
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2023.028339

ARTICLE

An Effective Neighborhood Solution Clipping Method for Large-Scale Job
Shop Scheduling Problem

Sihan Wang, Xinyu Li and Qihao Liu*

School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China

*Corresponding Author: Qihao Liu. Email: lllqh@hust.edu.cn

Received: 13 December 2022 Accepted: 29 January 2023 Published: 28 June 2023

ABSTRACT

The job shop scheduling problem (JSSP) is a classical combinatorial optimization problem that exists widely
in diverse scenarios of manufacturing systems. It is a well-known NP-hard problem, when the number of jobs
increases, the difficulty of solving the problem exponentially increases. Therefore, a major challenge is to increase
the solving efficiency of current algorithms. Modifying the neighborhood structure of the solutions can effectively
improve the local search ability and efficiency. In this paper, a genetic Tabu search algorithm with neighborhood
clipping (GTS_NC) is proposed for solving JSSP. A neighborhood solution clipping method is developed and
embedded into Tabu search to improve the efficiency of the local search by clipping the search actions of
unimproved neighborhood solutions. Moreover, a feasible neighborhood solution determination method is put
forward, which can accurately distinguish feasible neighborhood solutions from infeasible ones. Both of the
methods are based on the domain knowledge of JSSP. The proposed algorithm is compared with several competitive
algorithms on benchmark instances. The experimental results show that the proposed algorithm can achieve
superior results compared to other competitive algorithms. According to the numerical results of the experiments,
it is verified that the neighborhood solution clipping method can accurately identify the unimproved solutions and
reduces the computational time by at least 28%.

KEYWORDS
Job shop scheduling; makespan; Tabu search; genetic algorithm

1 Introduction

Job shop scheduling problem (JSSP) is one of the most important combinatorial optimization
problems in the field of operational research and management science [1]. As one of the most
classic scheduling problems, it widely exists in the fields of aerospace, transportation, and automotive
processing. JSSP can be briefly described as a set of jobs to be processed on a set of machines, and
each job has to go through all machines in a certain order. It is a well-known NP-hard problem, when
the number of jobs increases, the difficulty of solving the problem exponentially increases. In the past
few decades, JSSP has been studied by a significant number of researchers. But even the most efficient
state-of-the-art method cannot ensure the acquisition of the optimal solution to the JSSP problem and

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2023.028339
https://www.techscience.com/doi/10.32604/cmes.2023.028339
mailto:lllqh@hust.edu.cn


1872 CMES, 2023, vol.137, no.2

becomes time-consuming as the size of the problem increases. Hence, there is still much work to be
done on addressing large-scale JSSP.

Currently, many effective methods use local search methods with embedded neighborhood
structures to enhance the local search capability of the methods, such as biased random-key genetic
algorithm (BRKGA) [2], Tabu search/path relinking algorithm (TSPR) [3], Tabu search algorithm
with a new neighborhood structure (TSED) [4], Knowledge-Based Multiobjective Memetic Algorithm
(MOMA) [5], and variable neighborhood descent hybrid genetic algorithm (VND-hGA) [6]. Some
of these algorithms are currently the most effective methods, such as BRKGA and TSPR, which
improved the upper bounds of benchmark instances. From the existing literature, the results of the
benchmark have been updated with the proposal of effective neighborhood structures, meaning that
the neighborhood structure of JSSP plays a crucial role in the local search method. During the
development of the neighborhood structure, it seems that the size of the neighborhood structure has a
significant impact on the efficiency of local search. Large-size neighborhood structures may reduce the
efficiency of the local search approach, while the properly-size neighborhood structure will improve the
efficiency of the method. For instance, in comparison with N4 [7], N5 [8], and N6 [9], the exploitation
and efficiency of neighborhood structure N1 [10] are inhibited because it spends a lot of time making
unfruitful moves [7]. On the other hand, after erasing several unfruitful movements from N4, N6
is more constrained than N4 and is currently one of the most effective and efficient neighborhood
structures [4]. Therefore, reducing the number of unfruitful moves to improve the quality of the
neighborhood solution set has a positive impact on improving the efficiency of the algorithm.

To obtain a more efficient local search procedure, a neighborhood solution clipping method
is proposed based on the domain knowledge of JSSP. It can reduce the computational cost of the
algorithm by avoiding the search for unfruitful moves. Besides, a genetic Tabu search algorithm with
neighborhood clipping (GTS_NC) is developed to solve large-scale JSSP. The main contributions of
this paper are as follows:

(1) This work mined the domain knowledge of the neighborhood structure of JSSP that provided
a deeper exploration of the characteristics of the JSSP.

(2) Based on the domain knowledge of JSSP, a neighborhood solution clipping method is devel-
oped to improve the efficiency of the local search method by avoiding the generation of unimproved
neighborhood solutions.

(3) A feasible neighborhood solution determination method is proposed to distinguish feasible
neighborhood solutions from infeasible ones.

The remainder of this paper is organized as follows. Section 2 reviews relevant literature. Section 3
is the problem formulation. Section 4 proposes the detail of GTS_NC. Section 5 shows the com-
putational results and comparisons. Finally, Section 6 summarizes the research and discusses future
research directions.

2 Literature Review

JSSP is a kind of typical machine scheduling problem that a huge amount of literature has
been published within the last six decades [1]. In a general way, algorithms for JSSP can be grossly
classified into two categories: exact algorithms and approximation algorithms. Since exact algorithms
have encountered difficulties in solving JSSP with more than 250 operations in a reasonable time,
approximation algorithms provide a quite good alternative for the JSSP [4]. More recently, swarm
intelligence and evolutionary algorithms are widely used to solve JSSP, such as genetic algorithm



CMES, 2023, vol.137, no.2 1873

[11,12], Differential evolution algorithm [13], Tabu search algorithm [3,4,14], Coral Reef optimization
[15], Memetic algorithm [16,17], Artificial bee colony algorithm [18], Artificial algae algorithm [19],
Jaya algorithm [20], and Hybrid algorithms [21–23].

From the existing literature, it appears that the increase in the size of the problem leads to
an increase in the computational consumption of the algorithm, thus reducing its efficiency of the
algorithm. Hence, local search methods based on neighborhood structure, which can obtain high-
quality local optimal solutions, have received increasing attention for their advantage in improving the
exploration capability of the algorithm. For example, a new neighborhood structure with adaptive GA
is developed in [22], in which crossover probability (Pc) and mutation probability (Pm) can be adjusted
based on the dispersion of the fitness of the population in the evolution. In [24], an artificial bee
colony algorithm adopted with five neighborhood structures is proposed for solving a profit-oriented
and energy-efficient disassembly sequencing problem. Mohanmmad et al. [25] developed a hybrid
algorithm that combines global equilibrium search, path relinking, and Tabu search to solve the JSSP.
The neighborhood structure N6 is applied in the Tabu search framework. Cheng et al. [26] presented
a Hybrid evolutionary algorithm which incorporated a Tabu search with neighborhood structure N7.
The approach identifies a better upper bound of two instances, SWV06 and SWV08. Nagata et al. [27]
presented a local search-based method that works in partial solution space for solving the JSSP. The
local search procedure applied with neighborhood structure N6 is performed in a partial solution
space where the current solution is represented as a partial schedule. Zobolas et al. [28] presented a
hybrid metaheuristic method consisting of differential evolution, variable neighborhood search, and
genetic algorithm.

In addition to the solving of JSSP, neighborhood structure-based local search methods are also
widely used to solve other types of scheduling problems. For example, Li et al. [29] developed a new
neighborhood search method for solving the permutation flow shop scheduling problem (PFSP).
Zhang et al. proposed a variable neighborhood search using four neighborhood structures is proposed
to solve the dynamic flexible job shop scheduling problems (DFJSP) [30]. Fan et al. [31] developed an
improved genetic algorithm with a modified k-insertion neighborhood structure for solving flexible
job shop scheduling problem (FJSP) considering reconfigurable tools with limited auxiliary modules.
They also proposed a Tabu search embedded with three neighborhood operators to solve FJSP [32].
In fact, every approach that improves the best-known solutions of famous benchmark instances
is developed with neighborhood structures, such as BRKGA [2], TSPR [3], and novel memetic
algorithms [16]. The BRKGA, which combined with neighborhood structure N5, improved the best-
known solution for 57 instances of well-known benchmarks. The TSPR algorithm, which is embedded
with neighborhood structure N7, improved the best-known solution for 49 instances of well-known
benchmarks. Besides, the neighborhood structure N7 is also used in the novel memetic algorithm
[16], which improved the best-known solutions for 3 instances of well-known benchmarks. Thus, it
is obvious that the neighborhood structures of JSSP play an essential role in the process of finding a
high-quality optimal solution.

The development of neighborhood structures can be summarized as follow. In 1992, it is verified
that the permutation of non-critical operations cannot improve the objective function and may create
infeasible solutions. Subsequently, researchers developed neighborhood structure N1, which brought
the attention of researchers to the study of the critical path of the scheduling solution. Combined
simulated annealing with N1, the algorithm can find a better optimal solution than other effective
approximation approaches at that time. As N1 includes a great number of unimproved moves, it is
observed that unless the job-predecessor of operation u or the job successor of operation v is on
the critical path, the interchange containing u and v cannot reduce the makespan [33]. This theory



1874 CMES, 2023, vol.137, no.2

strongly supports the development of neighborhood structures. For instance, neighborhood structure
N4 is developed based on N1 by erasing the interchange of adjacent pair of critical operations and
inserting an operation to either the front or the rear of the critical block. It combined with the Tabu
search algorithm improves the best-known upper bound for 5 of the seven open benchmark problems.
Similarly, the neighborhood structure N5 is designed based on N4, which only concerns the exchange
of operations in the front and the back of the critical block. Computational experiment shows it is
competitive in terms of computational consumption. To date, neighborhood structure N6 is the most
effective neighborhood structure. It is properly optimized on the basis of N4, which maintains an
abundant set of neighborhood solutions compared with N5. The algorithm embedded with N6 obtains
the optimal solution of LA27 (unknown before) and improved most of the TD and LA instances. After
the development of N6, researchers are still focusing on developing efficient neighborhood structures,
such as Zhang et al. [4] proposed neighborhood structure N7, which extends N6 by moving either the
first or the last operation of the critical block into the internal operation within the block. Zhao [34]
proposed a multi-operation joint movement neighborhood structure, it can exchange up to 3 pairs of
operations simultaneously. Xie et al. [35] developed a new neighborhood structure N8, which considers
the movement of critical operations outside the critical block on the basis of N7.

The development of neighborhood structure reveals that the size of neighborhood structure is
closely related to the quality and efficiency of local search. Large-scale neighborhood structure enables
adequate exploration of the solution space, but the computational cost increases at the same time.
Even the most efficient neighborhood structure N6 still contains a number of neighborhood solutions
that are generated by invalid operations movements. Therefore, it is necessary to develop a JSSP
domain knowledge-based method that can recognize and clip the unimproved neighborhood solutions
to improve the efficiency of the algorithm.

In summary, this research proposed an algorithm named GTS_NC for solving large-scale JSSP.
The details of the proposed method will be given in the following sections.

3 Problem Formulation

Job shop scheduling problem can be described as n jobs processed on m machines; each job has
to go through all machines in a certain order. A job’s processing on a machine indicates an operation
of the job, and its duration is a given constant. It is an NP-hard problem. The constraints of JSSP are
as follows: (i) the processing sequence of operations of each job is prescribed. (ii) each machine can
process at most one job at a time. (iii) each operation can be processed on at most one machine at a
time. The objective is to minimize the makespan.

It is useful to formulate JSSP with disjunctive graph G = (N, A, E) including node set N,
conjunctive arc set A (directed), and disjunctive arc set E (undirected) [4]. N is contained by all
operations nodes, a dummy start node s, and a dummy end node e. The directed arc (i, j) of A
shows the sequence constraints of operations where the length depends on the duration of operation
i. The selected direction of the arc (i, j) of E decides the processing order of jobs on each machine. S
denotes the set of selections of edge set E, which will instead of E get a solution Ds = (N, A∪S). A
feasible solution Ds corresponds to an acyclic set S, that no directed cycle exists in the directed graph.
Furthermore, if L(u, v) denotes the longest path from u to v, then the L(s, e) of Ds is equal to the
makespan of the schedule. Thus, in the disjunctive graph of JSSP, the objective function is to find the
acyclic set S that minimizes the longest path from s to e.



CMES, 2023, vol.137, no.2 1875

4 Proposed GTS_NC Method
4.1 Text Layout Neighborhood Solution Clipping Method

The neighborhood structure is a specific perturbation that can obtain a set of similar solutions.
It usually considers a pair of operations u and v processed on the same machine, and both of them
belong to the critical path of the solution (v processed after u). When u is moved right after v, we will
call the perturbation a forward interchange. When v is moved before u, we will call the perturbation a
backward interchange. As neighborhood structures focus on the design of movement rules, the lack of
control over the quality of neighborhood solutions reduces the local search efficiency. Therefore, this
paper proposes a neighborhood solution clipping method that can improve the efficiency of the local
search method by avoiding the generation of unimproved neighborhood solutions.

To demonstrate our properties clearly, related symbols are identified as follows: For any operation
u, denoting α(u) as the job-predecessor operation and γ (u) as the job-successor operation, respectively
[9]. Also, β(u) means the machine-predecessor operation, and δ(u) means the machine-successor
operation of operation u, respectively.

A neighborhood solution clipping method is well-designed in this section. We state these methods
with proof as follows:

Proposition 1. For feasible scheduling, if the movement between a pair of critical operations of a
solution cannot reduce the start time of at least one critical block, then the makespan of the solution
will not reduce.

Proof. Suppose there are n critical blocks in solution S, and the start processing time of each
critical block i is denoted as ci with length li, thus the makespan of S is equal to cn + ln. Solution S’
is obtained after the interchange of solution S. Since no critical block is advanced and the length li of
each critical block will not change after a within-the-block interchange. Therefore, the longest path of
S’ from s to e is at least equal to cn + ln, which means the makespan of S’ cannot be less than S.

Then we explore conditions, where an interchange on operation u and v is guaranteed, but cannot
reduce the makespan.

Proposition 1.1. For a feasible scheduling S, v is the first operation in critical block, if α(u) is
completed after the starting time of v, then the backward interchange of operation u before v cannot
reduce the makespan.

Proof. Suppose solution S’ is obtained after the backward interchange of S. The makespan of S
can be described as L(s, v) + pv + L(v, e) or L(s, u) + pu + L(u, e). Then move u to the front of v, the
start time of u is the completion time of α(u) due to the sequence constraints. Thus, the makespan of
S’ is max{L(s, v)’ + pv + L(v, e)’, L(s, u)’ + pu + L(u, e)’}. Where L(s, u)’ = L(s, α(u)) + pα(u), L(u, e)’
= pv + L(v, e)’, L(v, e)’ = L(v, e) − pu, so L(s, u)’ + pu + L(u, e)’ = L(s, α(u)) + pα(u) + pu + pv + L(v, e)
− pu = L(s, α(u)) + pα(u) + pv + L(v, e). Since α(u) is completed after the starting time of v in S, L(s, v)
≤ L(s, α(u)) + pα(u). Hence L(s, α(u)) + pα(u) + pv + L(v, e) ≥ L(s, v) + pv + L(v, e), which means a new
longest path is created and the makespan of S’ cannot be less than S confirms the Proposition 1.1 (see
Fig. 1).



1876 CMES, 2023, vol.137, no.2

Figure 1: The backward interchange of operation u

Proposition 1.2. For a feasible scheduling S, v is the last operation in critical block, if γ (u) processed
on the same machine before γ (v), then the forward interchange of operations u in critical block cannot
reduce the makespan.

Proof. Suppose solution S’ is obtained after the backward interchange of S. The makespan of S
can be described as L(s, v) + pv + L(v, e). Then move u right after v that obtain solution S’ which
makespan is max{L(s, v)’ + pv + L(v, e)’, L(s, u)’ + pu + L(u, e)’}, where L(s, v)’ = L(s, v) − pu,
L(v, e)’ = L(v, e), L(s, u)’ = L(s, v)’ + pv, because γ (u) processed on the same machine before γ (v), so
the processing of γ (u) is delayed due to the delay of u, L(u, e)’ ≥ pγ (u) + L(v, e). Hence L(s, u)’ + pu

+ L(u, e)’ ≥ L(s, v) − pu + pv + pu + pγ (u) + L(v, e) = L(s, v) + pv + pγ (u) + L(v, e) ≥ L(s, v) + pv +
L(v, e). It means a new operation is added and the makespan of S’ cannot be less than S confirms the
Proposition 1.2 (see Fig. 2).

Figure 2: The forward interchange of operation u

Both proposition 1.1 and 1.2 can be used to decrease the size of N6 and N7. In addition, consider
N7 has more perturbations than N6 with the forward interchange of the first operation and the
backward interchange of the last operation in each critical block, another two propositions should
be concerned as follows.



CMES, 2023, vol.137, no.2 1877

Proposition 1.3. For a feasible schedule S, u is the first operation in the critical block, if α(δ(u)) (if
it exists) is completed after the starting time of u, then the forward interchange of operation u cannot
reduce the makespan.

Proof. Suppose solution S’ is obtained after the backward interchange of S. After the backward
interchange of u, δ(u) will be the first operation of the critical block of S’. If α(δ(u)) (if it exists) is
completed after the starting time of u, the start time of the critical block will be delayed due to the
sequence constraints between α(δ(u)) and δ(u). Because the interchange will not change the length
of the critical block, all the critical blocks behind will be delayed. According to Proposition 1, the
makespan of S’ cannot be less than S (see Fig. 3).

Figure 3: The forward interchange of operation u

Proposition 1.4. For an active scheduling S, u is the last operation in the critical block, if γ (β(u))
(if it exists) is processed on the same machine before γ (u) (if it exists), then the backward interchange
of operations u in the critical block cannot reduce the makespan.

Proof. Suppose solution S’ is obtained after the backward interchange of S. After the forward
interchange of u, β(u) will be the last operation of the critical block of S’. If γ (β(u)) (if it exists)
is processed on the same machine before γ (u), all the operations between γ (β(u)) and γ (u) will
be added into the critical block containing γ (u), the start time of γ (u) will be delayed due to the
sequence constraint of β(u) and γ (β(u)). Considering no operation is removed from the critical path,
the makespan of S’ cannot be less than S (see Fig. 4).

Figure 4: The backward interchange of operation u



1878 CMES, 2023, vol.137, no.2

4.2 Feasible Neighborhood Solution Determination Method
The determination of feasible neighborhood solutions involves the efficiency of local search

methods because infeasible neighborhood solutions cannot provide a referable recommendation for
the scheduling scheme. In order to distinguish a feasible neighborhood solution from an infeasible
one, two propositions proposed by Balas et al. [9] are shown as follows:

Proposition 2. If two operations u and v to be performed on the same machine are both on the
critical path P(s, e), and L(v, e) ≥ L(γ (u), e), then a forward interchange on u and v yields an acyclic
complete selection.

Proposition 3. If two operations u and v to be performed on the same machine are both on the
critical path P(s, e), and L(s, u) + pu ≥ L(s, α(v)) + pα(v), then a backward interchange on u and v yields
an acyclic complete selection.

Although both of the propositions can ensure the feasible of the obtained neighborhood solutions,
it was found to be inadequate for obtaining all acyclic solutions. As shown in Fig. 5a, the scheduling
problem consists of 5 jobs and 4 machines (Ji,j means the j-th operation of job i). The critical path of
each solution is signed with red bold line. Solution S’ is a neighborhood solution of S by backward
interchange on J2,2 and J4,3. According to proposition 2, the backward interchange will lead to an
infeasible solution because the L(J4,3, e) = p4,4, L(J2,3, e) = p2,4, L(J4,3, e) ≤ L(J2,3, e). In fact, however,
the backward interchange corresponding to a feasible solution, and the Gantt chart of S’ is shown in
Fig. 5b. The reason is the length between the start node and end node to each operation cannot fully
map the sequential connection relationship of the operations. Therefore, in this paper, a new theorem
is developed to determine the feasible neighborhood solutions (see Fig. 6). For an operation u, we
define a front operation set FSu and back operation set BSu, separately. The FSu includes operation
u’s α(u), β(u), FSα(u), and FSβ(u) (if exits). The BSu includes operation u’s γ (u), δ(u), BSγ (u) and BSδ(u) (if
exits). Consider a feasible solution S:

Figure 5: A counter-example for proposition 2. (a) Gantt chart of solution S. (b) Gantt chart of
solution S’

Figure 6: Example of the back operation set BSγ (u) of an individual



CMES, 2023, vol.137, no.2 1879

Proposition 4. If a critical path P(s, e) containing u and v, and v /∈ BSγ (u), then move u to the back
of v yields an acyclic complete selection.

Proof. By contradiction: suppose there is a feasible solution S, if v /∈ BSγ (u) for operation u and v
on the critical path, then moving u to the back of v creates a cycle C in the disjunctive graph. Because
the interchange of u and v deletes the direct arc from u to v on the machine, creating a direct arc
(v, u) and a cycle, (v, u) ∈ C, there exists a path in Ds from u to v. Hence Ds exists a direct arc from u to
another operations l1, . . . ,lk connect with v. In this case, v must belong to BSγ (u) which is contrary to
the assumption.

Proposition 5. If a critical path P(s, e) containing u and v, and u /∈ FSα(v), then moving v to the front
of u yields an acyclic complete selection.

Proof. By contradiction: suppose there is a feasible solution S, if u /∈ FSα(v) for operation u and v
on the critical path, then moving v to the front of u creates a cycle C in the disjunctive graph. Because
the interchange of u and v deletes the direct arc from u to v on the machine, creating a direct arc
(v, u) and a cycle, (v, u) ∈ C, there exists a path in Ds from u to v. Hence Ds exists a direct arc from v to
another operations l1, . . . ,lk connect with u. In this case, u must belong to FSα(v) which is contrary to
the assumption.

The procedure of distinguishing feasible neighborhood solutions by existing method and the
proposed method is shown in Fig. 7.

Figure 7: The procedure of filtering feasible neighborhood solutions

4.3 Framework of the Proposed GTS_NC Algorithm
In this paper, the hybrid algorithm [36] is combined with the proposed neighborhood solution

clipping method for solving JSSP. The workflow and details of GTS_NC can be seen in Algorithm
1 which is composed of selection, crossover, mutation, and Tabu search. Each solution is encoded by
a vector whose size is equal to the total number of operations and generated randomly. Besides, two-
generation selection operators are adopted, an elitist selection scheme and a tournament selection
scheme. In the elitist selection scheme, the best pr×popsize solutions will be selected from solutions
randomly chosen. In the tournament selection scheme, a number of individuals (pt×popsize) will be
maintained through randomly chosen tn solutions from the population and keep the one with the
best fitness. Then, the crossover scheme contains precedence operation crossover (POX) and job-
based crossover (JBX) [36]. The mutation scheme contains swapping mutation and neighborhood
mutation methods [36]. The Tabu search algorithm [4] is adopted as local search algorithm. To enhance
the diversity of the Tabu search and avoid premature convergence of the algorithm, we improve the
Tabu search algorithm with a memory pool to save the best-unchosen neighborhood solution in each
iteration. In addition, a random solution will be generated if the size of the neighborhood solution set
is less than two. The workflow of the Tabu search algorithm is shown in Fig. 8.



1880 CMES, 2023, vol.137, no.2

Algorithm 1: Pseudocode of GTS_NC.
1: Initialization: Generate the initial population randomly
2: Set gen=1, gen is the current generation
3: Evaluation: Evaluate every individual in the population by the objective
4: While gen<maxGen do
5: // Select pr×popsize individuals in the population by elitist selection scheme
6: // Select pt×popsize individuals in the population by tournament selection scheme.
7: // Generate (1 − pr − pt)×popsize individuals by crossover operator POX or JBX with equal

probability
8: for i = 1 to popsize do
9: //Generate the individual indi by swapping mutation or neighborhood mutation with

probability pm

10: //Apply the improved Tabu search algorithm to improve the quality of indi

11: if (fitness(indi)<fitness(bestind)) then
12: Set bestind←indi and fitness(bestind) ← fitness(indi)
13: endif
14: endfor
15: gen← gen + 1
16: endwhile
17: return bestind

Figure 8: Tabu search workflow

5 Results and Discussion

In this section, three experiments are set to verify the proposed feasible neighborhood solution
determination method, the neighborhood solution clipping method, and the proposed GTS_NC
algorithm, respectively.



CMES, 2023, vol.137, no.2 1881

Experiment 1 compares the proposed feasible neighborhood solution determination method
with the state-of-the-art feasible solution definition method [4] according to the average quantity
of feasible neighborhood solutions obtained for each benchmark instance problem. Experiment 2
tests the effectiveness of the proposed neighborhood solution clipping method by the local search
algorithm. Experiment 3 tests the performance of the proposed GTS_NC algorithm by comparing it
with other algorithms. All the best solutions are recorded. The famous LA benchmark instance [37]
was adopted to evaluate the performance of the proposed algorithm. The objective of this paper is to
minimize makespan.

The proposed GTS_NC algorithm was coded in C++ and implemented on a computer with an
Apple M1 with 16.0 GB of RAM memory.

5.1 Parameters Setting
The parameters of GTS_NC are the same as their basic papers, respectively (see Table 1) [4,36].

Table 1: Parameter settings of GTS_NC

Parameter Value

RunTime 20
Max generation 200
Population 200
Pc (crossover rate) 0.9
Pm (mutation rate) 0.1
Pr (elitist individual rate) 0.005
Tournament size 2

The maximum iteration size maxTS was 10000 and a dynamic tabu list was used [4], which length
dynamically changed from Lmin to Lmax (Lmin = l, Lmax = [1.4 −1.5l], where if n ≤ 2m, then the
maximal extreme value Lmax = [1.4l]. Otherwise, Lmax = [1.5l]). The parameters of GTS_NC were shown
in Table 1 (n × m means the problem contains n jobs and m machines).

5.2 Experiment 1
To validate the performance of the suggested feasible neighborhood solution determination

method (denoted as FDM), it is compared with the basic version of the proposition proposed
by Zhang et al. [4]. The comparison is performed in terms of the average quantity of feasible
neighborhood solutions (Navg). The experimental can be described as follows.

Firstly, for each problem, 2000 feasible initial solutions were randomly generated, and their
neighborhood solutions were generated by neighborhood structure N7. Then, for each initial solution,
record the number of its feasible neighborhood solutions selected by feasible solution definition
methods. Finally, the average quantity of feasible neighborhood solutions for each problem was
compared to show the determination ability of each method. In particular, each selected neighborhood
solution was decoded to verify its feasibility.

The reported results are demonstrated in Table 2. The outcomes demonstrated that the proposed
method is more competitive than the proposition proposed by Zhang et al. [4] for all twelve benchmark



1882 CMES, 2023, vol.137, no.2

test problems. It means that the proposed feasible neighborhood solution determination method has
obvious advantages in mapping the JSSP.

Table 2: Average quantity of feasible neighborhood solutions in different methods

Instance n × m Zhang et al. [4] FDM Improvement (%)

Navg Navg

LA02 10 × 5 12.53 16.02 27.85
LA19 10 × 10 10.28 12.24 19.07
LA21 15 × 10 17.68 24.21 36.93
LA24 15 × 10 14.47 20.11 38.98
LA25 15 × 10 17.63 27.42 55.53
LA27 20 × 10 23.72 35.54 49.83
LA29 20 × 10 20.78 32.88 58.23
LA36 15 × 15 14.01 23.84 70.16
LA37 15 × 15 17.44 26.94 54.47
LA38 15 × 15 16.7 24.27 45.33
LA39 15 × 15 15.53 22.64 45.78
LA40 15 × 15 17.92 24.46 36.50
Note: Navg means the average quantity of neighborhood solutions selected by each method.

5.3 Experiment 2
To validate the performance of the proposed neighborhood solution clipping method, the Tabu

search embedded and unembedded neighborhood solution clipping method is compared. The widely
used neighborhood structure N6 was adopted here. LA instances which contain at least 150 operations
are considered in this paper. The maximum generation of Tabu search is 10000. Each of the problems
is tested 10 times independently.

The comparison results are demonstrated in Table 3. Table 3 represents, name of problem
instances, size of the problem that represents number of jobs × number of machines, the makespan
of the best known solutions (Cmax) obtained by TSN6 (TS unembedded with neighborhood solution
clipping method), the average makespan of the best known solutions (Cavg) obtained by TSN6, the
shortest (Tmin) and average computational cost (Tavg) of TSN6, and the values of the best known
solutions obtained by TSN6_NC (TS embedded with neighborhood solution clipping method).



CMES, 2023, vol.137, no.2 1883

Table 3: Comparison of neighborhood clipping method and Tabu search with neighborhood structure
N6

Problem n × m TSN6 TSN6_NC

Cmax Cavg Tmin Tavg Cmax Cavg Tmin Tavg

LA21 15 × 10 1058 1071.5 12.873 13.587 1055∗ 1080.6 7.938∗ 8.436
LA22 15 × 10 939 950.3 12.031 12.326 939 1921.9 7.504∗ 7.791
LA23 15 × 10 1032 1033.55 0.217 3.312 1032 1032 0.074∗ 0.925
LA24 15 × 10 949 966.75 9.759 10.231 949 1941.2 5.153∗ 7.274
LA25 15 × 10 992 1020.1 10.938 12.620 991∗ 1007.9 7.981∗ 8.239
LA26 20 × 10 1218 1225.6 1.738 16.268 1218 1220.55 0.676∗ 7.451
LA27 20 × 10 1265 1293.5 23.587 26.636 1254 1294.05 11.631∗ 14.209
LA28 20 × 10 1216 1233.25 10.026 24.869 1216 2484.76 3.987∗ 12.871
LA29 20 × 10 1208 1278.05 27.953 35.337 1207 1257.55 12.415∗ 15.199
LA30 20 × 10 1355 1440.65 2.272 23.709 1355 1429.2 0.818∗ 14.071
LA31 30 × 10 1784 1795.45 0.988 76.367 1784 1791.9 0.454∗ 30.468
LA32 30 × 10 1850 1876.1 1.350 192.550 1850 1866.55 0.763∗ 39.788
LA33 30 × 10 1719 1730.5 0.821 74.160 1719 1725.5 0.330∗ 16.326
LA34 30 × 10 1721 1785 3.506 264.340 1721 1782.55 0.738∗ 94.541
LA35 30 × 10 1888 1911.8 2.164 184.198 1888 1894.75 0.614∗ 33.777
LA36 15 × 15 1312 1322.5 29.655 33.615 1291∗ 1326.45 18.735∗ 22.052
LA37 15 × 15 1450 1466.35 28.503 32.613 1450 1465.45 16.312∗ 17.458
LA38 15 × 15 1236 1260.4 29.413 30.783 1220∗ 1265.43 14.828∗ 16.910
LA39 15 × 15 1251 1278.55 27.310 30.187 1251 1282.45 15.592∗ 16.746
LA40 15 × 15 1239 1248.95 27.681 31.167 1233∗ 1243.21 14.542∗ 17.184
Number of better
solutions

0 0 5 20

Note: The values marked with ∗ are the better results.

In Table 3, the bolded results are the optimal Cmax, others marked by ∗ are the better Cmax and better
Tmin. As shown in Table 3, the TSN6_NC obtained seven better optimal solutions than TSN6 (21, 25,
27, 29, 36, 38 and 40). Moreover, TSN6_NC gets 34 problems with lower computational cost. For
instance, TSN6 require 27.9 s on solving LA29, but TSN6_NC requires 12.4 s to get better solution.
The convergence curves of TSN6 and TSN6_NC are shown in Fig. 9. From the reported results in
Table 3, it is obvious that the suggested algorithm TSN6_NC produces more efficient results in terms
of best makespan and computational time. In Particular, the advantage of the proposed algorithm in
terms of computational time become more pronounces as the size of the problem increases, as shown
in Table 4. The obtained results show that proposed neighborhood solution clipping method produces
more efficiency results as compared to the Tabu search unembedded with it.



1884 CMES, 2023, vol.137, no.2

Figure 9: Convergence curves of the TSN6 and TSN6_NC for LA problems

Table 4: Comparison based upon average computational cost

Algorithm 15 × 10 15 × 15 20 × 10 30 × 10

TSN6 9.16 28.51 13.11 1.76
TSN6_NC 6.53 16 5.9 0.58
Improvement (%) 28.71 43.88 55.00 67.05

5.4 Experiment 3
To validate the efficiency of the proposed algorithm GTS_NC (applied with neighborhood

structure N6), LA instances that contain at least 150 operations are considered in this paper. The



CMES, 2023, vol.137, no.2 1885

obtained results are compared with the following significant approaches for solving JSSP as available
in the literature:

1. teaching-learning-based optimization (TLBO) algorithm [38],

2. upper-level algorithm (UPLA) [39],

3. genetic algorithm with improved local search techniques (mXLSGA) [11],

4. mXLSGA with Frequency Analysis (GIFA) Operator (GIFA-mXLSGA) [12],

5. the proposed approach unembedded with the neighborhood solution clipping method (GTS).

The comparison results with all the considered algorithms are depicted in Table 5. Table 5
represents the name of problem instances, the size of the problem, the upper bound of the problem,
the makespan value (Cmax) of the best solution obtained by each algorithm, the CPU time of GTS and
GTS_NC, and relative percentage error (RPE) with respect to Cmax. Here, PRE is calculated using the
following Eq. (1):

RPE = 100 × (Cmax − UB)/UB (1)

The reported results for LA instances for TLBO, UPLA, mXLSGA, GIFA-mXLSGA, GTS
and GTS_NC are shown in Table 5. From the reported results in Table 5, it is obvious that the
suggested algorithm GTS_NC produces more efficient results in terms of best makespan and RPE
in comparison with TLBO, UPLA, mXLSGA, GIFA-mXLSGA, and GTS. Besides, GTS_NC has an
obvious advantage in computational time.

Table 5: Comparison between GTS_NC and other approaches on LA instances

Problem UB TLBO (2013) UPLA (2019) mXLSGA
(2020)

GIFA-
mXLSGA
(2022)

GTS GTS_NC CPU time

Cmax RPE Cmax RPE Cmax RPE Cmax RPE Cmax RPE Cmax RPE GTS GTS_NC

LA21 1046 1046 0.00 1052 0.57 1059 1.24 1052 0.57 1046 0.00 1046 0.00 2093 1034∗
LA22 927 927 0.00 927 0.00 935 0.86 927 0.00 927 0.00 927 0.00 5399 1155∗
LA23 1032 1032 0.00 1032 0.00 1032 0.00 1032 0.00 1032 0.00 1032 0.00 1.94 0.60∗
LA24 935 935 0.00 941 0.64 946 1.18 940 0.53 935 0.00 935 0.00 29062 6107∗
LA25 977 977 0.00 982 0.51 986 0.92 984 0.72 978 0.10 977 0.00 35167 20241∗
LA26 1218 1218 0.00 1218 0.00 1218 0.00 1218 0.00 1218 0.00 1218 0.00 114 63∗
LA27 1235 1235 0.00 1256 1.70 1269 2.75 1261 2.11 1247 0.97 1235 0.00 72097 40051∗
LA28 1216 1216 0.00 1216 0.00 1239 1.89 1239 1.89 1216 0.00 1216 0.00 1311 1853∗
LA29 1152 1171 1.65 1191 3.39 1201 4.25 1190 3.30 1179 2.34 1161 0.78 93400 47970∗
LA30 1355 1355 0.00 1355 0.00 1355 0.00 1355 0.00 1355 0.00 1355 0.00 82 3.82∗
LA31 1784 1784 0.00 1784 0.00 1784 0.00 1784 0.00 1784 0.00 1784 0.00 6.98 3.90∗
LA32 1850 1850 0.00 1850 0.00 1850 0.00 1850 0.00 1850 0.00 1850 0.00 5.46 2.41∗
LA33 1719 1719 0.00 1719 0.00 1719 0.00 1719 0.00 1719 0.00 1719 0.00 14.31 2.88∗
LA34 1721 1721 0.00 1721 0.00 1721 0.00 1721 0.00 1721 0.00 1721 0.00 253.92 42.55∗
LA35 1888 1888 0.00 1888 0.00 1888 0.00 1888 0.00 1888 0.00 1888 0.00 123 6.47∗
LA36 1268 1268 0.00 1278 0.79 1295 2.13 1295 2.13 1281 1.03 1268 0.00 95218 57719∗
LA37 1397 1407 0.72 1407 0.72 1415 1.29 1407 0.72 1415 1.29 1401 0.29 96434 51830∗
LA38 1196 1215 1.59 1215 1.59 1246 4.18 1246 4.18 1203 0.59 1202 0.50 74217 42402∗

(Continued)



1886 CMES, 2023, vol.137, no.2

Table 5 (continued)
Problem UB TLBO (2013) UPLA (2019) mXLSGA

(2020)
GIFA-
mXLSGA
(2022)

GTS GTS_NC CPU time

Cmax RPE Cmax RPE Cmax RPE Cmax RPE Cmax RPE Cmax RPE GTS GTS_NC

LA39 1233 1248 1.22 1250 1.38 1258 2.03 1258 2.03 1241 0.65 1233 0.00 74716 45003∗
LA40 1222 1229 0.57 1229 0.57 1243 1.72 1243 1.72 1229 0.57 1227 0.41 89090 46045∗
Mean(RPE) 0.29 0.59 1.22 0.99 0.38 0.10
NOS 1 10 8 9 12 16 0 20

Note: The values marked with ∗ are the better results.

Further, to analyze the convergence characteristics of the proposed GTS_NC algorithm, it is
applied to the LA25 instance and the average makespan is recorded during the generations and
computational time. The obtained results are depicted in Fig. 10. The proposed GTS_NC algorithm
converges very fast and finds the optimal solution very rapidly as shown in Fig. 10. The Gantt chart
of the best solution of LA25 obtained by the proposed approach is shown in Fig. 11.

Figure 10: Convergence characteristics of LA25

5.5 Discussion
From the computational results, the proposed GTS_NC can obtain the best results for most

problems. Embedded with the neighborhood solution clipping method, GTS_NC shows strong
competitiveness in terms of computational time. And the proposed feasible neighborhood solution
determination method was verified so that it can accurately distinguish feasible neighborhood
solutions from infeasible ones, and achieves a better mapping relationship with the JSSP.

The reasons are as follows. Firstly, the neighborhood solution clipping method was proposed
based on the characteristic of movement of operations in the critical block, so it can accurately avoid
the calculation for unimproved neighborhood solutions to save computational time. Secondly, the
proposed feasible neighborhood solution determination method was designed based on the precedence
constraints between operations, which provides a more comprehensive view of all feasible solutions by



CMES, 2023, vol.137, no.2 1887

directly checking for constraint satisfaction. However, there is also a disadvantage of the proposed
neighborhood solution clipping method, the decrease in the neighborhood solution set will limit
the diversification of the local search procedure. Therefore, this method will perform better when
combined with strategies that increase the diversity of the population.

Figure 11: Gantt chart of the best solution of LA25

6 Conclusions

In this paper, a hybrid algorithm that consisted of a Genetic algorithm and Tabu search with a
clipping method is proposed for solving large-scale JSSP. A neighborhood solution clipping method
is developed and embedded in Tabu search, which can improve the efficiency of the local search by
clipping the calculation for unimproved neighborhood solutions. Moreover, a feasible neighborhood
solution determination method is developed, which can accurately distinguish feasible neighborhood
solutions from infeasible ones. Both of the methods are based on the domain knowledge of JSSP.

The proposed GTS_NC is tested on LA benchmark instance and compared with several algo-
rithms. The computational results obtained in experiments demonstrate the efficiency of the proposed
GTS_NC algorithm, which is significantly superior to the other reported methods. In the future, the
proposed algorithm can be extended to solve other scheduling problems, such as flexible job shop
scheduling problems, dynamic scheduling problems, and so on.

Funding Statement: This work is supported by National Natural Science Foundation for Distinguished
Young Scholars of China (under the Grant No. 51825502).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.



1888 CMES, 2023, vol.137, no.2

References
1. Xiong, H. G., Shi, S. Y., Ren, D. N., Hu, J. J. (2022). A survey of job shop scheduling problem: The types

and models. Computers & Operations Research, 142(2), 105731. https://doi.org/10.1016/j.cor.2022.105731
2. Gonçalves, J. F., Resende, M. G. C. (2014). An extended Akers graphical method with a biased random-

key genetic algorithm for job-shop scheduling. International Transactions in Operational Research, 21(2),
215–246. https://doi.org/10.1111/itor.12044

3. Peng, B., Lü, Z. P., Cheng, T. C. E. (2015). A tabu search/path relinking algorithm to
solve the job shop scheduling problem. Computers & Operations Research, 53(3), 154–164.
https://doi.org/10.1016/j.cor.2014.08.006

4. Zhang, C. Y., Li, P. G., Guan, Z. L., Rao, Y. Q. (2007). A tabu search algorithm with a new neighborhood
structure for the job shop scheduling problem. Computers & Operations Research, 34(11), 3229–3242.
https://doi.org/10.1016/j.cor.2005.12.002

5. Lu, C., Zhang, B., Gao, L., Yi, J., Mou, J. H. (2021). A knowledge-based multiobjective memetic algorithm
for green job shop scheduling with variable machining speeds. IEEE Systems Journal, 16(1), 844–855.
https://doi.org/10.1109/JSYST.2021.3076481

6. Liu, Z. F., Wang, J. L., Zhang, C. X., Chu, H. Y., Ding, G. Z. et al. (2021). A hybrid genetic-particle swarm
algorithm based on multilevel neighbourhood structure for flexible job shop scheduling problem. Computers
& Operations Research, 135(2), 105431. https://doi.org/10.1016/j.cor.2021.105431

7. Amico, M. D., Trubian, M. (1993). Applying tabu-search to job-shop scheduling problem. Annals of
Operations Research, 41(3), 231–252. https://doi.org/10.1007/BF02023076

8. Nowicki, E., Smutnicki, C. (1996). A fast taboo search algorithm for the job shop problem. Management
Science, 42(6), 797–813. https://doi.org/10.1287/mnsc.42.6.797

9. Balas, E., Vazacopoulos, A. (1998). Guided local search with shifting bottleneck for job shop scheduling.
Management Science, 44(2), 262–275. https://doi.org/10.1287/mnsc.44.2.262

10. Laarhoven, P. V., Aarts, E., Lenstra, J. (1992). Job shop scheduling by simulated annealing. Operations
Research, 40(1), 113–125. https://doi.org/10.1287/opre.40.1.113

11. Monique, S. V., Orides, M. J., Rodrigo, C. (2020). A modified genetic algorithm with local search
strategies and multi-crossover operator for job shop scheduling problem. Sensors, 20(18), 5440.
https://doi.org/10.3390/s20185440

12. Monique, S. V., Orides, M. J., Rodrigo, C. (2022). A new frequency analysis operator for population
improvement in genetic algorithms to solve the job shop scheduling problem. Sensors, 22(12), 4561.
https://doi.org/10.3390/s22124561

13. Hu, R., Wu, X., Qian, B., Mao, J. L., Jin, H. P. (2022). Differential evolution algorithm combined with
uncertainty handling techniques for stochastic reentrant job shop scheduling problem. Complexity, 2022,
9924163. https://doi.org/10.1155/2022/9924163

14. Ge, Y., Wang, A. M., Zhao, Z. J., Ye, J. R. (2019). A tabu-genetic hybrid search algorithm for job-shop
scheduling problem. E3S Web of Conferences, 95, 04007. https://doi.org/10.1051/e3sconf/20199504007

15. Abdel-Kader, R. F. (2022). Modified coral reef optimization methods for job shop scheduling problems.
Applied Sciences, 12(19), 9867. https://doi.org/10.3390/app12199867

16. Constantino, O. H., Segura, C. (2022). A parallel memetic algorithm with explicit manage-
ment of diversity for the job shop scheduling problem. Applied Intelligence, 53(1), 1–13.
https://doi.org/10.1007/s10489-021-02406-2

17. Gao, L., Zhang, G. H., Zhang, L. P., Li, X. Y. (2011). An efficient memetic algorithm for
solving the job shop scheduling problem. Computers & Industrial Engineering, 60(4), 699–705.
https://doi.org/10.1016/j.cie.2011.01.003

18. Sharma, N., Sharma, H., Sharma, A. (2018). Beer froth artificial bee colony algorithm for job-shop
scheduling problem. Applied Soft Computing, 68(2), 507–524. https://doi.org/10.1016/j.asoc.2018.04.001

https://doi.org/10.1016/j.cor.2022.105731
https://doi.org/10.1111/itor.12044
https://doi.org/10.1016/j.cor.2014.08.006
https://doi.org/10.1016/j.cor.2005.12.002
https://doi.org/10.1109/JSYST.2021.3076481
https://doi.org/10.1016/j.cor.2021.105431
https://doi.org/10.1007/BF02023076
https://doi.org/10.1287/mnsc.42.6.797
https://doi.org/10.1287/mnsc.44.2.262
https://doi.org/10.1287/opre.40.1.113
https://doi.org/10.3390/s20185440
https://doi.org/10.3390/s22124561
https://doi.org/10.1155/2022/9924163
https://doi.org/10.1051/e3sconf/20199504007
https://doi.org/10.3390/app12199867
https://doi.org/10.1007/s10489-021-02406-2
https://doi.org/10.1016/j.cie.2011.01.003
https://doi.org/10.1016/j.asoc.2018.04.001


CMES, 2023, vol.137, no.2 1889

19. Abdelmonem, M. I., Mohanmed, A. T. (2022). An improved artificial algae algorithm integrated with
differential evolution for job-shop scheduling problem. Journal of Intelligent Manufacturing, 12(1), 151.
https://doi.org/10.1007/s10845-021-01888-8

20. He, L. J., Li, W. F., Chiong, R., Abedi, M., Cao, Y. L. et al. (2021). Optimising the job-shop
scheduling problem using a multi-objective Jaya algorithm. Applied Soft Computing, 111(1), 107654.
https://doi.org/10.1016/j.asoc.2021.107654

21. Alkhatteb, F., Abed-alguni, B. H., AI-rousan, M. H. (2022). Discrete hybrid cuckoo search and simulated
annealing algorithm for solving the job shop scheduling problem. The Journal of Supercomputing, 78(4),
4799–4826. https://doi.org/10.1007/s11227-021-04050-6

22. Liang, Z. Y., Liu, M., Zhong, P. S., Zhang, C. (2021). Application research of a new neighbourhood structure
with adaptive genetic algorithm for job shop scheduling problem. International Journal of Production
Reaserch, 61(2), 362–381. https://doi.org/10.1080/00207543.2021.2007310

23. Liang, Z. Y., Zhong, P. S., Zhang, C., Liu, M., Liu, J. M. (2021). An improved adaptive genetic algorithm
for job shop scheduling problem. International Conference on Intelligent Equipment and Special Robots, vol.
1212722. Qingdao, China.

24. Lu, Q., Ren, Y. P., Jin, H. Y., Meng, L. L., Li, L. et al. (2020). A hybrid metaheuristic algorithm for a
profit-oriented and energy-efficient disassembly sequencing problem. Robotics and Computer-Integrated
Manufacturing, 61, 101828. https://doi.org/10.1016/j.rcim.2019.101828

25. Mohanmmad, M. N., Farhad, K. (2012). A GES/TS algorithm for the job shop scheduling. Computers &
Industrial Engineering, 62(4), 946–952. https://doi.org/10.1016/j.cie.2011.12.018

26. Cheng, T. C. E., Peng, B., Lü, Z. P. (2016). A hybrid evolutionary algorithm to solve the job shop scheduling
problem. Annals of Operation Research, 242(2), 223–237. https://doi.org/10.1007/s10479-013-1332-5

27. Nagata, Y., Ono, I. (2018). A guided local search with iterative ejections of bottleneck oper-
ations for the job shop scheduling problem. Computers & Operations Research, 90(3), 60–71.
https://doi.org/10.1016/j.cor.2017.09.017

28. Zobolas, G. I., Tarantillis, C. D., Ioannou, G. (2009). A hybrid evolutionary algorithm for
the job shop scheduling problem. Journal of Operational Research Society, 60(2), 221–235.
https://doi.org/10.1057/palgrave.jors.2602534

29. Li, Y., Li, X. Y., Gao, L., Fu, L., Wang, C. Y. (2022). An effective critical path based method
for permutation flow shop scheduling problem. Journal of Manufacturing Systems, 63(5), 344–353.
https://doi.org/10.1016/j.jmsy.2022.04.005

30. Zhang, C. J., Zhou, Y., Peng, K. K., Li, X. Y., Lian, K. L. et al. (2021). Dynamic flexible job shop scheduling
method based on improved gene expression programming. Measurement and Control, 54(7–8), 1136–1146.
https://doi.org/10.1177/0020294020946352

31. Fan, J. X., Zhang, C. J., Liu, Q. H., Shen, W. M., Gao, L. (2022). An improved genetic algorithm for flexible
job shop scheduling problem considering reconfigurable machine tools with limited auxiliary modules.
Journal of Manufacturing Systems, 62(1), 650–667. https://doi.org/10.1016/j.jmsy.2022.01.014

32. Fan, J. X., Shen, W. M., Gao, L., Zhang, C. J., Zhang, Z. (2021). A hybrid Jaya algorithm for solving flexible
job shop scheduling problem considering multiple critical paths. Journal of Manufacturing Systems, 60(1),
298–311. https://doi.org/10.1016/j.jmsy.2021.05.018

33. Matsuo, H., Suh, C. J., Sullivan, R. S. (1989). A controlled search simulated annealing method
for general job shop scheduling problem. Annals of Operations Research, 21(1), 85–108.
https://doi.org/10.1007/BF02022094

34. Zhao, S. K. (2020). Research on multi-operation joint movement neighborhood structure of job
shop scheduling problem. Journal of Mechanical Engineering, 56(13), 192–206. https://doi.org/
10.3901/JME.2020.13.192

https://doi.org/10.1007/s10845-021-01888-8
https://doi.org/10.1016/j.asoc.2021.107654
https://doi.org/10.1007/s11227-021-04050-6
https://doi.org/10.1080/00207543.2021.2007310
https://doi.org/10.1016/j.rcim.2019.101828
https://doi.org/10.1016/j.cie.2011.12.018
https://doi.org/10.1007/s10479-013-1332-5
https://doi.org/10.1016/j.cor.2017.09.017
https://doi.org/10.1057/palgrave.jors.2602534
https://doi.org/10.1016/j.jmsy.2022.04.005
https://doi.org/10.1177/0020294020946352
https://doi.org/10.1016/j.jmsy.2022.01.014
https://doi.org/10.1016/j.jmsy.2021.05.018
https://doi.org/10.1007/BF02022094
https://doi.org/10.3901/JME.2020.13.192


1890 CMES, 2023, vol.137, no.2

35. Xie, J., Li, X. Y., Gao, L., Gui, L. (2022). A new neighborhood structure for job shop schedul-
ing problems. International Journal of Production Research, 61(7), 2147–2161. https://doi.org/10.
1080/00207543.2022.2060772

36. Li, X. Y., Gao, L. (2016). An effective hybrid genetic algorithm and tabu search for flexi-
ble job shop scheduling problem. International Journal of Production Economics, 174(19), 93–110.
https://doi.org/10.1016/j.ijpe.2016.01.016

37. Hurink, J. L., Jurisch, B., Thole, M. (1994). Tabu search for the job shop scheduling problem with multi-
purpose machines. Operations Research Spektrum, 15(4), 205–215. https://doi.org/10.1007/BF01719451

38. Keesari, H. S., Rao, R. V. (2014). Optimization of job shop scheduling problems using teaching-learning-
based optimization algorithm. Opsearch, 51(4), 545–561. https://doi.org/10.1007/s12597-013-0159-9

39. Pongchairesrks, P. (2019). A two-level metaheuristic algorithm for the job-shop scheduling problem.
Complexity, 2019, 8683472.

https://doi.org/10.1080/00207543.2022.2060772
https://doi.org/10.1016/j.ijpe.2016.01.016
https://doi.org/10.1007/BF01719451
https://doi.org/10.1007/s12597-013-0159-9

	An Effective Neighborhood Solution Clipping Method for Large-Scale Job Shop Scheduling Problem
	1 Introduction
	2 Literature Review
	3 Problem Formulation
	4 Proposed GTSNC Method
	5 Results and Discussion
	6 Conclusions
	References


