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ABSTRACT

The aerodynamic optimization design of high-speed trains (HSTs) is crucial for energy conservation, environmen-
tal preservation, operational safety, and speeding up. This study aims to review the current state and progress of
the aerodynamic multi-objective optimization of HSTs. First, the study explores the impact of train nose shape
parameters on aerodynamic performance. The parameterization methods involved in the aerodynamic multi-
objective optimization of HSTs are summarized and classified as shape-based and disturbance-based parameteriza-
tion methods. Meanwhile, the advantages and limitations of each parameterization method, as well as the applicable
scope, are briefly discussed. In addition, the NSGA-II algorithm, particle swarm optimization algorithm, standard
genetic algorithm, and other commonly used multi-objective optimization algorithms and the improvements in
the field of aerodynamic optimization for HSTs are summarized. Second, this study investigates the aerodynamic
multi-objective optimization technology for HSTs using the surrogate model, focusing on the Kriging surrogate
models, neural network, and support vector regression. Moreover, the construction methods of surrogate models
are summarized, and the influence of different sample infill criteria on the efficiency of multi-objective optimization
is analyzed. Meanwhile, advanced aerodynamic optimization methods in the field of aircraft have been briefly
introduced to guide research on the aerodynamic optimization of HSTs. Finally, based on the summary of the
research progress of the aerodynamic multi-objective optimization of HSTs, future research directions are proposed,
such as intelligent recognition technology of characteristic parameters, collaborative optimization of multiple
operating environments, and sample infill criterion of the surrogate model.
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1 Introduction

High-speed trains (HSTs) offer a multitude of advantages, including large passenger capacity,
safety, comfort, energy saving, environmental protection, and have become a trend in developing world
railway transportation. The operating speed of the HST in Germany is 250 km/h, with the highest rate
reaching 317 km/h when it was put into service in 1985. ICE set a speed record of 406.9 km/h on
the new high-speed railway line Fulda-Wurzburg in 1988, which was the fastest HSTs speed at that
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time [1,2]. In 1997, the 500 series HST were put into operation on the Sanyo Shinkansen in Japan,
with an operating speed of 300 km/h. Moreover, The Japanese Maglev set a speed record of 581 km/h
in 2003 [2,3]. The operating speed of the TGV HST is 300 km/h in French, and the test speed reached
515.3 km/h in May 1990, creating a new world record at that time. In 2007, TGV high-speed test train
V150 made a new world record of 574.8 km/h in the test [3,4]. The design and operating speed of HSTs
in China are also constantly improving. The maximum operating speed of the first HST introduced
was 250 km/h. In 2008, when the Beijing-Tianjin intercity high-speed railway opened, the operating
speed of CRH3 was 350 km/h. In 2011, the CRH380 series trains with a maximum speed of 380 km/h
were put into operation on the Beijing-Shanghai Line. The CRH380A and CRH380B are the main
models of the Beijing-Shanghai high-speed railway, which set the highest operating test speed of 486.1
and 487.3 km/h in the alignment joint-test [4,5].

The increase in the running speed of HSTs makes many problems reasonably ignored at low rates
more prominent, such as aerodynamic resistance, aerodynamic lift force of the tail car, crosswind
operation safety, air pressure pulse from trains passing by each other, micro-pressure wave in the tunnel
exit, aerodynamic noise, etc. These problems primarily affect the safety of train operation and ride
comfort, which seriously restricts the further improvement of train speed [6–8]. Academician Shen
[9] pointed out that the difference between HSTs and ordinary trains is the dynamic environment in
which the trains are located has undergone fundamental changes. The forces on ordinary trains are
mainly mechanical and electrical, while HSTs have become primarily pneumatic. The aerodynamic
resistance energy consumption of an HST at a speed of 350 km/h accounts for about 85% of the
traction system [5,6,9,10]. According to the relationship between the aerodynamic resistance and the
running speed, the aerodynamic resistance of an HST at a speed of 400 km/h will account for nearly
95% of the running resistance [10,11]. The sharply increased aerodynamic resistance will seriously
affect the energy consumption and economy of train operations. Aerodynamic resistance is closely
related to the shape of the train, and the effective way to reduce aerodynamic resistance is to design
a reasonable shape. Moreover, the aerodynamic lift force and side force will increase rapidly under
the action of a strong crosswind with the increase of train running speed, which will affect the lateral
stability of the train and may cause the train to derail in severe cases. Studies have shown that the train
is likely to derail or overturn when the train speed exceeds 200 km/h, and the crosswind speed exceeds
30 m/s [12–14]. Furthermore, a robust micro-pressure wave will be generated around the tunnel exit
when HSTs travel through the tunnel, forming noise at the tunnel exit and affecting the surrounding
environment. The most effective measure to reduce the micro-pressure wave at the tunnel exit is to
design a more reasonable nose shape [15–18]. In addition, the aerodynamic noise generated by trains
running at ever-increasing speeds is becoming more noticeable. When the train speed reaches 350 km/h
and above, the aerodynamic noise surpasses the wheel-rail noise and becomes the main contributor
to the noise of the HST [19]. The aerodynamic noise of the HST is proportional to the 6∼8 power
of the running speed, which will seriously affect ride comfort and aggravate the environmental noise
pollution along the railway [20,21].

The sharp increase in aerodynamic resistance caused by the rise in running speed will directly affect
energy consumption. The aerodynamic performance under the crosswind will jeopardize the safety and
stability of the train. The increase in aerodynamic noise will not only affect the comfort of passengers
on the train but also cause noise pollution along the railway. Improving the aerodynamic performance
is an essential part of HSTs design. Meanwhile, the nose shape of an HST has a significant impact
on its aerodynamic performance, which can be improved by optimizing the nose shape reasonably
[22,23]. For example, reduce the aerodynamic resistance, aerodynamic noise of HSTs, the aerodynamic
lift force of the tail car, and the micro-pressure wave in the tunnel exit, enhance the safety under the
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operating conditions of crosswind and passing by each other, and so on. Therefore, the research on the
aerodynamic multi-objective optimization design of HSTs nose shape is of great significance to energy
saving, environmental protection, operation safety, and speed-up. This paper summarizes the research
status and progress of the aerodynamic multi-objective optimization of HSTs nose shapes, aiming to
provide references for scholars in related fields to study this issue in depth.

2 Effect of Nose Parameters on Aerodynamic Performance

Due to the limitations of numerical methods, computing resources, and costs, early optimization
of the nose shape of HSTs was primarily based on single variables, primarily considering the
streamlined length, arch forms, and profiles. In terms of the streamlined length of the train nose shape,
Shu et al. [24] studied the aerodynamic characteristics of trains with different streamlined lengths using
numerical simulation. The results showed that the aerodynamic drag and aerodynamic lift force of
the HST decreased as the streamlined head length increased when other conditions were the same.
Hemida et al. [25,26] investigated the three-dimensional effect of the nose on the flow structures of
the trains, containing aerodynamic force, pressure coefficient, and flow patterns. A highly unsteady
characteristic and more vortex structures were generated around the train nose for the shore-nose
model, resulting in more vital aerodynamic forces and boundary layer fluctuations. Moreover, the
aerodynamic force frequency of the short-nose model is different from that of the long-nose model,
and the time-averaged pressure of the long-nose model was in good agreement with the experimental
results than the short-nose model. Huang et al. [27] conducted wind tunnel tests on a 3-car marshalled
train with the original nose shape and the optimized nose shape. The test results showed that the
aerodynamic resistance of the whole vehicle with the optimized head shape with a longer streamlined
nose is smaller than that of the original model. Ku et al. [28] optimized the cross-sectional of an HST
nose to minimize the micro-pressure wave at the tunnel exit. The relationship between the nose length
and the pressure wave was investigated, and the pressure wave intensity was reduced by 27% for the
optimal model. Miu et al. [29] carried out wind tunnel tests on CRH380A with various head shapes,
among which the lengths of the head cars corresponding to the three nose shapes were 3372, 3335,
and 3310 mm, respectively. The test results showed that the train with the longest nose shape has the
best aerodynamic resistance characteristics. The drag force coefficient changes very little when the
wind speed is changed in the range of 35–70 m/s, and the aerodynamic resistance of the head, middle,
and tail cars was all the smallest. Zhang et al. [30] carried out wind tunnel test research on CRH2,
including the original model with four different slenderness ratio nose shapes, as shown in Fig. 1.
The study found that the longer the streamlined part of the head car, the smoother the streamlined
nose shape. Meanwhile, the sharper near the nose tip, the better the drag reduction effect. When
the streamline length was close, the greater the slenderness ratio of the head shape, the smaller the
aerodynamic resistance of the train. Choi et al. [31] investigated the effects of the nose length on the
aerodynamic performance of the Great Train Express (GTX). With the running speed of the GTX
increasing from 100 to 200 km/h, the aerodynamic drag forces were obtained when the train travelled
in tunnels. It was found that the aerodynamic drag can be reduced by about 50% by streamlining
the head nose. Chen et al. [32] investigated the aerodynamic performance of HSTs with varying nose
lengths in the presence of two trains passing each other in a tunnel. It was drawn that the positive
peak of the pressure wave has a logarithmically decreasing trend with increasing nose length and the
peak-to-peak amplitude of the pressure of the train surface. The aerodynamic resistance of the train
will decrease with the increased streamlined length, while it should also be considered the passenger
compartment of the head car. Meanwhile, the reduced train aerodynamic drag force caused by the
streamlined nose length is limited. As a result, the nose length is unrivalled and infinitely stretchable.
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Figure 1: High-speed train with different nose lengths

The single-arch model means that the maximum longitudinal profile of the streamlined nose is
convex, and the maximum longitudinal profile of the double-arch model is a combination of convex
and concave. In the aspect of arch forms, Tian et al. [33] conducted a wind tunnel test on the single-arch
and double-arch nose shapes of the “China Star” HST. The aerodynamic resistance of the combination
of a single-arch head car and a double-arch tail car is the smallest, and the aerodynamic resistance of
the head and tail car with the double-arch nose is the largest. The results indicated that the aerodynamic
resistance of the single-arch nose shape is better than that of the double-arch. Chen et al. [34] carried
out numerical simulations on four HSTs with different nose shapes. The results showed that the single-
arch nose shape of the head car had a significant impact on its running resistance. Meanwhile, the
head car with a single-arch had a more excellent performance on the aerodynamic resistance than the
double-arch nose, which is consistent with the conclusion of the wind tunnel test [17]. The CRH2 and
CRH380A HSTs of China are double-arch nose shapes, and CRH3, CRH380B, and CR400 series all
use single-arch models.

The influence of the maximum longitudinal profile and the sharp flattening of the nose on the
aerodynamic performance of the HST cannot be ignored. Howe [35] established three train models,
and the effect of the train nose shape on the aerodynamic performance when a train travelled through
the tunnel was explored. The results showed that the nose shape greatly influenced the generation time
and amplitude of the pressure wave at the tunnel exit. Shu et al. [24] studied train noses with different
longitudinal profiles. The results showed that the aerodynamic resistance of the head car with a convex
profile in the longitudinal direction of the nose is smaller than that with a concave profile in the case of
the same streamlined length. There is almost no difference between the middle car and the aerodynamic
resistance of the tail car was relatively large. Feng [36] analyzed the aerodynamic characteristics of
various train nose shapes, as shown in Fig. 2. From A to C, the nose shapes of the train gradually
become blunt from sharp. Meanwhile, from 1© to 3©, the nose shapes gradually change from straight to
convex. The gently changing arc-shaped profile 2© has the best aerodynamic resistance characteristics,
and the nose shape of the straight longitudinal profile 1© corresponds to the aerodynamic drag force in
the middle. The nose shape of the drum-shaped longitudinal profile 3© corresponds to the maximum
aerodynamic drag force of the HST. The results showed that the aerodynamic resistance of the train
is more negligible when the train nose shape is sharper and the nose gradually changes from a cone
shape to a square shape, that is, from profile A to C, the aerodynamic resistance of the train increases
significantly. Yang et al. [37] studied the aerodynamic characteristic of the train with the different
longitudinal profiles operating in the open air. Three kinds of longitudinal profiles were generated,
and the results indicated that the profiles had a noticeable influence on the aerodynamic force, surface
pressure, and vortex shedding.
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Figure 2: High-speed train noses with different profiles

The early optimization of the train nose shape of the HST is actually “preferable”. Several
nose shapes were tested or simulated through wind tunnel tests or numerical simulation methods,
and a nose shape with better aerodynamic performance was selected according to the results. This
method can only improve the design after selecting a nose shape with relatively good performance
from limited samples or improve the design after studying the law between critical parameters
and a particular aerodynamic characteristic, which is costly and the design cycle is long. It is
necessary to comprehensively consider multiple indicators in HSTs design, such as aerodynamic force,
crosswind safety, air pressure pulse from trains passing by each other, tunnel aerodynamic issues,
and aerodynamic noise. These objectives may conflict with each other. Therefore, it is difficult to
improve the comprehensive performance of trains by using traditional optimization methods. With
the development of optimization algorithms, the multi-objective optimization method combined
with numerical simulation and surrogate model technology has gradually developed, which can
simultaneously take into account multiple aerodynamic characteristics during design, shortening the
design cycle and improving optimization efficiency.

3 Parameterization Method of HST Nose Shape

Before the multi-objective optimization process begins, the surface or curve of the HST nose shape
needs to be digitally defined, that is, parameterized. The streamlined part of the train nose is composed
of free-form surfaces with complex geometric shapes, and the deformation and the transition between
adjacent surfaces are relatively large. Therefore, it is crucial to provide a parametric approach that can
characterize the curve and surface shape of the nose, as this is what the multi-objective optimization
task is based on. There are two types of frequently utilized aerodynamic shape parameterization
techniques for the HST nose. The first is the shape-based parameterization method, which enables
design without initial shape. The other is the disturbance-based parameterization method, which is
appropriate for the design of the existing initial shape.

3.1 Shape-Based Parameterization Method
The shape-based parameterization methods mainly include the analytical method, Non-Uniform

Rational B Spline method (NURBS), Class function/Shape function Transformation method (CST),
Vehicle Modelling Function method (VMF), etc.

The analytical method expresses the curve by establishing the control equation of the curve. Iida
[38] established the two-dimensional cross-sectional profile of the nose shape through the function,
took the independent function variable as the parametric variable of the nose, and achieved the purpose
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of changing the shape by changing the independent variable. Lorriaux et al. [39] established two ellipse
portions with five parameters, including two angles and three lengths. The control of the nose shape
was realized, such as the nose length, tip taper, and angle, as shown in Fig. 3. The analytical method
can accurately describe the geometric shape. Still, it is mainly applied to simple geometric shapes and
mainly to two-dimensional models.

Figure 3: Train nose shape described by elliptic equations

The rational numbers in non-uniform rational B-splines allow NURBS to express precise
quadratic and free curves. The curves used to construct surfaces in NURBS have smooth and minimal
properties, which can effectively construct various organic 3D shapes [40–42]. Chen et al. [41] applied
the NURBS theory in the CATIA software to complete the three-dimensional surface modelling
of the CRH1A. The driver’s cab, nose tip, and other parts were improved, and the aerodynamic
resistance of the optimized train was reduced by 12.16% compared with the primaeval model.
Wang et al. [42] developed a new parametric method that combines the partial differential equation
(PDE) and NURBS. The weight deformations and control points of Non-Uniform Rational B Spline
surfaces were defined as design variables, and the goal was to minimize the error between the PDE
and NURBS surfaces. Furthermore, the study demonstrated the effectiveness of the new modelling
approach through examples.

The CST method proposed by Kulfan et al. [43] in 2006 was initially for the shape design of
aircraft. A class function (Class) is used to determine the type of airfoil in the CST method, and
then the shape function (Shape) is employed as the modification factor. It has the advantages of
fewer design parameters and a flexible process to generate simple geometric shapes through analytic
function expressions quickly. The original CST method can only describe two-dimensional or quasi-
two-dimensional objects, and its ability to express complex surfaces is weak. Su et al. [44] developed
a 3D CST geometric modelling method for complex shapes based on Bezier splines. It was applied to
the optimal design of unpowered hypersonic gliding reentry vehicles. Liu et al. [45] proposed a mothed
based on CST for the hypersonic vehicle, which was adopted to describe the geometric shape. Then, the
researchers estimated the aerodynamic force according to the shock wave, and the dynamic features
were analyzed compared to the primitive shape using the CST method. Sun et al. [46] implemented the
algorithm of the CST method based on the streamlined HST nose shape and established the critical
design parameters in the class and shape function, as shown in Fig. 4. Moreover, the CST method was
further developed based on the idea of optimal fitting, and the optimized and the practical CST shape
are the same in most places.
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Figure 4: CST parameterization method

The VMF method expresses the model using Bernstein polynomials and then defines the section
function by classifying each subsection. It is a parametric design method proposed by Rho et al. [47]
that was first applied to automobile shape design. According to Rho et al. [47], the VMF parametric
method improved the efficiency of automobile shape design and optimization. Ku et al. [48] first
applied the VMF method to the parametric and optimal design of HST shapes. Four design variables
were extracted to control the geometry of the nose shape and carried out multi-objective optimization
of the train when the train travelled through the tunnel. The optimal model reduced the maximum
micro-pressure wave by 19%, and the aerodynamic drag force was reduced by 5.6%. Yao et al. [49]
appropriately modified the VMF parameterization method by using simple functions to describe local
shape boundaries. Four main profile lines and two local profile lines were used to control the overall
nose shape of the HST. Meanwhile, a separate curved surface controlled the driver’s cab, as shown in
Fig. 5. Yao et al. [50] combined the VMF parameterization method with the NURBS method. The
NURBS method was adopted to make up for the lack of expressive ability of the complex profile of
the VMF method. A parametric method that can design any profile line was developed by reasonably
setting control points and weights, as shown in Fig. 5. This method was adopted to optimize the
aerodynamic resistance of the HST and the aerodynamic lift force of the tail car.

Figure 5: VMF parameterization method

3.2 Disturbance-Based Parameterization Method
The disturbance-based parameterization methods mainly include the Hicks-Henne method, the

free-form deformation method (FFD), and the incremental superposition method, etc.
Disturbance-based parameterization method generally superimposes the disturbance function on
the initial shape to realize the changes, and its function expression is

l = l0 +
n∑

i=1

fi (l0) (1)

where l is the changed coordinate, l0 is the initial coordinate, and f i is the basis disturbance function.
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The Hicks-Henne method is a disturbance-based parameterization method proposed by Hicks
and Henne in 1978 and applied to the optimal aircraft design [51]. The advantage of the Hicks-
Henne method is that it is simple in theory and easy to implement, and it can also be parameterized
in combination with other disturbance functions. It has an excellent parameterization effect on two-
dimensional models, while it has certain limitations on three-dimensional or complex two-dimensional
models. Xiong et al. [52] established three-dimensional models of HSTs based on Hicks-Henne
functions and studied the impact of shape factors, such as the head vertical contour line, the cowcatcher
shape, and the side wing shape, on the aerodynamic performance of HSTs under different operating
environments. Kwon et al. [53] and Zhao et al. [54] superimposed the Hicks-Henne method on the basis
of Iida [38] and carried out the parameterization of HSTs. The nose shape of the two-dimensional train
operating on the open track and travelling through the tunnel was optimized, and obtained the train
nose shape with better performance, as shown in Fig. 6 [55]. Lee et al. [56] also employed the Hicks-
Henne method to parameterize the two-dimensional train nose shape, as shown in Fig. 6a. The kriging
surrogate model was combined with the support vector machine to optimize the micro-pressure wave
at the tunnel exit. Optimizing results showed that the optimal nose shape reduced micro-pressure waves
over current designs.
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Figure 6: Hicks-Henne parameterization method

The FFD method was proposed by Sederberg in 1986 [57]. A control volume is established around
the deformed object, and control points are arranged in the control volume. There is a mapping
relationship between the control volume and the control points, and the movement of the control
points controls the deformation of the object. This method has a strong deformation ability and can
be applied to complex shapes [57]. Li et al. [58] employed the FFD method and five design variables
to realize the control of the tip of the nose and the driver’s cab and combined it with the genetic
algorithm to optimize the nose shape of the CRH2. The aerodynamic drag force of the whole vehicle
and the lift force of the head and tail car in the optimal solution are reduced by 3.6%, 9.6%, and 10.9%,
respectively. Zhang et al. [59], Yao et al. [60], Zhang et al. [61], and He et al. [62,63] also adopted the
FFD method to parameterize HSTs, including CRH2, CRH380A, and CR400AF, as shown in Fig. 7.
And the aerodynamic characteristics such as aerodynamic drag force and lift force of the train are
optimized.

The primary concept behind the incremental superposition technique is to divide the feature line
or feature region on the original shape and define the deformation function and weight factor of each
feature separately. The coordinate increment of each feature is then calculated according to the design
strategy and the weight factor. Finally, the coordinate value of the deformed shape is obtained by
superimposing the original coordinate and the increment. Liu et al. [64] employed the incremental
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superposition method to parameterize the nose shape of the HST, extracted five design variables and
optimized the aerodynamic drag force and dipole noise sources of the train. Yu et al. [65,66] also
adopted the incremental superposition method to parameterize the train nose shape, as shown in
Fig. 8, and performed optimization on the aerodynamic drag force, lift force, and running safety of the
HST. Zhang et al. [67–69] conducted multi-objective optimization on the HSTs and super HSTs using
the incremental superposition method, as shown in Fig. 8. The optimization objectives included the
aerodynamic resistance of the head car and the whole train, the aerodynamic lift force of the tail car,
and the surface acoustic power. The results showed that the parameterization method could improve
the optimization efficiency, and the aerodynamic performance of the optimal solution was improved
compared with the initial model.

Figure 7: Parameterization of train heads using the FFD method

Figure 8: Parameterization of nose shape using the incremental superposition method

4 Multi-Objective Optimization Algorithm and Direct Optimization

One of the key components of train aerodynamic shape optimization is the multi-objective
optimization method, the performance of which directly impacts the optimization outcome. Early
optimization algorithms, like Newton’s method, gradient descent method, quasi-Newton method, etc.,
were mostly based on gradient algorithms. The aforementioned techniques are effective at locating
regionally ideal solutions. The growth of nonlinear and constrained optimization issues gradually
draws attention to the drawbacks of local optimization algorithms as optimization problems get
more sophisticated. Therefore, the global multi-objective optimization algorithm with intelligent
optimization characteristics emerges at the historical moment, such as the genetic algorithm (GA),
ant colony algorithm, simulated annealing algorithm, particle swarm algorithm (PSA), etc. [70]. On
the basis of multi-objective optimization techniques, a lot of researchers have worked on optimizing
the nose shape of HSTs.
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4.1 Optimization Algorithm
The multi-objective optimization algorithms applied in the HST aerodynamic optimization mainly

include GA, PSA, fish swarm algorithm (FSA), etc. Among them, the Non-dominated Sorting
Genetic Algorithms II (NSGA-II) and particle swarm optimization algorithm are widely used. Before
introducing commonly used multi-objective optimization algorithms, a brief introduction to the Pareto
optimal solution set and the Pareto front is given first.

French Economist V. Pareto proposed the Pareto solution set for multi-objective optimization
problems in economics [71]. The sub-objectives often conflict with each other in the multi-objective
optimization problem, resulting in the optimal solution being not a single one but a solution set, that
is, the Pareto optimal solution set. Correspondingly, the image of the Pareto optimal solution set is
called the Pareto front in the objective function space.

4.1.1 NSGA-II Algorithm

NSGA-II is an optimization algorithm proposed by Kalyanmoy Deb et al., which uses a non-
inferior sorting technique with an elite strategy [72]. It replaces the shared function method by
crowding distance comparison. Thus, there is no need to define any parameters for maintaining the
diversity of the population. The main difference from the traditional genetic algorithm is that the
algorithm is stratified according to the dominant relationship between individuals before the selection
operator is executed. The basic idea of NSGA-II is as follows [72]:

1) Randomly generate an initial population of size N and obtain the first-generation offspring
population through selection, crossover, and mutation of the genetic algorithm after non-dominated
sorting.

2) Merge the parent population with the child population and perform a fast non-dominated sort
from the second population. Meanwhile, calculate the crowding degree of individuals in each non-
dominated layer, and select appropriate individuals to form a new parent population according to the
non-dominated relationship and the degree of crowding of individuals.

3) Generate a new offspring population through the genetic algorithm until the conditions for the
end of the program are met.

Among the existing studies, Yao et al. [73] were the first to carry out aerodynamic multi-
objective optimization for HSTs using the NSGA-II algorithm. Moreover, Yao et al. [73] improved
the traditional algorithm so that crossover and mutation operators could change adaptively. The
aerodynamic performances of the CRH380A were optimized, which reduced the drag and lift force
by 3.2% and 8.2%. Zhang et al. [67] adopted the basic NSGA-II algorithm to optimize a specific
type of HST in China. The initial population was set to 50, the crossover probability was 0.9, and the
genetic algebra was 30. The Pareto optimal solution set was obtained. The aerodynamic resistance
of the optimal model was reduced by 2.6%, and the lift force of the tail car was reduced by 9.9%. In
addition, many scholars have used the basic NSGA-II algorithm to conduct optimization research
on HSTs [58,61,65,74–76], which will not be detailed here. It is noteworthy that in the aerodynamic
optimization of HSTs, there is also research on improving the NSGA-II algorithm in recent years.
Yuan et al. [77] combined the back propagation (BP) neural network with the NSGA-II algorithm
to optimize the evolutionary system and adopted the adaptive adjustment mutation operator and the
typical distribution crossover operator. The findings revealed that the search space and population
adaptability were both optimized, along with a notable acceleration in the search for outstanding
members. Therefore, the optimization efficiency was significantly increased.
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4.1.2 Particle Swarm Algorithm

Kennedy et al. [78] proposed the particle swarm optimization algorithm in 1995 as an evolutionary
technique derived from the study of bird predation behaviour. Particles have only two attributes:
velocity v and position x, where velocity represents the movement speed and position represents the
movement direction. The basic idea of the particle swarm optimization algorithm is to find the best
solution through cooperation and information sharing among individuals in the group [78]:

1) Each particle independently searches for the optimal solution in the search space and records
it as the individual extremum Pb at the current moment.

2) Share the individual extremum with other particles in the entire particle swarm and find the
optimal individual extremum as the current global optimal solution Gb of the entire particle swarm.

3) All the particles in the particle swarm adjust their speed and position according to the individual
extremum Pb and the global optimal solution Gb at the current moment to determine the position at
the next moment.

vi,m (t + 1) = vi,m (t) + c1r1

(
Pb

(i,m) − xi,m (t)
) + c2r2

(
Gb

(i,m) − xi,m (t)
)

(2)

xi,m (t + 1) = xi,m (t) + vi,m (t + 1) (3)

where i = 1, 2, . . . , I , I is the number of particles; m = 1, 2, . . . , M, M is the design space dimension;
c1 and c2 are learning factors; r1 and r2 are random numbers in the range (0, 1).

Zhang et al. [59] employed the essential PSA to carry out the aerodynamic optimization design of
HSTs nose. The optimization algorithm was verified first through the classic multi-objective optimiza-
tion test function. Then the nose shape of the HST was parameterized using the FFD method, and
the design space was 16-dimensional. The results of the test function and aerodynamic optimization
of trains showed that the particle swarm optimization algorithm had excellent optimization ability.
Many researchers have carried out aerodynamic multi-objective optimization on HSTs using the basic
particle swarm optimization algorithm [50,79]. Compared with the single-objective PSA, the particle
swarm multi-objective algorithm is different in that it obtains a set of optimal solution sets, and how
to select the optimal particles in the solution set is particularly critical. Many scholars have recently
improved the existing PSA to improve optimization efficiency. Yao et al. [49] proposed a method to
determine the optimal historical particle by using the crowding distance and niche count and making
it exist in the area where the particles are relatively sparse in the design space. The results showed that
the algorithm constructed based on the crowding distance had a strong optimization ability, especially
for high-dimensional problems. He et al. [63] proposed a new particle swarm optimization algorithm
combined with an artificial fish swarm algorithm (AFSA), which incorporated the advantages of
the fast convergence speed of the FSA. Meanwhile, the backward learning strategy was used for the
population initialization of the algorithm, to start the entire population search from a better starting
point. The PSA has also received updates and improvements in other fields [80–82], which will not be
discussed here. In short, improving the optimization algorithm is an important research direction in
the current aerodynamic shape optimization, as well as a way to improve the optimization efficiency
further.

4.1.3 Other Optimization Algorithm

In the HST aerodynamic optimization field, there are many other multi-objective optimization
algorithms, such as GA, AFSA, ant colony algorithm, and so on. Mohebbi et al. [83] established
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the two-dimensional HST and windbreaks using the Lattice Boltzmann Method (LBM). The multi-
objective genetic algorithm (MOGA) was adopted to optimize the position, height, and angle of
the windbreaks. The design space was 4-dimensional, and the optimization objectives included the
aerodynamic lateral force, lift force, and roll moment. A windshield model with excellent performance
was obtained, and the wind tunnel test was used to verify it. Sun et al. [84] employed the multi-objective
genetic algorithm II (MOGA-II) to optimize. Compared with traditional algorithms, MOGA-II intro-
duced a multi-directional search optimization operator, which searches for the optimal global solution
more efficiently while guaranteeing the optimal solution of the parent. Muñoz-Paniagua et al. [18,85]
conducted optimization for the tunnel pressure wave, lateral stability, and aerodynamic resistance
using the GA under the conditions of the train travelling through the tunnel, the train passing each
other, as shown in Fig. 9. The multi-objective optimization and the acquisition of the Pareto front
solution set are carried out using MATLAB® . Scholars such as Xu et al. [86] also used a genetic
algorithm to optimize the aerodynamic characteristics of HSTs.

Figure 9: Optimization results of Muñoz-Paniagua

The traditional AFSA algorithm increases the detection range of fish with the visual range, which
is conducive to exploring tailing and clustering behaviour. On the contrary, the search will be too
detailed if the visual range is small, and it is easy to be limited to the local optimum. Yang et al. [87]
combined polynomials to propose an adaptive field of view artificial FSA, which can improve search
accuracy and convergence speed. The multi-objective test function and optimization results of the
HST proved that improved AFSA using an adaptive method has higher optimization efficiency.
Zhang et al. [88] carried out multi-objective optimization on the train aerodynamics after improving
the ant colony algorithm. There is no mutation mechanism for the optimal individual obtained in
the iteration in the construction process of the traditional ant colony algorithm, resulting in apparent
local extremum characteristics, and it is easy to make the multi-objective optimization fall into the local
optimum. Zhang et al. [88] developed a multi-objective chaotic ant colony algorithm by introducing
the chaotic mutation mechanism and niche-sharing technology. The chaos model was used to initialize
in the population initialization stage, and the chaos model was used to generate random disturbance
when the pheromone was updated. Research results showed that the time for the individual to converge
to the optimal value is reduced, and the efficiency is improved. Meanwhile, the disturbance of the
chaotic model can prevent the optimization from falling into a local optimum. In addition to the above-
mentioned multi-objective optimization algorithms, Suzuki et al. [89] adopted the basic evolutionary
algorithm to optimize the aerodynamic drag force of the HST and the pressure fluctuation around the
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car body. Zhou et al. [90] employed the multi-island genetic algorithm to optimize the aerodynamic
force of the HST, and the design variables include six characteristics of the nose shape.

Many optimization algorithms are used in the aerodynamic multi-objective optimization of HSTs,
but most scholars rarely carry out optimization using standard algorithms. The primary development
trend at the moment is to improve optimization algorithms with specific working conditions. Second,
the calculation amount of HST numerical simulation is gradually increasing with the improvement
of engineering and scientific research accuracy requirements, making calculation costs and time-
consuming problems more prominent. Therefore, improving the optimization efficiency of the multi-
objective optimization algorithm is also a goal that academics strive for and pursue.

4.2 Direct Optimization Based on the Optimization Algorithm
The advancement of the optimization algorithm allows for the simultaneous consideration of

multiple aerodynamic performance parameters when optimizing the train nose shape. There are two
main types of multi-objective optimization design for HSTs. The first is to parametrically model the
HSTs and generate various nose shape models by changing the design variables. Then, results of the
aerodynamic drag force, lift force, noise, etc., are obtained through the numerical simulation after
the model is divided into grids. The multi-objective optimization algorithm is used for optimization
calculations until convergence, and a better performing HST model is obtained. The optimization
process is shown in Fig. 10.

Figure 10: Flow chart of multi-objective aerodynamic optimization for the HST

Direct optimization using multi-objective optimization must be performed on an integrated
platform. The platform generates a model through parametric modelling when the samples of the
next generation or the following position are obtained from optimization. The grid is then generated
automatically, and the numerical simulation is run to extract the results. Otherwise, the optimization
efficiency will be greatly decreased if the intermediate process is artificially manipulated. Liu et al. [64]
integrated CATIA, ICEM, and FLUENT to build a multi-objective optimization platform for HST
nose shapes using the Isight® software. Parametric modelling is realized through CATIA macro
commands. Then, grid generation and numerical simulation are performed by ICEM and FLUENT,
respectively. Moreover, a coupler is built to exchange and transfer data in the middle process.
Five control lines of nose shape are selected as the design variables, and the optimization goal is
to minimize the aerodynamic resistance and dipole noise source of the train. The multi-objective
automatic optimization design of the HST was carried out using the optimized design platform, and
the optimization effect is remarkable. Compared with the original train, the aerodynamic resistance of



1474 CMES, 2023, vol.137, no.2

the optimal model is reduced by 4.5%, and the noise is reduced by 5.0 dB. Li et al. [76] built a multi-
objective optimization platformto optimize the nose height, slenderness ratio, and longitudinal profile
of the train nose shape. The aerodynamic drag forces and the absolute value of lift forces were taken
as the optimization objectives, and the NSGA-II algorithm was employed for optimization design.
Finally, the aerodynamic shape of the HST nose with better all-around performance was obtained.
The software integration method is shown in Fig. 11. Zhang et al. [68,69] established an efficient
multi-objective aerodynamic optimization design platform to carry out design for the streamlined nose
shape. The main control points and lines (C1∼C5) of the train nose, include the nose tip, driver’s cab,
and cowcatcher, to reduce the aerodynamic resistance of the train when it is running at super high
speed, as shown in Fig. 8b. Meanwhile, the running safety of the HST in a crosswind is improved
through optimization. Yu et al. [91] also adopted a similar approach for multi-objective optimization
of the nose shape. Five design variables were extracted to optimize the aerodynamic resistance and
wheel load reduction rate. The optimal scheme could reduce the aerodynamic resistance by up to 4.2%
and the wheel load reduction rate reduced by up to 1.7%. Sun et al. [84] adopted the modeFRONTIER
multi-objective optimization platform to integrate SCULPTOR and FLUENT. SCULPTOR was
used for mesh deformation, FLUENT was employed for numerical simulation, and the optimization
algorithm adopted MOGA-II of modeFRONTIER. The nose shape of CRH3 was optimized with
four variables: nose height, nose forward, nose thickness, and nose top channel. The optimization
objective is the aerodynamic resistance of the vertical vehicle.

Figure 11: Multi-objective optimization platform for HSTs

Direct optimization utilizing multi-objective optimization algorithms typically needs numerous
samples and dozens or even hundreds of iterations to converge. The massive scale and intricate
geometry of the HST geometric model result in a high computational cost for numerical simulation,
which lengthens the optimization cycle. Meanwhile, the direct optimization strategy strongly depends
on the optimization algorithm. The performance of the algorithm directly determines the convergence
speed and optimization results of the multi-objective optimization. If the optimization algorithm is
poor, it is more likely to fall into the local optimum or even diverge. Therefore, several researchers
started investigating aerodynamic multi-objective optimization utilizing surrogate models that were
motivated by aerodynamic optimization in other domains.

5 Multi-Objective Optimization Using Surrogate Model

Aerodynamic multi-objective optimization employing a surrogate model emerges as a solution
to the optimization cost issue and proves to be extremely effective at reducing the length of the
optimization design cycle. The surrogate model was initially applied to the structural optimization,
and the response surface model was mainly used. It penetrated the field of aerodynamic optimization
design after the advent of multidisciplinary design [92].
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5.1 Surrogate Models with More Applications
The radial basis model (RBF), Kriging model, neural network, and support vector regression

(SVR) are widely used in aerodynamic multi-objective optimization [93–95]. In the field of HSTs
aerodynamic optimization, the Kriging model, neural network and SVR model are mainly used.

5.1.1 Kriging Surrogate Model

The establishment of the standard Kriging surrogate model is as follows:

The design variables of the optimization problem are

x = {
x(1), x(2), · · ·, x(n)

}T
(4)

The basis function of the Kriging model is [96]

ψ = exp

(
−

k∑
j=1

θj

∣∣x(i)
j − xj

∣∣2

)
(5)

where k is the number of variables; θ is the weight, and the bandwidth of the basis function can be
changed.

The actual response to the optimization problem is

y = {
y(1), y(2), · · ·, y(n)

}T
(6)

Assuming the response comes from a random process, its expression is

Y = (
Y(x(1)), Y

(
x(2)

)
, · · ·, Y

(
x(n)

))T
(7)

The correlation between random variables is correlated with each other using basis functions, and
the relationship is as follows [96]:
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According to the correlation relationship between variables, the correlation matrix of all observa-
tion points is established
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Then for an unknown vector, its response value can be expressed as [96]

ŷ (x′) = μ̂ + Ψ TΨ −1
(
y − 1μ̂

)
(10)

where ϕ is the correlation vector between the point x and the prediction point x′, the expression of ϕ is
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μ̂ is the mean of the random process

μ̂ = 1TΨ −1y
1TΨ −11

(12)
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In addition to the standard Kriging model, the Gradient-Enhanced Kriging (GEK), Co-Kriging
model, Hierarchical Kriging (HK), etc., are widely used in the field of aircraft aerodynamic optimiza-
tion design [97].

5.1.2 Neural Network Surrogate Model

A neural network is an operational model composed of a large number of nodes, and the specific
output function of each node is called an activation function σ . The connection between nodes
represents a weighted value for the signal passing through the connection, called weight W . The output
of the network is different due to the different connection methods, weights, and activation functions
[98–100]. The loss function is a non-negative real-valued function, which can quantify the gap between
the network output and the real target, and plays a vital role in the neural network training process.
The neural network usually approximates a particular algorithm or function, and the training process
roughly includes forward propagation, error backpropagation, and weight update [99–101].

The neural network model contains input, hidden, and output layers. Meanwhile, each layer is
composed of multiple neurons. The sample is defined as (x, y), and the input vector is x = (x1, x2, . . . ,
xm)T, where m is the dimension of the input layer. The output vector is f = (f 1, f 2, . . . , f c)T, where c is the
dimension of the output layer. Assuming that the kth (k = 1, 2, ..., L) hidden layer contains nk neurons,
the corresponding hidden layer vector is h=(h1, h2, . . . , hk)T. Wk = (

wk
ij

)
nk×nk−1

and WL+1 = (
wL+1

ij

)
c×nL

are weight matrixes between the (k-1)th hidden and kth hidden layer, the Lth hidden and output layer,
respectively. After then, the output of each layer is⎧⎪⎨
⎪⎩

h1 = σh1

(
W 1x + a1

)
hk = σhk

(
Wkhk−1 + ak

)
f = σc

(
WL+1hR + aL+1

) (13)

where a is the offsets, σ is the activation functions [102].

The mean square error E = 1
2

∑ ‖f − y‖2 is adopted as the loss function. The weight W and the

offset a are continuously updated until the E no longer changes [102].

Wk = Wk − η
∂E

∂Wk (14)

ak = ak − η
∂E
∂ak

(15)

The value of the loss function is only related to the weight W and offset a in the network. The loss
of the network depends entirely on the structural parameters of the network. Determining the optimal
state of the neural network is equivalent to finding the neural network parameters that minimize the
loss function [99–101].

5.1.3 SVR Surrogate Model

Support vector machine is a learning system proposed by Vapnik [103] based on the principle of
structural risk minimization using a linear function hypothesis space in a high-dimensional feature
space. The SVR model achieves effective conduction reasoning from training samples to prediction
samples by avoiding the conventional approach from induction to a deduction. The SVR model needs
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to define a loss function, which can ignore the error within a specific range of the actual value, that is,
the ε insensitive loss function [103,104].

The sample set is (xi, yi), i = 1, 2, . . . , n. For the nonlinear regression problem, the SVR uses the
nonlinear mapping Φ to map the data to the high-dimensional feature space and then performs linear
regression in the high-dimensional feature space. According to the theory of functional correlation, as
long as a kernel function K(xi, xi) is found to satisfy the Mercer condition and make K(xi, xi) � {Φ(xi)
· Φ(xj)}, the nonlinear transformation can be realized linear regression of [105]. The dual form of the
optimization problem is [104]

L (αi, βi) = ε

n∑
i=1

(αi + βi) − yi

n∑
i=1

(αi − βi) + 1
2

(αi − βi)
(
αj − βj

)
K

(
xi · xj

)
(16)

subject to constraints
n∑

i=1

αi =
n∑

i=1

βi, 0 ≤ αi ≤ C
n

, 0 ≤ βi ≤ C
n

, i = 1, . . . , n (17)

where C is the penalty parameter, α and β are Lagrangian multipliers.

The regression estimation function is [104]

f (x) =
n∑

i=1

(αi − βi) K (xi · x) + b (18)

The bias term b is given by

b = yj −
n∑

i=1

(αi − βi) K
(
xi · xj

)
(19)

The above is the standard SVR model, and there are further developed models on this basis
[106,107]. Shao et al. [107] proposed ε-twin support vector regression (ε-TSVR) in 2013. Compared
with standard SVR and TSVR [106], it has higher accuracy under the premise of shorter training time,
especially for nonlinear problems.

5.2 Construction Methods of Surrogate Models
According to the construction method used in the aerodynamic optimization process, there are two

groups of surrogate models. Construction Directly: Surrogate model is constructed using the samples
obtained from sampling directly without updating. Construction Iteratively: Samples are obtained by
sampling as the initial sample set to establish the initial surrogate model. Then the model is iterated
by adding samples until the training results satisfy the predetermined criteria.

5.2.1 Construction Directly

Muñoz-Paniagua et al. [18] optimized the pressure wave and the aerodynamic resistance when the
train travelled through the tunnel. Experiments (DOE) were conducted using the Latin Hypercube
Design (LHD) method, and 15 samples were drawn to build a neural network surrogate model. The
prediction error of the surrogate model was less than 4%. Finally, the genetic algorithm is employed to
perform multi-objective optimization using the neural network surrogate model, and an HST model
with better all-around aerodynamic performance was obtained. The paper also conducted a sensitivity
analysis of design variables based on the surrogate model. The same method was also adopted to
optimize running stability in the crosswind and pressure pulse from trains passing by each other [85].
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Ku et al. [28] established a response surface model based on different lengths of the streamlined nose to
optimize the micro-pressure wave at the tunnel exit. The Broyden Fletcher Goldfarb Shanno (BFGS)
algorithm was employed, which reduced the micro pressure wave by 18%∼27%. Li et al. [58] established
a Kriging model with 26 samples and verified the accuracy of the surrogate model by cross-validation
mothed. The results showed that the prediction error of the aerodynamic drag of the whole train was
about 6.0%, and the prediction error of the aerodynamic lift force of the tail car was the largest. Then,
the NSGA-II algorithm was employed to carry out multi-objective optimization using the Kriging
model, and the aerodynamic drag force of the HST was reduced by 3.6%. Zhang et al. [88] established
an SVR model with 20 samples in combination with the VMF parameterization method, involving
five design variables and two optimization objectives. Two samples were selected as the verification
set. If the prediction error of the surrogate model was larger than 5%, the hyperparameters C, ε, etc.,
of the SVR model were optimized until the error standard was satisfied. The aerodynamic drag and
aerodynamic lift force of the optimal solution are obtained through optimization reduced by 10.5%
and 35.7%, respectively. Yuan et al. [77] carried out multi-objective aerodynamic optimization of HSTs
through the neural network surrogate model, but the method is similar to Zhang et al. [88]. The neural
network parameters were updated until the model prediction error satisfied the preset requirements.

The advantage of directly constructing the surrogate model is that there is no need to increase the
sample size to retrain the model repeatedly, and the steps are relatively simple. It does, however, have
some drawbacks. For example, the prediction accuracy of the surrogate model cannot be guaranteed,
which may affect the optimization results. Using a fixed validation set to test whether the prediction
accuracy of the updated surrogate model satisfies the requirements may lead to the high prediction
accuracy of the model only at this position. The accuracy of the optimal solution, on the other hand,
cannot be guaranteed. Therefore, many scholars improve the robustness of the surrogate model by
adding additional samples, particularly near the optimal solution, which significantly improves the
efficiency of multi-objective optimization.

5.2.2 Construction Iteratively

Vytla et al. [108] defined the Expected Improvement Value (EIV) parameter and used 55 sample
points to establish the initial surrogate model. If the EIV of the optimal solution obtained by
optimization did not meet the requirements, then added two samples and built the next generation
model until the EIV requirements were satisfied. Finally, the relationship between the five design
variables and the optimization objectives was established through the Kriging surrogate model, and the
aerodynamic resistance and aerodynamic noise of the HST were optimized using the hybrid Genetic
Algorithm and the Particle Swarm Optimization (GA-PSO) algorithm. Muñoz-Paniagua et al. [109]
employed the DOE method to expand the sample design space according to the optimization results
and added the samples to update the surrogate model after obtaining the union set, as shown in
Fig. 12. Yao et al. [50] established the standard SVR model using 66 initial samples and selected
six samples in the Pareto solution set for verification. One of the verification points did not meet
the requirements, so researchers added 30 samples to the initial sample set and established a second-
generation model, which achieved excellent results. Unfortunately, the paper did not introduce the
selection method of 30 samples. The cross-validation technology was adopted to establish the Kriging
model [86], and the prediction error was used as the evaluation criterion. If the preset requirements
were not met, the samples in the optimized solution set would be added to the sample set to establish
the next-generation surrogate model. Still, the paper did not detail select samples from the Pareto
solution set. Yao et al. [49,60,73,110] adopted initial samples to establish standard Kriging or cross-
validation Kriging (CV-Kriging) models and took the preset samples or samples of the Pareto front
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set for verification. The limit of the prediction error was defined as the aerodynamic drag and lift
force less than 1% and 5%, respectively. The samples of the Pareto front set were added to the sample
set to establish the next-generation Kriging model if the accuracy of the model cannot satisfy the
requirements simultaneously, as shown in Fig. 13. In addition, literature [61,63,67,87] also adopted
a similar method of adding samples, selecting points from the Pareto front set for verification, and
adding them to the sample set if the accuracy does not satisfy the preset criteria.
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Selecting the points from the Pareto front set is a method that is widely used and works well
at present, which can make the model converge to the optimal solution faster and improve the
optimization efficiency. However, how to effectively select one or more samples to add to the sample
set, the sample infill criterion, is crucial. Yao et al. [79] introduced a sample infill criterion in the
multi-objective aerodynamics of the HST. For the selection of the optimal one, the sample with a
balanced aerodynamic drag force of the whole train and the aerodynamic lift of the tail car is preferred.
Zhang et al. [111,112] further proposed a sample infill criterion, which selected the best point of each
objective in the Pareto solution set for verification and added it to the training set to update the agent
if the prediction error was too large. Dai et al. [113] defined the calculation method of comprehensive
optimization rate T . The comprehensive optimization rate of all points in the Pareto front solution set
was obtained and taken the largest one as the added sample. This sample infill criterion could give the
surrogate model higher accuracy in the optimal position of the preferred target and be more conducive
to finding the desired optimal solution.
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In addition to adding samples in the Pareto front set, there are minimizing the response surface
criterion and maximizing the expectation criterion. The latter is widely used in constructing the
Kriging model because it can predict the variance of unknown points. Some scholars are also exploring
other sample infill criteria for constructing surrogate models in the field of aerodynamic optimization
of HSTs. Sun et al. [74] proposed a two-point infill criterion based on the improvement of the research
of Gao et al. [114]. The genetic algorithm was employed to search the global forecast standard
deviation, and the two points with the largest forecast standard deviation were obtained as adding
points. The surrogate model was updated until the preset requirements were satisfied.

The optimization results of the aerodynamic optimization design using the surrogate model are
heavily reliant on the prediction accuracy of the model, and a reasonable sample infill criterion can
improve the model accuracy and facilitate the convergence of multi-objective optimization. It is also
one of the most active research areas, with the goal of developing and proposing a sample infill criterion
suitable for aerodynamic multi-objective optimization of HSTs.

5.3 Aerodynamic Multi-Objective Optimization in the Field of Aircraft
Aerodynamic multi-objective optimization in the field of aircraft is the most recent development,

and there are more mature research methods and technologies. Laurenceau et al. [115] adopted the
Kriging model, the direct GEK model, and the indirect GEK model to predict the aerodynamic
force of the RAE2822 airfoil. The research showed that the prediction accuracy of the two GEK
models is better than that of the standard Kriging model under the same number of sample points.
Han et al. [116] and Chen et al. [117] employed the GEK model to carry out aerodynamic optimization
design on ONERA M6 and NACA0012 and obtained airfoils with better aerodynamic performance.
Compared with the standard Kriging and quasi-Newton method models, the GEK model had more
advantages in terms of convergence speed and optimization results. Shu et al. [118] found that the
accurate judgment of the dominance state between the non-dominated solutions in the late stage
of optimization greatly influenced the convergence efficiency of the multi-objective optimization
algorithm. Then the two-stage update strategy was proposed to reduce the high cost of optimization,
which reduced the number of high-precision samples required.

Further, low-fidelity and high-fidelity sample data were introduced to establish a multi-fidelity
surrogate model in order to improve the efficiency of optimization and alleviate the curse of dimen-
sionality in the refined aerodynamic design of aircraft. The low-fidelity samples are used to model
the changing trend of the characterizing function in the multi-fidelity model, and a small number
of high-fidelity samples are adopted for correction, thereby reducing the number of high-fidelity
samples required to construct an accurate surrogate model and improving efficiency [119]. The multi-
fidelity surrogate construction methods mainly use the scale function, the space map, and the HK
model. Han et al. [120] developed a multi-level hierarchical Kriging (MHK) based on the two-
level Kriging model. The recursive method was adopted to build Kriging models with different
degrees of fidelity from lower to higher until the last level was completed. The MHK optimization
efficiency had been further improved compared with the two-level HK model. Some results are
shown in Fig. 14. Zhou et al. [121] proposed an individual update strategy considering the estimation
uncertainty of multi-fidelity surrogate models and a population update strategy considering the degree
of optimization solution dispersion, effectively reducing the cost of optimization. Han et al. [120]
and Abdallah et al. [122] carried out aerodynamic multi-objective optimization on NACA0012 and
separated turbine blades using the HK model. The results showed that the HK model could overcome
the shortcomings of the traditional Kriging model with low global accuracy and the prediction
accuracy of the HK model is higher.
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Figure 14: Comparison of pressure distributions obtained from different methods

The geometric shape of HSTs is relatively complex compared with most aircraft. The complex
shape dramatically increases the number of grids, and the numerical simulation scales are generally
larger than that of aircraft. In the field of aerodynamic optimization for HSTs, most studies optimize
the nose shape of HSTs to improve the comprehensive aerodynamic performance using the standard
Kriging model. The optimization efficiency is slightly lower than the GEK and HK models widely used
in the aircraft field. Therefore, it is urgent to develop a more efficient and convenient parameterization
method for dealing with complex shapes and introduce more efficient Kriging methods to optimize
the nose shape of HSTs.

6 Conclusion and Outlook

The research status and progress of aerodynamic multi-objective optimization of HSTs, including
the parameterization method, multi-objective optimization algorithm, calculation method, and sur-
rogate model technology, are summarized. Overall, there are numerous methods for multi-objective
aerodynamic optimization of HSTs, the majority of which achieved significant effects. Based on the
research overview provided above, the multi-objective aerodynamic optimization of HSTs warrants
further investigation in the following directions:

(1) The current multi-objective aerodynamic optimization design relies on the user’s experience
to select the characteristic parameters of the train nose shape to reduce the calculation scale of the
optimization problem. As a result, the design space is limited, and the nose shape with relatively
large deformation and its aerodynamic performance cannot be achieved. It is possible to study and
develop intelligent identification technology for the characteristic parameters of the HST nose shape,
to broaden the range and interval of design variables, and to explore the potential of nose shape
optimization in the broader spectrum.

(2) The multi-objective aerodynamic optimization of the HST nose shape focuses primarily on
the train aerodynamic force and noise in the open air, with less involvement in other operating
environments. However, the operating environments of the HSTs are complex and changeable, and
it is preferable to avoid situations in which the aerodynamic performance is excellent in one operating
condition but poor in another. Therefore, multi-objective aerodynamic optimization of HSTs in
multiple operating environments should be regarded as one of the important research directions.

(3) The prediction accuracy of the surrogate model has a large impact on the optimization
results of the aerodynamic optimization design using the surrogate model. Meanwhile, the surrogate
model is an interpolation technique, and increasing the samples reasonably can effectively improve
the accuracy of the model. Therefore, developing the sample infill criteria is a worthwhile research
direction to improve the accuracy of the surrogate model and the efficiency of multi-objective
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optimization, particularly for problems requiring large-scale numerical simulations such as multi-
objective aerodynamic optimization of HSTs.

(4) Most studies carry out aerodynamic optimization using the standard surrogate model in the
field of HSTs, which is relatively backward compared with the earlier application of aerodynamic
multi-objective optimization in the aerospace industry. To improve the efficiency of aerodynamic
optimization, it is necessary to learn from efficient optimization strategies in the field of aircraft and
develop efficient parameterization and optimization methods in combination with the particularity
of HST.
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