̂N, t)dt = 0, n = 1, 2, . . . , N,

1
T

∫ T

0

sin(nωt) · rn(hx̂N, hωDx̂N, t)dt = 0, n = 1, 2, . . . , N. (3)

where

D =

⎡
⎢⎢⎢⎢⎣

0 0 0 · · · 0
0 J1 0 · · · 0
0 0 J2 · · · 0
...

...
...

. . .
...

0 0 0 · · · JN

⎤
⎥⎥⎥⎥⎦ ⊗ Inx , Jn = n

[
0 1

−1 0

]
, (4)

It can be seen that the HB method requires the Fourier coefficients of residual equal to zero, i.e.,

r̂N(x̂N, ωDx̂N) = [
r̂0 r̂1 · · · r̂2N

]T = 0. (5)

r̂0, r̂1, . . . , r̂2N are the Fourier coefficients of residual. Eq. (5) is the HB algebraic equation. The N
order HB algebraic system contains 2N+1 nonlinear algebraic equations (NAEs), which can be solved
to obtain x̂N. Thus, Eq. (3) must be integrable. Mickens [21] pointed out that r must have the form
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r =
∑

xki ẋkj , (6)

where ki, kj are non-negative integers. That means r is a polynomial function of x and ẋ. However, the
recast technique [51] can make the HB method be applied to nonlinearities with the form of a rational
fraction and basic transcendental functions. Thus, the limit on ki and kj should be corrected to integers.

Shown in Fig. 1 is the illustration and computing results of the Duffing equation

ẍ + cẋ + kx + αx3 = F sin(ωt). (7)
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Figure 1: Illustration and computing results of the Duffing equation ẍ + 0.2ẋ + x + x3 = 1.25 sin(ωt).
(a) Illustration of a single degree freedom oscillator described by the Duffing Eq. (7). (b) Comparison
of the amplitude-frequency response curves computed by HB7 and numerical integration method. (c)
Errors of amplitude-frequency response curves bwtween the HB method and numerical integration
method

It can be interpreted as a single degree of freedom oscillator with a cubic spring (Fig. 1a). In this
paper, the parameters are set as c = 0.2, k = 1, α = 1 and F = 1.25. The amplitude-frequency
responses were computed by using the HB and numerical integration methods. For simplicity, the
n-th order HB method is denoted as HBn. It can be seen from Fig. 1b that the HB7 can obtain
the entire hysteresis region, while ODE45 cannot. Outside the hysteresis region, the results of HB7
are almost the same as those of ODE45. Curves of error between the upper branches obtained by
numerical integration and the HB methods are shown in Fig. 1c. The computing results of the HB
become more accurate with the increase of N. Thus, the HB method is useful in studying the physics of
frequency domain phenomena because parameter changes are more readily available with such semi-
analytical methods [52]. Generally, several harmonics can obtain high-accuracy periodic solutions,
which is especially attractive when the nonlinearity of the system is strong. Thus, the HB method has a
wide range of applications, including but not limited to mechanical vibration [53], nonlinear circuits [6]
and structural mechanics [52]. For example, Peng et al. [54] applied the HB method to investigate the
performance of passive vibration isolators with cubic nonlinear damping. Zhu et al. [55] studied the
application of the HB method on the active control of nonlinear vibration of viscoelastic orthotropic
piezoelectric doubly-curved smart nanoshells with surface effects.

However, the HB method has a major drawback: the HB algebraic equation is difficult to derive.
Eqs. (3)–(5) require a large amount of symbolic operations, especially when N is large [24,56–59]. Even
with the help of computer algebra software the computational complexity brought by moderately large
HB analysis (a dozen of harmonics) is still unaffordable. To overcome the derivation difficulties of the
HB method, a series of new methods have been developed.
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2.2 Incremental Harmonic Balance Method
The IHB method was proposed by Lau et al. [26] by combining the incremental procedure with

the HB method. The principle is to add an incremental linearization process before using harmonic
balancing. Besides, the IHB method is always guaranteed to converge [26], provided that appropriately
small increments are chosen. Specifically, the IHB method performs Taylor series expansion of Eq. (1)
at the non-singular solution x0

r(x, ẋ, t)|x=x0
+ ∂r

∂x
δx + ∂r

∂ẋ
δẋ = 0, (8)

where δx = x − x0. Multiplying both left and right sides of Eq. (8) by hT, and taking the integral over
a period T yields

Jδx̂N = R, (9)

where

J = 1
T

∫ T

0

hT

[
∂r
∂x

h + ∂r
∂ẋ

hωD
]

dt, R = − 1
T

∫ T

0

hTr(x, ẋ, t)|x=x0
dt. (10)

Eq. (9) is the IHB algebraic equation. Essentially, the IHB method can be regarded as a combi-
nation of the HB and Newton methods, but the sequence of the increment and the harmonic balance
procedures is reversed [60].

The IHB method alleviates the derivation difficulty of the HB method, for the partial derivatives
in Eq. (9) may decrease the degree of nonlinearity of the residual term. Thus, it has been widely used,
especially in mechanical systems [9,61–63]. Lau et al. [64] analysed the periodic vibrations of systems
with a general form of piecewise-linear stiffness characteristics by using the IHB method. However,
the IHB’s alleviation in derivation costs are not significant. The residual vector and Jacobian matrix in
the IHB method require analytical expressions, leading to extra complex symbolic operations. At the
same time, the intermediate variables of the iterative process need to be repeatedly calculated. When
using the IHB method to deal with nonlinear terms in non-polynomial form, the Galerkin integral
needs to be computed using numerical integration methods, which is usually time-consuming [65].
References [61,66] pointed out that for discontinuous friction damping problems, the IHB method is
not more efficient than numerical integration methods. Furthermore, since the IHB method discretizes
the increments of the original equation, bifurcation solutions cannot be obtained [67]. Leung et al. [68]
developed an IIHB method, which performs harmonic balance procedure on the original equation and
linearizes the resulting algebraic equation for a Newton iteration process. The harmonic balance is on
the original equation, bifurcated solutions into chaos can be handled [67]. In fact, the IIHB method
exchanges the sequence of the increment and the harmonic balance procedures and is essentially a
combination of the HB and Newton methods. Lu et al. [69] studied the nonlinear dynamics of latent
mooring structures under vertical excitation using the IIHB method.

2.3 The IHB-DFT Method
To simplify the derivations, an intuitive way is to use time domain quantities at discrete collo-

cations (sampling points) to replace the Fourier coefficients. That is combining frequency domain
methods with DFT/IDFT technique. The IHB-DFT method, dating back to 1983 [27,70], is the crucial
improvement to the IHB method. It can be divided into two categories according to the order of
harmonic balance and increment procedures. The first algorithm (hereafter referred to as ALGO1)
introduces the DFT technique to help compute J and R in Eq. (9) to avoid symbolic operations
and minimize CPU time [71]. The second category (ALGO2) exchanges the order of increment and
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harmonic balance procedures [67]. Essentially, it is the DFT variant of the IIHB method. Consider
the first-order Taylor series expansion of the HB algebraic Eq. (5)
∂ r̂N

∂x̂N

|x̂N =x̂n
N
δx̂N + r̂N|x̂N =x̂n

N
= 0, (11)

where the superscript n represents the number of iteration steps, δx̂N = x̂n+1
N − x̂n

N. The corresponding
Jacobian matrix is H = −∂ r̂N/∂x̂N. Thus,

δx̂N = H−1r̂N. (12)

The DFT is used to obtain components of the residual vector r̂N|x̂N=x̂n
N

and Jacobian matrix H.
One can equally divide the period into M points and define the collocation series: tk = kT/M, where
k = 0, 1, . . . , M − 1. Components of r̂N can be calculated in the time domain by [72]

r̂0 =
M−1∑
k=0

r(tk), r̂2n−1 =
M−1∑
k=0

r(tk) cos(nωtk), r̂2n =
M−1∑
k=0

r(tk) sin(nωtk), (13)

where n = 1, 2, . . . , N. The expressions of the Jacobian matrix H can be found in [73]. Similar to the
IHB method, the last step is to update x̂N by using Newton method following x̂N + δx̂N → x̂N.

Reference [73] proved the equivalence of the ALGO2 and IHB methods. Considering that
the ALGO1 and IHB are almost the same except for a DFT process, and even equivalent when
a polynomial system is considered according to the sampling theorem [35] (details are given in
Section 3.3). Therefore, we group these algorithms into a category called the IHB-DFT method. It is
worth mentioning that the ALGO2 is usually referred to as the AFT-HB method in literature. However,
we believe that it is not entirely consistent with the description by Cameron et al. (the originators of
the name “AFT-HB”) themselves in their 1989 paper [28]. Details are introduced in Section 2.4.

From the IHB-DFT method, Cardona et al. [18] proposed a multi-harmonic method to analyse
the nonlinear dynamic systems submitted to periodic loading conditions. The approach is based on the
systematic use of the FFT. The exact linearization of the resulting equations in the frequency domain
allows for obtaining a full quadratic convergence rate. Zhang et al. [74] used the IHB-DFT method
to study the rigid rotor supported by ball bearings with the nonlinearity of Hertz contact and ball
passage vibrations. Wang et al. [75] proposed a modified IHB (MIHB) method. The MIHB method
uses the Broyden method for approximate Jacobian matrix, and its initial guess is given by the relevant
linear algebraic equation. Ju et al. [65] proposed an efficient Galerkin averaging-incremental harmonic
balance (EGA-IHB) method. It is based on FFT and tensor shrinkage. The integral is calculated by
multiplying a constant tensor with a vector of Fourier coefficients, which reduces the calculation cost
of the integral term and has better robustness.

2.4 Alternating Frequency-Time Harmonic Balance Method
Although the IHB-DFT method has dramatically simplified the derivations of algebraic equa-

tions, the incremental procedure still causes some symbolic operations. It reduces the generality of
the method since additional derivation and coding are required for a new system. Therefore, some of
the latest methods abandon the incremental process, such as the AFT-HB, TDC and HDHB methods
introduced next. The main idea of the AFT-HB method was first proposed by Cameron et al. [28].
It is realized that the nonlinearities can be accurately evaluated in the time domain and transformed
back into the frequency domain, to form a set of nonlinear equations which can be solved by NAEs
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solvers [76]. The AFT-HB method uses DFT/IDFT technique to convert the Fourier coefficients to
and from the time domain quantities. That is

r̂N = E∗r̃M , (14)

where r̃M = [r̃0 r̃1 . . . r̃M−1]T. r̃k = r(tk), k = 0, 1, . . . , M −1 is the time domain quantity at collocation
point tk. The transformation matrix E∗ corresponding to the DFT is

E∗ = 2
M

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
2

· · · 1
2

cos(ωt1) cos(ωt2) · · · cos(ωtM)

sin(ωt1) sin(ωt2) · · · sin(ωtM)

cos(2ωt1) cos(2ωt2) · · · cos(2ωtM)

sin(2ωt1) sin(2ωt2) · · · sin(2ωtM)
...

...
. . .

...
cos(Nωt1) cos(Nωt2) · · · cos(NωtM)

sin(Nωt1) sin(Nωt2) · · · sin(NωtM)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

The superscript “∗” on the right is only used to distinguish the forward and inverse of the Fourier
transform. Correspondingly, the IDFT transformation matrix E is

E =

⎡
⎢⎢⎢⎣

1 cos(ωt1) sin(ωt1) · · · cos(Nωt1) sin(Nωt1)

1 cos(ωt2) sin(ωt2) · · · cos(Nωt2) sin(Nωt2)
...

...
...

. . .
...

...
1 cos(ωtM) sin(ωtM) · · · cos(NωtM) sin(NωtM)

⎤
⎥⎥⎥⎦ . (16)

Thus, Eq. (5) can be written as

E∗r̃M(Ex̂N, EωDx̂N) = 0, (17)

or

E∗r̃M(x̃M , EDE∗ωx̃M) = 0. (18)

Eq. (17) is the AFT-HB algebraic equation. It is necessary to keep time-frequency transform when
solving Eq. (17), as shown in Fig. 2. The AFT-HB method converts the Fourier coefficients into time
domain quantities, avoiding numerous symbolic operations and significantly improving efficiency. In
addition, this conversion makes the nonlinear term r not have to be a polynomial function [74], which
expands the applications. The AFT-HB method has been successfully applied in various physical
systems, such as mechanical rotor systems [77–79], nonlinear oscillator systems [80,81], piezoelectric
mechanical systems [82] and ground shaping systems [83], etc. For instance, Detroux et al. [84] applied
the AFT-HB method for the computation of periodic solutions and their bifurcations in codimension-
2 parameter space.
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Figure 2: Direct iteration implementation of the AFT-HB method and the HFT method

Guillen et al. [85,86] proposed a hybrid frequency-time domain (HFT) method. As a variant of
the AFT-HB method, the difference lies in the position where the two jump out of the iteration and the
corresponding judgment conditions, as shown in Fig. 2. Poudou et al. [76,87] used the HFT method
to analyse the dynamics of complex structures with dry friction dampers and noted that the method
is directly applicable to more realistic structures found in the turbomachinery industry.

Fig. 3 shows the illustration of the HB, IHB, IHB-DFT and AFT-HB methods. The main
difference between the IHB-DFT and the AFT-HB method is the incremental procedure, which
causes that the AFT-HB algebraic equation is nonlinear however it is linear in the IHB-DFT method.
In addition, the DFT technique is applied for the calculation of the Jacobian matrix in the IHB-
DFT, while the replacement of nonlinear terms in the AFT-HB. As a result, under the condition of
polynomial nonlinearities (details are given in Section 3.3), the IHB-DFT method is equivalent to the
IHB method, while the AFT-HB method is proved as a time domain identity of the HB method.
Considering the above differences, it is necessary to distinguish these two methods for accurate
cognition.

Figure 3: Comparison of the HB, IHB, IHB-DFT and AFT-HB methods
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2.5 Time Domain Collocation Method
The derivation and calculation can be further simplified if the time-frequency domain transform

is avoided. That is, all calculations are done in the time domain. The TDC method (also known as
trigonometric collocation method [40]) is a representative method of this idea [29,30]. This method
also uses Fourier base functions as trial functions. However, Dirac delta functions are used as test
functions. Thus,
1
T

∫ T

0

δ(t − tk)rn(x̂N, t)dt = 0, k = 0, 1, . . . , M − 1. (19)

Dirac delta functions have the following properties:

δ(t − tk) =
{

0, t �= tk

∞, t = tk
,

∫ T

0

δ(t − tk)dt =
{

1, tk ∈ [0, T ]
0, tk /∈ [0, T ] . (20)

Eq. (19) can be written as

r̃M(Ex̂N, EωDx̂N) = 0. (21)

Eq. (21) is the TDC algebraic equation. It means the residual rn is a zero vector at collocations
over a period. Residuals and unknowns in the TDC method are all time domain quantities without the
need for time-frequency domain transformation. Thus, it is regarded as a full-time domain method.
Since the trial functions are inconsistent with the test functions, the TDC method is generally not
the Galerkin method. It is called the pseudo-spectral method in much literature to emphasize its
difference from the Galerkin method [40]. The TDC method has been applied to the solution of many
problems because of its intuitive, simple form and clear physical meaning. For example, Fornberg [88]
investigated the problem of 2-DOF elastic seismic modelling. He found that the computing speed of the
TDC method can reach hundreds of times that over of the finite difference method. Elschner et al. [89]
solved the Symm integral equation; Dai et al. [34,36] analysed the Duffing equation and the binary
airfoil model; Yue et al. [90] applied the TDC method to solve the periodic orbit of the relative motion
of the spacecraft.

It is worth noting that Eq. (21) is a well-posed equation system with M = 2N + 1. When M >

2N + 1, it is overdetermined and is commonly satisfied in only a least-squares sense. Dai et al. [34]
named the overdetermined version the ETDC method and gave the specific computing steps. The
approximate solution x̂∗

N for x̂N makes r̃M(Ex̂∗
N, EωDx̂∗

N) = R �= 0, so that x̂∗
N minimize the square

error, RTR. The Einistein summation convention applies herein. To minimize RTR requires
∂

∂x̂∗
N

RTR = ∂ r̃M

∂x̂∗
N

r̃M = BTr̃M = 0. (22)

Eq. (22) is the ETDC algebraic equation. The dimension of the Jacobian matrix B of the
collocation resulting system is M × (2N + 1), and R is M × 1. It is obvious that the ETDC algebraic
equation is extended from the original TDC by multiplying BT on the left of r̃M . For convenience, in
this paper, the abbreviations “TDC” and “ETDC” will refer to M = 2N + 1 and M > 2N + 1 cases,
respectively.
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2.6 High Dimensional Harmonic Balance Method
The HDHB method was first proposed by Hall et al. [22], also known as the time spectral method

[40]. Its principle is similar to that of the AFT-HB method, that is to replace the original HB algebraic
system (5) with simple time domain quantities. The difference is that, in order to ensure the reversibility
of DFT/IDFT x̃M = Ex̂N and x̂N = E∗x̃M , the HDHB method limits the number of collocation points
M = 2N + 1, at this time E and E∗ are both square matrices and are mutually inverse matrices. After
considering the above transformations, the HDHB algebraic equation can be written as

r̃M(x̃M , EDE∗ωx̃M) = 0. (23)

Eq. (23) is the HDHB algebraic equation. It has been proved that the TDC and HDHB methods
are equivalent [29]. Therefore, the HDHB method is a pseudo-spectral method rather than a spectral
method. It should be noted that the HDHB method is also equivalent to the AFT-HB method with
M = 2N + 1. Besides, the nonlinear frequency domain (NLFD) method developed by McMullen and
Jameson [91,92] is essentially identical to the HDHB method [33].

The HDHB method has been widely used, such as Duffing oscillator, Van der Pol oscillator, two-
DOF airfoil, etc. [31,93,94]. Meanwhile, since the HDHB algebraic equation is well-posed, it is easier to
solve implicitly. Thus, this method is most widely applied in the field of computational fluid dynamics
(CFD) [95,96], such as the unsteady flow of turbine blades [97–101], aeroelasticity problems [102–
104], etc. The HDHB method converts the unsteady periodic flow field solution into a steady flow
field solution at discrete time points. Iterative computations can be accelerated using local time steps,
multigrid methods, etc. At the same time, the implicit HDHB solver has also been developed [105–
107], which further expands the applications. Several existing studies suggest that the efficiency of the
HDHB solver can be further improved. For instance, Djeddi et al. [108] proposed a preprocessing
technique that can improve the convergence of the harmonic balance solver, reducing the number of
iterations by 50%–60% with the same accuracy. In conclusion, the HDHB method usually requires a
relatively small number of harmonics to accurately simulate steady-state unsteady flow [44,109]. At the
same time, solving transient oscillations is avoided, which dramatically saves the computational cost
[95]. Compared with traditional methods, it has obvious advantages. At present, the HDHB method
has been added to CFD software such as ANSYS CFX and SU2. Fig. 4 shows the CFD results of a
pitching NACA0012 airfoil using the HDHB method, whose angle of attack as a function of time such
that α(t) = αm + α0 sin(ωt). Governing equation is chosen as the Euler equation. The case has a free
stream Mach number of 0.6, a mean incidence αm = 2.89◦, α0 = 2.41◦, ω = 0.097, and the pitching is
about the quarter chord.

According to the existing literature results, the HDHB method presents instability when applied
to CFD. Hall et al. [22] found that the non-convergence of the flow field appeared after increasing
the number of harmonics and pointed out it is due to instability. Subsequent studies have been
devoted to addressing the stability problem of the HDHB method. van der Weide et al. [110] studied
the effect of excitation frequency and Fourier truncated order in the solver, giving the Courant-
Friedrichs-Lewy (CFL) number constraint for the HDHB solver. Gentilli [111] found that a reasonable
choice of the integration method or preconditioning can lead to a conditionally stable explicit format.
Thomas et al. [96] pointed out that the stability is determined by the computing scheme of the source
term, and systematically analysed various computing schemes and their corresponding stabilities.



1430 CMES, 2023, vol.137, no.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) (b)

(c) (d)

Figure 4: CFD results of a pitching NACA0012 airfoil using the HDHB method. (a) View of the block
structured O-grid with 161 × 100 nodes. (b) HDHB2 unsteady pressure contours. (c) Surface pressure
distributions with α = 2.89◦. (d) Unsteady lift coefficient results

3 Dealiasing Technique

Compared with other improvements to the HB method, it is obvious that the HDHB and TDC
methods are the most convenient because they not only avoid the complex symbolic operations but
also do not require continuous frequency-time domain transformations. However, neither the HDHB
nor the TDC is equivalent to the HB because of the aliasing phenomenon, which leads to non-physical
solutions. Besides, aliasing errors can cause influence on stability and convergence [112]. Many studies
have been devoted to addressing this issue. They can be divided into two categories: numerical-filtering
dealiasing and collocation-manipulating dealiasing. Recent studies have shown that the collocation-
manipulating dealiasing methods can completely eliminate the aliasing of polynomial nonlinearities,
and are therefore the more efficient approaches. In this section, dealiasing techniques have been fully
discussed, including some recent advances and challenges that still exist.
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3.1 Non-Physcial Solutions Caused by Aliasing Phenomenon
The concept of aliasing has been proposed as early as the last century. Intuitively, the cause of

aliasing is the pollution of low-order harmonics by high-order harmonic components [31,36], as shown
in Fig. 5. The time domain responses of high-order and low-order harmonics cannot be distinguished
at the collocation points. Thus, the coefficients of discrete Fourier series are calculated inexactly.
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Figure 5: Illustration of aliasing. (a) cos(2t) → cos(t). (b) − sin(4t) → sin(t). (c) sin(6t) → sin(t). (d)
cos(8t) → cos(2t)

Aliasing often leads to very serious non-physical solution problems [29,31,36]. We solved the
Duffing Eq. (7) using the HDHB and the HB methods for comparison. Take N = 2 as an example,
the Fourier coefficients of nonlinear term x3 computing by HB2 are
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When using the HDHB2, the Fourier coefficients become

f̂HDHB =
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It reveals that the HDHB2 system contains all terms in the HB2 system, plus some additional
terms, which cause non-physical solutions [31]. Fig. 6 gives the comparison of the amplitude-frequency
response curves of the Duffing equation. The predictor-corrector method (PreCo, details are presented
in Section 4.2) was used to compute the solution branch based on the open source tools NLvib 1.3
[113]. The initial solution point of continuation was selected as the HB solution at ω = 0.01 (or
ω = 3.00 for backward continuation). Taking the HB curve as a benchmark, it can be seen that the
HDHB results deviate from the benchmark. As shown in Figs. 6a and 6b, the HDHB method cannot
compute the solution branch accurately, and it causes many non-physical solutions with N = 1, 2.
When N = 3, a large amount of non-physical solutions occurs around range ω ∈ (0.25, 1).
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Figure 6: Comparison of the amplitude-frequency response curves of the Duffing equation ẍ + 0.2ẋ +
x + x3 = 1.25 sin(ωt) computed by the HDHB and HB methods. (a) N = 1. (b) N = 2. (c) N = 3

Next, we consider high-order cases. Fig. 7 gives the computing results with truncated order N as
4 to 9. We choose the frequency lies in the range [0.01, 1.00] because the main difference between the
results of the HDHB and HB are gathered here, as shown in Fig. 6c. As the truncated order increase,
the results of the HDHB and HB become more consistent, which means that the continuation result
of the high-order HDHB is reliable and increasing the number of harmonics can reduce the effect
of aliasing, which is consistent with [31]. However, it is only true in some special cases. Through
numerical experiments, we found that the HDHB continuation results are credible if and only when
the initial solution point of continuation is in the lower frequency part. In fact, the HDHB algebraic
equation remains a lot of non-physical solutions and not all of them can be obtained by continuation.
Fig. 8a shows the Monte Carlo simulation of the HDHB and the RHB methods with N = 3. That
is, initial conditions are randomly generated for numerous computations to determine the probability
of converging to any particular solution. It can be found that there is no non-physical solution of the
HDHB method when the frequency ω < 0.5. When the initial continuation point is selected with a
larger frequency, the HDHB continuation procedure is often difficult to carry out. The initial estimates
given often fail to converge to the correct solution branch. Besides, as N increases, the non-physical
solution phenomenon of the HDHB method becomes more and more obvious, as shown in Fig. 8b.
This makes the limitation of the HDHB’s initial continuation point selection more stringent. However,
the HB method does not suffer from non-physical solutions, and the initial continuation point can be
selected arbitrarily.
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Figure 7: Amplitude-frequency response curves with high truncated orders. (a)–(f) N = 4, 5, . . . , 9
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Figure 8: Statistical distribution of solutions by the HDHB method based on the Monte Carlo
simulation. (a) The number of non-physical solutions of HDHB3 in the frequency range [0.1, 3]. (b)
Variation of the number of non-physical solutions with the number of harmonics at ω = 2.0

3.2 Numerical-Filtering Dealiasing Methods
A series of studies have been devoted to dealing with aliasing based on numerical-filtering, where

the more effective ones are the truncated polluted harmonics (TPH) and the time spectral viscosity
(TSV) methods [33]. The TPH method was first proposed by Orszag [114]. He developed a two-
thirds rule and demonstrated that truncating all the polluted harmonics will remove aliasing terms
for systems containing quadratic nonlinearities. That means zeroing the Fourier coefficients for all
orders greater than a cut-off order nc. Specifically, the relationship between the cut-off order nc and
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truncated order N is given by nc ≤ 2N/3. Orszag’s conclusion was generalized by LaBryer et al. [32]
to all polynomial nonlinear systems, resulting in the so-called one-half rule. That is
nc

N
≤ 2

φ + 1
, (26)

where φ is the highest degree of nonlinearity. The proposers did not assign a specific name to the
relationship (26), and “one-half” was derived from the Duffing equation with φ = 3. This paper uses
the name “one-half rule” to refer to this relationship between nc, N and φ. This rule can be regarded
as a Fourier coefficients filter that can be written as

x̂f
N = G(ns)x̂N, (27)

where G(ns) is commonly referred to as a low-pass Fourier filter or transfer function. ns is the scaled
order, ns = πn/N introduced for convenience, n ∈ [0, N]. For the Duffing Eq. (7), it becomes

G(ns) =
{

1, for ns ≤ π/2
0, for ns > π/2 . (28)

Complete aliasing removal can be accomplished by filtering all orders that are polluted with non-
physical terms. However, sharp cut-off functions may cause the algebraic system to be susceptible to
the Gibbs-type phenomenon. Hou et al. [115] proposed a Fourier smoothing method to gradually
damp out the highest frequency Fourier modes by choosing G(ns) to be

G(ns) = e−α(ns/π)m , (29)

where α and m are parameters that need to select properly. Fig. 9 shows the comparison of sharp
cut-off and smoothing functions with α = 36 and m = 20. This scheme is a compromise between
dealiasing and accuracy since the dealiasing occurs simultaneously with the filtering of coefficients of
the true solutions. On this basis, LaBryer et al. [32] designed a temporal filter to improve computing
efficiency. The TPH method performs well when used to solve Duffing equation. However, a serious
problem is that it may not guarantee both the accuracy of the solution and the efficiency of dealiasing
because of the lack of theoretical support.
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Figure 9: Transfer function profiles for the frequency domain filtering schemes [32]
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The idea of vanishing spectral viscosity concept was first proposed by Tadmor et al. [116–118] to
damp the high-frequency content for retaining solution accuracy. McMullen et al. [92] used the TSV
to coarser meshes in their multigrid cycle. Huang et al. [33] first suppressed the aliasing in the HDHB
method by introducing the TSV, which improves the computational accuracy of the HDHB-CFD
solver. That is to add a second-order TSV term to the Eq. (23) so that

r̃M(x̃M , EDE∗ωx̃M) = ω2D2x̃M , (30)

where the expression of ω2D2 can be found in [33]. The extent of the vanishing spectral viscosity in
controled by the Fourier cut-off function ρn and it is taken to be

ρn =
{

0, if n ≤ p
1, if n > p , n ∈ [0, N]. (31)

p is the cut-off number of harmonics. A first-order accuracy can be obtained with p = 0 and
spectral accuracy with p = N. The TSV method is similar to the TPH method for both of them filter
the high-order coefficients in the HDHB solution [112].

The above methods can reduce the influence of aliasing errors and effectively suppress the non-
physical solutions based on the idea of numerical-filtering. However, they reduce the computing
accuracy because some meaningful parts of the true solution are filtered out, and its validity cannot be
guaranteed when dealing with other systems. Meanwhile, the efficiency of these dealiasing techniques
is only guaranteed at the numerical level with no theoretical support. Researchers were gradually
turning to collocation-manipulating methods to obtain more reliable results.

3.3 Sampling Theorem and Oversampling
A natural thought is whether the aliasing phenomenon can be avoided by increasing the number

of collocation points. Dai et al. [34] tried to eliminate the non-physical solutions by using the
ETDC method. Statistical numerical simulation results illustrated that the probability of non-physical
solutions decreases even to zero as more collocation points are chosen. However, the ETDC method
uses the least square method to deal with the overdetermined equations caused by more than 2N + 1
collocations, which is essentially a numerical dealiasing technique, and is no relevant theory to guide
the choice of the collocation points. They used 20 collocation points to eliminate the non-physical
solutions of Duffing equation introduced by the 2-order HDHB approximation, which is not general.

An ingenious attempt to overcome aliasing is the combination of the AFT-HB method and
sampling theorem. Sampling theorem was first proposed by Shannon [35] and developed as one of
the most important fundamental theorems in the field of signal processing. The theorem is described
as follows:

Theorem 3.1 Sampling theorem. If the function f (t) = f (t + T) is a Fourier series with period
T , i.e.,

f (t) =
k=N∑

k=−N

f̂ (k)eikωt, (32)

with truncation order N, i = √−1 is the imaginary unit. The DFT process

f̂ (n) = 1
M

M−1∑
n=0

f (tk)e−in 2π
M k, n = −N, . . . , N, (33)

gives exactly the Fourier coefficients for M ≥ 2N + 1.
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According to the sampling theorem, when the sampling frequency is greater than twice the
maximum frequency of the signal, the Fourier coefficients can be completely reconstructed without
aliasing error. For Eq. (1) in this paper, if r is a polynomial function of x and ẋ, it can be known from
the convolution theorem that the maximum order of the Fourier series formed by r is φN. Thus, the
number of collocation points M should satisfy M ≥ 2φN + 1 to keep the DFT process r̂N = E∗r̃M an
identity. Combining the sampling theorem with HB-like methods yields some valuable properties. The
IHB-DFT method is equivalent to the IHB method under the condition of polynomial nonlinearities,
and the AFT-HB method is a frequency-time domain identity of the HB method. The latter provides
an efficient way to dealiasing. Shown in Fig. 10 are the Monte Carlo simulation results of the Duffing
Eq. (7) computed by AFT-HB2 and HDHB2 at ω = 2.0. At this frequency, the Duffing equation has
three physical solutions corresponding to the upper, lower and unstable branches, as shown in Fig. 1b.
What can be seen is that the AFT-HB method eliminates non-physical solutions caused by the aliasing
in the HDHB method.
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Figure 10: Monte Carlo simulation results of the Duffing equation computed by AFT-HB2 and
HDHB2 at ω = 2.0. (a) Results of the AFT-HB. (b) Results of the HDHB

However, the sampling theorem is oversampled. That is, the number of collocation points of
the AFT-HB method is excessive. Table 1 shows the non-physical solutions computed by the AFT-
HB method using the different number of collocation points. Lower number of collocation points
can obtain only physical solutions, which means that M ≥ 2φN + 1 is unnecessary. Excessive
collocation points will lead to the oversampling phenomenon that imposes an additional burden on
the computation, especially when the polynomial power of r is high, or the truncated order N of the
Fourier series is large. The practical application value of the AFT-HB method will be significantly
reduced if hardware facilities are difficult to achieve such high-frequency sampling. It is possible that
there is a value that serves as a cut-off for whether the solution behaves well or not (whether there is a
possibility of non-physical solutions).

Table 1: Numbers of non-physical solutions computed by the AFT-HB method using the different
numbers of collocation points

Truncated order Collocations and solutions

N = 2 Num 5 6 7 8 9 10 11 12 13
Non-physical
solutions

20 0 0 0 0 0 0 0 0

(Continued)
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Table 1 (continued)

Truncated order Collocations and solutions

N = 3 Num 11 12 13 14 15 16 17 18 19
Non-physical
solutions

0 8 0 0 0 0 0 0 0

N = 4 Num 17 18 19 20 21 22 23 24 25
Non-physical
solutions

0 0 0 0 0 0 0 0 0

Note: Num: number of collocation points. Numbers in red: Corresponding number of collocation points of sampling theorem (M =
2φN + 1).

3.4 Rules of Aliasing
The key progress for dealiasing and anti-oversampling is the clarification of the rules of aliasing.

The rules of aliasing of the pseudo-spectal method had been pointed out by Boyd [119]. Previous
study demonstrated that the HDHB method is not a variant of the HB method, but a TDC method
(pseudo-spectral method) in disguise [29]. Therefore, the aliasing phenomenon of the HDHB/TDC
method can be explained with the help of the existing research on the rules of aliasing of the pseudo-
spectral method. Thus, the principle beneath the aliasing phenomenon of the HDHB/TDC method
can be illustrated as follows [36]:

Theorem 3.2 Rules of aliasing. If the interval α ∈ [0, 2π ] is discretized in time domain with uniform
grid spacing h, then the wavenumbers (frequency domain value of the truncated order) in the truncated
trigonometric series lies on the range n ∈ [−L, L], where L = π/h is the so-called “aliasing limit”
wavenumber. Higher wavenumbers (|n| > L) will be aliased to lower wavenumbers na:

na = n − 2mL, (34)

where na ∈ [−L, L], m is an integer.

The positive and negative of the wavenumbers correspond to the cosine and sine functions. The
absolute value of wavenumber is the truncation order of the Fourier series.

Rules of aliasing are crucial in describing the relationship between the HB method and
HDHB/TDC method. They are extracted from the analysis of the nonlinear term and therefore
applicable to all the dynamical systems in general [36]. Most importantly, dealiasing research has had
a basis of quantitative analysis instead of just staying at the level of numerical experiments. According
to rules of aliasing, the corresponding aliasing condition between high-order and low-order harmonics
can be clearly obtained. Specifically, for N = 2 and M = 2N + 1 = 5. The spacing h is 2π/5 and
the aliasing limit L is 2.5. The wavenumber that is greater than 2.5(2) will occur when the degree of
nonlinearity φ ≥ 2. Any wavenumber n beyond the range [−2.5, 2.5] is aliased to na = n−5m, such that
na ∈ [−2.5, 2.5]. For example, wavenumber −4 (sin(4t)) is aliased to 1 (cos(t)), as shown in Fig. 5b.

3.5 Reconstruction Harmonic Balance Method
Based on the rules of aliasing, some recent studies have shown that the number of collocation

points does not need to strictly follow the requirements of the sampling theorem. The HB method can
also be reconstructed when fewer collocation points [37,73]. The sampling theorem makes the Fourier
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series formed by r not aliased, that is, harmonics in the range [−φN, φN] will not be aliased by high-
order harmonics. However, the HB method only requires that the harmonics in the range [−N, N] are
accurately determined. Therefore, it is an oversampling state when M ≥ 2φN + 1. The RHB method,
based on equivalently reconstructing the HB method with pure collocations, has been developed to
conquer the famous aliasing problem without losing computation accuracy. It was developed on the
basis of a newly recovered dealiasing theorem illustrated as follows:

Theorem 3.3 Dealiasing. Suppose the nonlinear differential Eq. (1) is in polynomial-type nonlin-
earity with a degree of nonlinearity φ. Then, the aliasing phenomenon can be eliminated if the number
of collocation nodes in the RHB method satisfies

M ≥ (φ + 1)N + 1. (35)

where N is the truncation order of the Fourier series.

To prevent high-order harmonics from being aliased in the range [−N, N], the number of
collocation points M needs to satisfy M ≥ (φ+1)N+1. The method corresponding to this collocation
strategy is the so-called RHB method. Its algebraic equation is consistent with the form of Eq. (17),
that is

E∗r̃M(Ex̂N, EωDx̂N) = 0, (36)

where the only difference lies in the number of collocation points M. Fig. 11 shows the computing
process of the RHB method. It can be seen that the RHB method also requires a continuously
frequency-time domain transform, which is similar to the calculation flow of the AFT-HB method.
However, based on the more advanced dealiasing theorem, the RHB method provides a new idea to
decrease the limitation of the number of collocation points dramatically. Fig. 12 shows the illustration
of aliasing in the frequency domain of the HDHB, RHB and AFT-HB methods. For the HDHB
method, the higher wavenumber is aliased to a lower wavenumber in the range [−N, N], which is the
computed range of the HB method. For the RHB method, the aliased lower wavenumber is “pushed”
out [−N, N] thanks to more collocation points. Although the higher wavenumber in [N, φN] cannot
be distinguished from wavenumbers lies in [−φN, N], the calculation will not be affected because of
the precise calculation of Fourier coefficients in [−N, N]. However, the AFT-HB method takes more
collocations so that oversampling phenomenon occurs.

There is an important equivalent identity r̂N ≡ E∗r̃M holds when M satisfies Eq. (35) [37], as
described below:

Theorem 3.4 Conditional equivalence. If number of collocation points M, truncated order of
harmonics N and degree of nonlinearity φ satisfy M > (φ + 1)N, then the RHB method and the
HB method are equivalent.

Dai et al. [37] found that the degree of aliasing is determined by an “aliasing matrix”. As the
number of collocation points increases, the non-zero elements in the aliasing matrix gradually decrease.
When the number of collocation points satisfies the Eq. (35), the aliasing matrix is an all-zero matrix.
Shown in Fig. 13a is the aliasing matrices with N = 3 and φ = 3. The number of collocation points was
selected as 7, 9, 11 and 13, respectively. The non-zero elements were marked as orange, implying that the
harmonics correlated by these elements were mixed. It can be seen that the non-zero elements gradually
decrease with the addition of collocation nodes. The corresponding amplitude-frequency response
curves are given in the Figs. 13b–13e. It shows that computing errors occur if the number of collocation
points is insufficient. Once M = (φ+1)N+1, the RHB method produces almost the same result as the
HB method. Solutions are confined to the physical ones once the minimum collocations are satisfied,
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otherwise, non-physical solutions may occur [37]. Meanwhile, the RHB method dramatically improves
computational efficiency because it reduces the number of collocation points required by the sampling
theorem. Fig. 14 shows the computing time of the AFT-HB method and its ratio to the RHB method
when dealing with cubic and quintic Duffing equations. It can be seen that the RHB method could be
more than 2–3 times faster once high-order harmonics are involved.

Figure 11: Computing flow of the RHB method

Figure 12: Illustration of aliasing and dealiasing of the HDHB, RHB and AFT-HB methods in
frequency domain

When r is in non-polynomial form, even a finite term of x makes r a Fourier series with infinite
non-zero terms. Fortunately, we can use the recast technique [51,120] to deal with rational fractional
and basic transcendental functions type nonlinear systems. However, there is a lack of relevant theory
for dealiasing general nonlinear systems especially non-smooth cases. Currently, the sampling rate is
usually given by experience or trial calculations [40]. According to the FFT theory, it is generally taken
as a positive integer power of 2, to pursue O(M log M) operations [121].
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Figure 13: Variation of the aliasing matrix and its impact on computing results. (a) Illustration of the
aliasing matrix changing with the number of collocation points M from 2N + 1 to (φ + 1)N + 1. The
difference in the number of collocation points between each matrix is 2 (b)–(e). Amplitude-frequency
curves corresponding to the above aliasing matrices computed by the HB and RHB methods

(a) (b)

Figure 14: Computing time of the AFT-HB and RHB methods and the ratio between them when
dealing with cubic and quintic Duffing equations. (a) Cubic nonlinearity. (b) Quintic nonlinearity

3.6 Classifications of the HB-Like Methods
There are several approaches to classify the existing HB-like methods. Krack et al. [40] classified

some HB-like methods in their monograph. The classification standard resides in whether the
unknowns and/or the residual are formulated in time or frequency domain, as shown in Fig. 15. It
is worth noting that since the summary by [40] is not comprehensive, appropriate supplements were
made in this paper. It should be emphasized that the IHB-DFT, ETDC, AFT-HB and RHB methods
appear in two different blocks since the time domain unknowns are used to compute the nonlinearities
in the ETDC and AFT-HB/RHB, and Jacobians in the IHB-DFT. That is, unknowns are continuously
transformed in frequency and time domain. From this point of view, the HB-like methods can be
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divided into three types: frequency domain methods (HB, IHB), semi-time domain methods (IHB-
DFT, AFT-HB, ETDC) and full-time domain methods (HDHB, TDC).

Figure 15: The HB-like methods distinguished by the formulated domain of the unknowns and residual

In addition, the classification approach according to the type of test function is also an alternative.
Considering that all the existing HB-like methods are weighted residual approaches and Fourier series
are selected as trial functions. Substituting this approximation into the differential equation generally
leads to a residual term. There are two main ideas to deal with residual terms according to existing
methods. i) Spectral type, test functions are selected the same as trial functions, which leads to a
Galerkin method. The HB, IHB and IHB-DFT methods fall into this category, as does the RHB
method due to its equivalence with the HB method. ii) Pseudo-spectral type, Dirac delta functions are
used as test functions, which means residual to be zero at discrete time domain collocations. Pseudo-
spectral type is composed of the HDHB, TDC and ETDC methods. One of the difficult issues facing
this classification is the attribution of the AFT-HB method with the number of collocation points
M ≤ (φ + 1)N. Noticing the existence of the aliasing phenomenon, there is

E∗r̃M = r̂′
N �= r̂N, (37)

where r̂′
N is the aliased Fourier coefficients of the nonlinear term r. It is known that the aliased high-

order harmonic coefficients are mixed into the low-order harmonic coefficients, so the test function
can be regarded as a simple sum of high-order and low-order trigonometric functions. Take the AFT-
HB2 with M = 7 and x3 as an example. When the aliasing limit L = 3.5, higher wavenumbers ±4, ±5
and ±6 are aliased to lower wavenumbers ∓3, ∓2 and ∓1. For instance, the Fourier coefficient in r̂,

N

with wavenumber equals 1 is

1
T

∫ T

0

[cos(ωt) + sin(6ωt)] · rn(hx̂N, hωDx̂N, t)dt = 0, (38)

where cos(ωt)+sin(6ωt) is its test function. Thus, the AFT-HB method with the number of collocation
points M ≤ (φ + 1)N can also be regarded as a spectral type method.

Some HB-like methods can be unified based on different collocation points [37]. A schematic dia-
gram of the collocation-based harmonic balance framework is presented in Fig. 16. When the number
of collocation points M is in the range of [0, 2N + 1), there is no corresponding HB-like method.
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Since the harmonic balance algebraic equation corresponding to this range is underdetermined, the
number of collocation points is no sense. M = 2N + 1 corresponds to the HDHB/TDC method.
There are two forms when increasing the number of collocation points, one is to keep the residuals
as the time domain quantities (ETDC), and the other is to transform the time domain residuals to
the frequency domain using the DFT technique (AFT-HB). It should be noted that the algebraic
Eqs. (17) and (23) are equivalent when M = 2N + 1. M = (φ + 1)N + 1 corresponds to the RHB
method. When M ≥ (φ + 1)N + 1, the RHB/AFT-HB methods are equivalent to the HB method.
From the collocation-based harmonic balance framework, the HB-like methods except the HB method
can be divided into two categories: incremental-based and collocation-based. The IHB and IHB-DFT
methods can be regarded as incremental-based methods, and collocation-based methods for the AFT-
HB, HDHB/TDC and ETDC methods.

Figure 16: Illustration of the collocation-based harmonic balance framework that unifies the HB, the
AFT-HB, the RHB, the HDHB/TDC and the ETDC methods

4 Solving the Harmonic Balance Algebraic Equations

The harmonic balance procedure is not the final step before obtaining the periodic solution of
the nonlinear system. Essentially, the HB-like methods transform the original differential system (or
differential-algebraic system) into an algebraic system, which may have complex dynamics, such as
multiple or even infinity steady-state solutions [122,123]. Therefore, accurate and efficient methods for
solving harmonic balance algebraic equations are worth studying. In this section, different algebraic
solution strategies suited for solving harmonic balance algebraic systems have been reviewed. In some
cases, it is necessary to obtain the full response of the system with a certain parameter, which includes
a series of solution points. Therefore, we then focus on the continuation techniques. Finally, we have
discussed the existing convergence and stability theories to provide the necessary theoretical support
for the whole process of applying the HB-like methods.

4.1 Algebraic Equation Solution Strategies
The most commonly used methods for solving harmonic balance algebraic equations are the

Newton-Raphson method (NRM) and quasi-Newton methods [40]. The principle of the Newton
method is to expand residual of an algebraic system in a Taylor series around the current estimate state
xk, where k means the number of the current iteration step. Then, the next estimate xk+1 is determined
using xk and the Jacobian matrix corresponding to the partial derivatives of nonlinear functions to
states. It has a simple form and converges very quickly. However, it is sensitive to the initial guess
and cannot guarantee the accuracy of the solution if an approximately singular or ill-conditioned
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Jacobian is encountered [52]. Quasi-Newton methods extend the idea of the secant method in the one-
dimensional case to equation systems, such as Broyden method [124]. Ling et al. [71] pointed out that
it has better stability than NRM. The Broyden algorithm needs more iterations to converge, but since
there are fewer operations involved at each iteration, it turns out to be faster than the NRM. Moreover,
the convergence of the method is nearly always guaranteed, even with a poor initial guess [85]. It has
been successfully applied in the solution of harmonic balance algebraic systems [75].

Homotopy methods offer an alternative to computing all solutions of harmonic balance algebraic
systems. They are divided into two types: Linear homotopy [125] and polyhedral homotopy [126].
In addition, Groebner basis [123], rational univariate representation [127] and multiplication matrix
[128] methods are also alternative. There is a series of scalar homotopy methods based on the Newton
scalar homotopy function [129–133]. The scalar homotopy methods do not require the inversion of the
Jacobian matrix. They far outperform the NRM when the Jacobians are almost singular or severely ill-
conditioned. At the same time, the scalar homotopy methods are insensitive to initial guesses and can
handle overdetermined and underdetermined algebraic equations [52]. Therefore, these methods are
also effective methods for solving harmonic balance algebraic equations, such as the global optimal
iterative algorithm (GOIA) solver. Shown in Fig. 17 is the convergence history curves for the NRM
and GOIA solvers with different frequencies when solving Duffing equation using the RHB method.
The initial guess of the unknown Fourier coefficients was selected as zero, so that it gets farther from
the real solution as the frequency increases. When the frequency is less than 0.4, the NRM can obtain
residuals of the order of 10−16 in only a few iterations (about 10), while the GOIA requires hundreds
of iterations. However, when the frequency is greater than 0.5, the NRM falls to a stagnant point. The
GOIA becomes a better choice for its robustness. Therefore, trial calculations can be performed in
advance to select a NAE solver. This usually does not incur a large computational cost.

(a) (b) (c)

(d) (e) (f)

Figure 17: Convergence history for the NRM and GOIA solvers with different frequencies when
solving Duffing equation. (a)–(f). ω = 0.2, 0.3, . . . , 0.7

There are also two other approaches. One is to solve the harmonic balance algebraic equation by
pseudotime method [134]. That is to add a pseudotime derivative term so that the algebraic equation
becomes a differential equation, which can then be solved by the numerical integration methods [135–
137]. Attar [138] proved that the pseudotime method is equivalent to the Fourier enveloping method
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[139,140] when solving a class of periodic problems. The pseudotime method has obvious advantages
when calculating large nonlinear problems, such as CFD [22,44,100,108,109], because there is no need
to calculate the Jacobian matrix. However, it is extremely sensitive to initial guesses and converges
much slower than NRM, with high integration costs. Therefore, this method is not recommended
unless the Jacobian matrix is not available or involved [52]. Another way is to handle harmonic balance
algebraic equations by optimization procedures. In other words, regarding the solution of the harmonic
balance algebraic equation as an optimization problem. For instance, Thothadri et al. [141] combined
the harmonic balance principle and bifurcation theory techniques to form a constrained optimization.
Ahmadian et al. [142] used unconstrained optimization to identify the IHB algebraic equation for
modelling bolted lap joints. Liao et al. [143] derived a constrained maximization problem based on the
HB method and the Hill method to predict the maximum amplitude. Liu et al. [144,145] proposed a
time-domain minimum residual method with energy balance.

In addition to the influence of different methods, there are some methods to improve the accuracy
and convergence of the harmonic balance algebraic equation. For example, the sparseness of nonlinear
terms can be used to reduce the dimension of algebraic equations, reducing the workload of solving and
the impact of rounding errors [146,147]. Normalizing the system through preprocessing can improve
the convergence when the magnitude of the variables is large, or the dimensions are different [37,40].

4.2 Continuation of Solution Branches
When studying nonlinear responses, we are often interested in the parameter response of the

system, that is, the set of solutions corresponding to the free parameters (such as frequency). The
easiest way is the sequential continuation method, also known as parameter sweeping. This method
selects a series of parameters according to the magnitude, calculates the solution corresponding to the
first parameter, and then uses the solution as initial guess to calculate results of the next parameter,
and so on. It is simple to implement because the whole calculation process only needs to select the
initial value 1 or 2 times. However, at jump points, the algebraic equations may not converge due to
the distance from the previous step to the true solution. In addition, the solution branch between
two jump points, such as the unstable solution branch of Duffing equation, cannot usually be solved
directly. It is necessary to re-select the initial point on the solution branch for continuation, and there
is no guarantee that the subsequent results are still in the expected solution branch. Therefore, the
sequential continuation method is not reliable. In some cases, it can only be used for trial calculation
of the system.

One commonly used continuation technique is the PreCo method [40]. The main idea of the PreCo
method is to start from the current solution point and perform one-step estimation and prediction
forward (often along the gradient direction). Iterate over the predicted points until their distance from
the true solution satisfies the error limit. Use the corrected solution point as the initial solution point
for the next calculation. This process is repeated until the entire solution branch is computed [40,148].
The PreCo method is often used in combination with the AFT-HB method [40,82,149]. Another
commonly used method is the asymptotic numerical method (ANM) [150,151]. The ANM expands
the solution branch into a high-order Taylor series with respect to the arc length parameter, which
can be viewed as an alternative to the prediction step. Correction steps can be avoided by taking the
step size to be within the convergence range that satisfies the Taylor expansion [51,152]. The main
difficulty of the ANM is how to efficiently calculate the coefficients of high-order Taylor series. To
solve this problem, the algebraic system is usually reconstructed into a form containing only quadratic
nonlinear terms using auxiliary variables and augmented equations [149]. Compared with the PreCo
method, the ANM is more robust [153]. However, the ANM is only suitable for sufficiently smooth



CMES, 2023, vol.137, no.2 1445

nonlinear systems. When dealing with non-smooth mechanical systems, regularization methods are
usually required to approximate smooth systems [40]. Woiwode et al. [149] carefully compared the
PreCo method and the ANM with some concrete examples, and gave the recommended applications
of the two methods. Reference [154] summarized the use of control methods to compute geometrically
nonlinear equilibrium paths.

The above solution branch continuation method has been widely used in the solution of harmonic
balance algebraic equations [155]. For example, Cheung et al. [156] proposed an incremental arc-
length method combined with a cubic extrapolation technique to track the response curve, reducing
the number of iterations required for convergence. von Groll et al. [157] developed a numerical method
for the dynamics of rotor/stator interactions. The method determines the stability of the solution while
calculating the periodic solution, marks the turning and bifurcation points, and uses the continuation
method to track the solution branches. Cochelin et al. [51] proposed the recast technique to preprocess
the system into quadratic polynomial form before applying the HB method and then used the ANM
to solve it. The recast technique can be applied to a large class of nonlinear systems, reducing the
difficulty of deriving harmonic balance equations from these systems. In addition, Louis et al. [158],
based on their research, developed MANLAB, a Matlab software package for interactive continuation
and bifurcation analysis of nonlinear systems of equations. Combining the ANM with the dual
fundamental frequency HB method, Guillot et al. [159] achieved a continuation of the quasi-periodic
solution branch, where the two fundamental frequencies can be unknown and may vary along the
solution branch. Later, Guillot et al. [160] applied the method to the continuation of the periodic
orbits of delay differential equations. A smooth bifurcation tracking algorithm with mutual parameter
dependencies was developed by Mélot et al. [161]. This method is based on the HB method, combined
with the arc-length method and the boundary technique, to form a minimum extension system. It can
effectively determine the stable region of the system, which provides feasibility for the optimization of
tooth profile modification of large gear transmissions.

4.3 Non-Smooth Systems
It is worth mentioning that some studies focus on the application of the HB method in solving non-

smooth systems, which widely exist in mechanical engineering and electrical engineering disciplines,
etc. [162–164]. Non-smooth nonlinear terms in the equations can cause jump discontinuities of the
solution. That leads to the inapplicability of most of the integration methods and the HB-like methods
are way out of this phenomenon [40]. The AFT-HB method is one of the most widely used techniques
for solving non-smooth systems [165]. Nevertheless, considering the systems that can comprise distinct
states so that the nonlinear functions are only piecewise defined, the AFT-HB method inherently
induces inaccurate derivatives [164]. The combination of the ANM and HB-like methods may be an
efficient way to deal with non-smooth due to its computationally robust and efficient continuation of
the solution. However, for general nonlinearities, the quadratic recast is difficult, and the artificially
smooth procedure required by the ANM leads to inaccuracies compared to the non-smooth model
[40]. Up to now, the application of HB-like methods in general non-smooth dynamical systems still
needs further research. There are many studies devoted to applying various HB-like methods to various
specific problems.

Kim et al. [166] introduced generalizations of the classical HB method that result in superior
convergence rates and superior modes of convergence by one or more expansion functions that
possess the same degree of continuity as the exact solution. Petrov et al. [167] proposed an analytical
formulation of the HB method for piecewise linear friction interface elements for the analysis of
structural dynamical problems in the frequency domain. But this approach is only applicable to special
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types [164]. Krack et al. [164] extended this method to generic systems with an arbitrary number of
distinct states, such as structural dynamical systems with conservative and dissipative nonlinearities in
externally excited and autonomous configurations. This method allows for an analytical formulation
of the high-order harmonic balance method for the dynamic analysis of systems with distinct
states and is superior to the AFT-HB method in terms of accuracy and computational efficiency.
Miguel et al. [168] proposed a new method for approximating both the Bouc-Wen and LuGre hysteresis
loops analytically through a truncated Taylor series as a simple and effective smoothing procedure to
enable the use of the HB method. Pei et al. [169] applied the IHB and AFT-HB methods to the analysis
of the dynamics of the piecewise linear oscillator and confirmed the robustness of the HB-like methods.
Chen et al. [170] presented a study on the non-smooth system of a floating network structure using
the IHB method, especially the periodic solutions of bifurcation analysis.

4.4 Convergence Theories
Convergence is important for determining the scope of application of the HB-like methods. The

convergence theories of the Fourier series were systematically given by Dirichlet and Riemann 200
years ago. However, they do not converge at the same rate as the Fourier truncation [171]. The
research on the convergence of HB-like methods can be traced back to 1965. Urabe [58] proposed
the existence and convergence theorems of approximate periodic solutions of the HB method for non-
autonomous nonlinear systems. He studied ordinary differential systems in the form of r(x, ẋ, t) = ẋ−
v(x, t) = 0, and assumed that v(x, t) and its first derivative with respect to x are continuously derivable,
that is, v(x, t) is of class C 1 functions [40]. At the same time, he restricted the periodic solution to being
isolated. Under the above constraints, he proved that when the order of the HB method N → ∞,
the HB approximation converges to the exact solution uniformly and gave the error limit. Urabe also
proved that if an approximate periodic solution is obtained, there is a real periodic solution near the
approximation. The above conclusion was later extended to an autonomous system by Stokes [172].
However, Urabe did not give the rate of convergence.

In 1986, Tadmor [173] proved that if the true solution x(t) is an analytic function (a function
given locally by a convergent power series, which is a subset of C ∞ class functions), and the truncation
order is greater than a certain positive integer N0, the error between x(t) and its harmonic balance
approximation xn(t, ·) grows with the truncation order is exponentially convergent, i.e.,

‖xn(t, ·) − x(t)‖∞ < Ye−cN, N > N0, (39)

where Y > 0, c > 0. The values of Y, c and N0 are determined by the actual model. This shows that
increasing the order can improve the accuracy of the HB analysis. Fig. 18 shows the results of the RHB
convergence study of Duffing equations ẍ + 0.2ẋ + x + x3 = 1.25 sin(ωt) and ẍ + 0.2ẋ + x + x5 =
1.25 sin(ωt) at ω = 0.2. The result of HB200 is chosen as the benchmark. It is seen that the convergence
rate of the RHB method is exponential. Due to equivalence with the HB method, the RHB method
also follows the Eq. (39).

However, the lack of a pre-asymptotic convergence theorem reduces the practical significance
of the aforementioned research since the search for N0 still needs to rely on numerical experiments
or experience. In fact, researchers often use the results of numerical integration to calculate the
accuracy of harmonic balance analysis to judge whether the selected harmonic truncation order is
appropriate, which is very unfavourable for the practical application of HB-like methods. Furthermore,
no strict convergence theorem is available for systems of differential-algebraic or ordinary differential
equations, especially when there are discontinuous terms in the equations. In 2019, Krack et al. [40]
used numerical methods to point out that the HB method has a polynomial convergence rate when
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applied to non-smooth systems. Starting from the smoothness and continuity of the nonlinear term,
Wang et al. [171] systematically analysed and deduced the convergence rate of the HB method,
and established the harmonic balance error estimation theory for nonlinear systems with various
smoothness. In addition, they found that when the nonlinear term is discontinuous or has some
special low smoothness, the convergence speed of the HB method is different from that of the Fourier
truncation, and the former is usually slower than the latter. Currently, the research by Wang et al. is
the most complete and comprehensive work on the convergence of the HB method, which provides
theoretical support for the further development and practical application of the HB-like methods.
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Figure 18: Computing error varying with the adopted order for the RHB method. (a) φ = 3. (b) φ = 5

4.5 Stability Analysis
In all cases, even though the HB-like methods can find a solution, they do not account for the

stability of solution [174]. The stability of the solution can be determined using the Lyapunov-Floquet
transform [66,175–178]. When the transformation matrix has an eigenvalue whose modulus exceeds
1, instability occurs; when the eigenvalue is less than −1, there is a period-doubling bifurcation. At the
same time, the Floquet theory also gives the monodromy matrix from which the nature of bifurcation
is known [179]. However, this method is needed to work in the time domain to obtain the monodromy
matrix. The frequency method (Hill’s method) can be used to determine stability to avoid additional
time domain processing [174]. Perturbation is set to truncated Fourier form, which is similar to von
Neumann stability analysis [180]. Then, the equations are linearized and stability is judged from the
eigenvalues of the coefficient matrix. This method is described in the references [174,181,182]. Hill’s
method has two major drawbacks, i) redundant eigenvalues can lead to qualitatively wrong results; ii)
the problem dimension scales with the truncation order. There is no conclusion as to which method is
more suitable for the periodic solution computed by the HB-like methods.

Table 2: Performances of the different HB-like methods

HB IHB IHB-
DFT

AFT-
HB/RHB

ETDC HDHB/
TDC

Symbolic
operations

Complex Complex Moderate Concise Concise Concise

Algebraic
solving

Hard Easy Easy Moderate Moderate Moderate

Generality Poor Poor Moderate Good Good Good
Precision High High High High Moderate Poor
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5 Conclusions

Various HB-like methods were reviewed in this paper. First, the principles of these methods were
discussed. The HB-like methods were categorized into frequency domain and time domain methods.
Time domain methods were subdivided into semi-time and full-time domain methods. It is worth
emphasizing that an IHB-DFT method has been defined to correct the previous misunderstandings
of the AFT-HB method.

Next, the advantages and disadvantages of the HB-like methods were summarized. Table 2 gives
the performances of the representative HB-like methods. The collocation-based methods are the
most concise for derivation difficulty, which is evaluated by the number of symbolic operations. The
derivation of the IHB-DFT method is more difficult than the collocation-based methods due to the
introduction of the incremental process. For the difficulty of algebraic equation solving, the IHB and
IHB-DFT methods perform the best since they have linear algebraic equations due to the incremental
process. The HB algebraic system is hard to solve because of the existence of complex symbolic
expressions, especially in high-order cases. The generality of the HB and IHB methods is the worst
because of their re-derivations for new systems. As the DFT technique avoids the frequency domain
calculation of nonlinear Fourier coefficients, the IHB-DFT performs better than the IHB method. The
most general methods are the collocation-based methods. Their algebraic form does not change with
the problem under consideration. In terms of accuracy, the IHB-DFT, AFT-HB, and RHB methods
are the same provided that the rounding errors are ignored since they are equivalent to the HB (or IHB)
method. Specifically, rounding errors can cause slight differences, e.g., the RHB’s accuracy is slightly
higher than that of the AFT-HB method [37]. Affected by aliasing, the accuracy of the HDHB/TDC
and ETDC methods is lower. In general, the time domain methods have obvious advantages over the
frequency domain methods.

The dealiasing technique was also explored. Aliasing is one of the main challenges encountered
by the time domain methods because the non-physical solution phenomenon arising from aliasing
seriously affects the calculation accuracy. The RHB provides an efficient way to eliminate the non-
physical phenomenon pertaining to time domain methods, and it is essentially an optimal reconstruc-
tion of the HB method via equivalently replacing the harmonic balancing with simple time domain
collocations. The aliasing matrix gives a collocation-based framework to successfully incorporate the
HB, the AFT-HB, and the HDHB methods into a unity. Another taxonomy for the HB-like methods
has been developed based on this framework. In addition to the HB method, the existing HB-like
methods can be divided into incremental-based methods and collocation-based methods. This system
of classification helps to distinguish the semi-time domain methods IHB-DFT and AFT-HB. Finally,
the methods for analysing harmonic balance algebraic equations were briefly introduced.

Based on the detailed review, three future directions are suggested:

i) Aliasing is unavoidable in the case of non-polynomial nonlinearities [73]. Although the recast
technique can be used to deal with rational fractional and basic transcendental functions
type nonlinear systems [51], there is a lack of relevant theory for dealiasing general nonlinear
systems, especially non-smooth cases.

ii) Attributed to the ill-conditionedness of the resultant nonlinear algebraic equations, the accu-
racy of the existing methods shows a decreasing effect, especially when extremely high-order
harmonics are included. Therefore, advanced precondition techniques will be required to
improve the present HB-like methods.
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iii) Once the periodic response of the nonlinear system consists of incommensurable frequencies,
the single-frequency methods have to include a number of harmonics (hundreds) to approach
the real response, which severely restricts the efficiency of the algorithm. Methods for multiple
fundamental frequencies may be effective approaches to deal with this problem.
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