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ABSTRACT

In today’s world, smart electric vehicles are deeply integrated with smart energy, smart transportation and smart
cities. In electric vehicles (EVs), owing to the harsh working conditions, mechanical parts are prone to fatigue
damages, which endanger the driving safety of EVs. The practice has proved that the identification of periodic
impact characteristics (PICs) can effectively indicate mechanical faults. This paper proposes a novel model-based
approach for intelligent fault diagnosis of mechanical transmission train in EVs. The essential idea of this approach
lies in the fusion of statistical information and model information from a dynamic process. In the algorithm, a novel
fractal wavelet decomposition (FWD) is used to investigate the time-frequency representation of the input signal.
Based on the sparsity of the PIC model in the Hilbert envelope spectrum, a method for evaluating PIC energy ratio
(PICER) is defined based on an over-complete Fourier dictionary. A compound indicator considering kurtosis and
PICER of dynamic signal is designed. Using this index, evaluations of the impulsiveness of the cycle-stationary
process can be enabled, thus avoiding serious interference from the sporadic impact during measurements. The
robustness of the proposed approach to noise is demonstrated via numerical simulations, and an engineering
application is employed to validate its effectiveness.
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1 Introduction

In recent years, the rapid development of artificial intelligence and advanced signal processing
technologies have attracted substantial attention in smart cities, which facilitate related fields from
traditional ways to intelligent applications. Electrical vehicles (EVs) are of great importance to global
environmental protection because of their zero exhaust emissions [1–3]. Compared with fuel vehicles,
the mechanical transmission structure of electric vehicles has changed significantly [4,5]. Because of
the use of a motor drive, EVs no longer use complex gearbox. However, gears, bearings and other
mechanical components are retained [6]. These parts are still working under harsh conditions, and
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their condition monitoring is still important to guarantee the safe operation of EVs. Fortunately,
in EVs, the arrangement of sensors is more convenient, which makes the acquisition of monitoring
information more extensive [7–10]. On the other hand, the computing and processing capabilities of
EVs are also increasing, which provides a good basis for the deployment of maintenance measures
based on monitoring information [11,12].

Vibration monitoring is an important mean to prevent mechanical downtime [13–15], but how
to obtain the weak fault information from the original monitoring data has been a major challenge
in the scientific community [16,17]. In terms of kinematics, the damage to mechanical components
corresponds to the periodic impact characteristics (PICs) in the vibration signal [18,19]. A large
number of studies have shown that the multi-source vibration and random noise in the vehicle have
caused great difficulties in PIC extraction. In order to identify faults at a low signal-to-noise ratio
(SNR), many signal processing methods were proposed [20].

At present, scholars are working in two directions. One is the new signal decomposition method,
the other is the intelligent identification method of fault characteristics. In terms of signal decom-
position, wavelet transform [21–23], EMD [24–26], sparse representation [27–30], and their latest
variants have been used to extract key features from noisy observations [31–33]. In order to reduce the
dependence of diagnosis results on the experience of supervisors, many feature evaluation indexes have
been invented, which are mainly used to correctly identify the components related to mechanical faults
from the decomposition results [34]. A typical example of these indexes is spectral kurtosis [35,36].
Although new indicators emerge in an endless stream, the common shortcoming is that they rely too
much on the statistical characteristics of the signal itself and ignore the model information behind it.
For example, when the monitoring signal is accompanied by strong sporadic impulses, even if artificial
intelligence [37–39] based methods are used, the correct feature extraction results cannot be guaranteed
in many engineering scenarios.

In this paper, a novel model-based approach, enhanced by sparse representation, is proposed
for mechanical fault diagnosis in EV. In the signal decomposition, the fractal wavelet representation
is used, which is an efficient signal decomposition tool with centralized multi-resolution ability. In
feature recognition and selection, the complex harmonic characteristics of PICs in the wavelet envelope
domain are used, and a sparse representation enhancement method based on an over-complete Fourier
dictionary (OFD) is proposed. The method realizes the quantitative evaluation of the proportion of
PICs in the signal. Through the above measures, the robustness of the proposed method to multi-
component coupling signal and noise is greatly enhanced. The superiority and effectiveness of the
proposed method are verified by numerical simulation and engineering experiments.

2 Centralized Multi-Resolution Analysis

Wavelet transform is an effective tool for the multi-scale decomposition of signals. However, the
center frequency of each subspace of the classical wavelet transform is different. In this section, a
novel fractal wavelet decomposition (FWD), based on a dual tree wavelet basis [40], is introduced.
FWD, an enhancement of wavelet packet transform, is a wavelet decomposition method with spectral
focusing capability. FWD can realize multi-resolution analysis around some fixed center frequencies.
For the convenience of discussion, Support{·} and CF{·} are utilized to represent the theoretical spectral
passband and center frequency of the wavelet packet, respectively.
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2.1 Data Augmentation Methods
Translation sensitivity is a significant defect of classical discrete wavelet decomposition, which

often results in false features in the decomposition results. Maximal overlap decomposition strategy
can avoid this defect, but the computational efficiency is significantly reduced. Dual tree wavelet
transform (DTWT), proposed by Kingsbury, achieves a good trade off between accuracy and
efficiency and the merit of translation invariance (TI) is realized. The wavelet of DTWT is a complex-
valued function, as follows.

ψC(t) = ψRe(t) + j · ψ Im(t) (1)

where j is the imaginary number, defined as j = √−1 and the two wavelet generators construct a
Hilbert transform pair, which is given as:

ψ Im(t) = Hilbert{ψRe(t)} (2)

2.2 Motor Fault Diagnosis Methods Based on Current Signal
Although DTWT can alleviate the distortion of TV to the extracted features, it cannot solve the

problem of transition band feature extraction in dyadic wavelet subspace. To address this problem,
centralized multiresolution (CMR) is proposed by Chen [33]. The essential idea of CMR is the
construction of an implicit wavelet packet (IWP). Let {x(n)|n = 1, . . . , N} be a digitized signal of
length N and dyadic wavelet packets (DWPs) at j-stage decomposition be {dwpj,1, . . . , dwpj,2j} with

CF{dwpj,1} < CF{dwpj,2} < · · · < CF{dwpj,2j} (3)

IWPs can be generated using

iwpj−1,k(n) = dwpj,2k(n) + dwpj,2k+1(n) (4)

A (j + 1)-stage DTWT can generate 2j − 1 IWPs. The spectral support and center frequencies of
WP and IWP are demonstrated in Table 1. The CF of the IWP is just located at the edge of the spectral
passband of the DWP, which can make up for the requirement of transition band feature extraction.

Table 1: Comparisons of passband and center frequencies of DWP and IWP

Subspace Center frequency Band width

DWP
k + 0.5

2j
fs

1
2j

fs

IWP
k

2j−1
fs

1
2j−1

fs

2.3 Fractal Wavelet Decomposition
As shown in Eq. (4), the wavelet generators of IWP are constructed based on those of WPs. There-

fore, the property of TI can be preserved. The distribution of IWPs as the scale of analysis deepens
is shown in Fig. 1. There are IWP sets in which the IWPs share an identical CF and their spectral
resolutions are constantly refined. For example, CF{iwp0,1} = CF{iwpj,2j−1} and Support{iwpj+1,2j} =
Support{iwpj,2j−1}/2 hold or j ∈ Z

+ (see Fig. 2).
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Figure 1: Centralized multiresolution analysis
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Figure 2: CMR provided by set of IWPs with identical CFs

3 Sparse Fourier Decomposition for Cycle-Stationary Process
3.1 Fundamentals of Sparse Representation

Compared with the classical basis expansion method, the sparse representation (SR) allows the
addition of other optimization constraints, which can better suppress the monitoring noise. For a
discrete signal {x(n)}, the �1 − norm norm, �2 − norm, and ∞ − norm are expressed as below:

||x||1 =
∑N

i=0
|x(n)| (5)
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||x||2
2 =

∑N

i=0
|x(n)|2 (6)

||x||∞ = max
1≤n≤N, n∈Z

|x(n)| (7)

Let w be the representation coefficient vector to be solved, a typical optimization problem of SR
is formulated as

arg min
x

||w||1 s.t. y = Aw (8)

where the matrix AN×K (N � K) is a redundant dictionary with predetermined atoms and y is the
observation signal. As stated above, the existence of noise is inevitable in the condition monitoring of
EVs, a more feasible problem Pε

1 can be formulated as

Pε

1 : arg min
w

||y − Aw||2
2 + λ||w||1 (9)

where λ is the Lagrangian parameter. This kind of problem is called the basis pursuit problem in the
literature.

3.2 Sparse Fourier Decomposition (SFD)
In fast Fourier transform (FFT), an orthonormal basis is used for decomposing the input signal.

The spectral interval for adjacent sinusoidal atoms is �f = fs/N. The basis for FFT can be expressed
as

A = [
φ1 φ2 . . . φN

]
N×N

(10)

The column vector φi = exp(j ·2π(i−1)n/N), in which 1 ≤ n ≤ N, is a complex-valued sinusoidal
atom. The Picket fence effect will occur for signals that are sampled at non-integer periods. In order
to overcome this disadvantage, an over-complete Fourier dictionary (OFD), shown in Eq. (11), is
proposed to represent the signal.

ARFFT =
[

exp
(

j
2π

N
mn

)]
N×M

(11)

where m = R−1k(0 ≤ k ≤ RN − 1) and R is a positive integer. Equivalently AR is an OFD with
redundancy R. In this paper, to solve the Pε

1 problem, the strategy of split augmented Lagrangian
shrinkage algorithm (SALSA) can be employed.

ŵ = arg min
w

1
2
||y − ARFFTw||2

2 + ||λ � w||1 (12)

where λ is a vector, which contains Lagrangian parameters, with (λ�w)i = λi ·wi. To solve this problem,
a strategy of variable splitting via introducing new variables, can be utilized and is given as:

wopt = arg min
w,u

1
2
||y − ARFFTw||2

2 + ||λ � u||1 s.t. u − w = 0 (13)

On the basis of augmented Lagrangian theory, the above problem has an equivalent matrix form,
given as:

arg min
z1,,z2

1
2
||y − ARFFTz1||2

2 + ||λ � z2||1 s.t. Cz − b = 0 (14)

where C = [
I −I

]
, b = 0, and z =

[
z1

z2

]
.
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3.3 Numerical Implementation of SFD
Let H be the complex conjugate of a matrix and the thresholding function Soft_Thres(x, TV) be

defined as in Eq. (15), the SFD algorithm can be summarized as in Table 2. Although iterations are
employed in the algorithm, practices have proved that the whole algorithm can be completed in tens
to hundreds of microseconds for signals with less than 10000 samples.{

y = max([|x| − TV , 0])
y = xy/(y + TV)

(15)

Table 2: Algorithm of SFD based on OFD

Algorithm: SFD using OFD

1: Input: λ = 1, μ, NITR, d = 0N×1, w(0) = AH
RFFTy

2: for i = 1 : NITR do
3: u = Soft_Thres(w + d, λ/(2μ))

4: d = AH
AFFT(y − ARFFTu)/p

5: w = d + u
6: End for
7: Output: w

4 Performance of SFD in Representation of Harmonic Component

When localized damage occurs in mechanical parts, periodic impacts are often generated in the
monitoring signal, which causes multiple harmonics in the envelope spectrum. In order to evaluate the
amount of PIC in the signal, it is necessary to calculate the sum of the energy of each harmonic.

4.1 SFD of Simple Harmonic Wave without Noises
A sinusoidal signal y(t) = Ac cos(2πfct + π/6), in which Ac = 1 and fc = (500 + 0.21)Hz, is

synthesized as the dynamic signal without measurement noise. The sampling rate and the sampling
number are set as 1000 Hz and 1000. The signal y(t) in the time domain and spectral domain are
shown in Fig. 3. Because this signal is not a positive periodic sampled, there is a significant picket
fence effect in the FFT spectrum.

Applying the SFD algorithm on the synthesized signal by setting R = 10 and NITR = 100, the
associated spectrum is shown in Fig. 4. Only three spectral lines (250.1, 250.2 and 250.3 Hz) with a
frequency close to the actual 250.21 Hz have large amplitudes. The amplitudes of other frequencies in
the range (245, 255) are smaller than 10−3. The reason for this phenomenon is that SFD is described
as a Pε

1 problem, which makes most of the linear representation coefficients non-zero.

In contrast to the FFT spectrum where the energy of the harmonic components leaks in the entire
frequency domain, the energy of the signal in the SFD spectrum is compressed in a narrow band with
a bandwidth of only 0.2 Hz. An approximation signal ỹ (t) can be reconstructed using three spectral
lines. The energy ratio of ỹ (t) to y(t) is 99.89%, and the related quantization error is ||y (t)− ŷ (t) ||∞ =
0.0275.

In order to demonstrate the performance of SFD, the spectrum is compared with the FFT
spectrum and the FFT spectrum with Hanning window. As shown in Fig. 5, the bandwidth of the
main lobe of the SFD spectrum is the smallest, and the decay rate is the fastest near the main lobe.
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On the other hand, it is found that the amplitude of the side lobe in the SFD spectrum is only about
1/1000 of that in the FFT spectrum. This shows that the SFD spectrum, based on the redundant
Fourier dictionary, has a good sparse representation ability for the harmonic components.

Figure 3: (a) Time domain waveform and (b) FFT spectrum of the synthesized noise-free signal

Figure 4: SFD spectrum of the synthesized signal
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Figure 5: Comparison of SFD spectrum, FFT spectrum and windowed spectrum of signal
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To analyze the impact of the redundancy of ARFFT on sparse representation results, different
redundancy values were tested. The SFD spectra with different values of redundancy are shown in
Fig. 6. In the case of R = 2, there are some side-lobes with large energy in the SFD spectrum. With
the increase of dictionary redundancy, the attenuation rate of side-lobe is accelerated, while the energy
occupied by the main-lobe becomes more prominent. On the other hand, the width of the main-lobe
also decreases with the increase of redundancy, and the number of spectral lines representing harmonic
components alone does not decrease. For example, when R = 50, the number of main-lobe lines is 5.

Frequency [Hz]
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pl
itu

de

Figure 6: SFD spectra with different values of redundancy

4.2 SFD of Noisy Harmonic Component
In order to test the ability of SFD spectra to characterize noisy harmonic components, white noise

is added to the simulation signal in the formula. The time domain waveform of a noisy signal yn(t) with
SNR = 10 dB is shown in Fig. 7. Because of the noise, the characteristic information of the harmonic
wave cannot be well identified.

Figure 7: (a) Time domain waveform and (b) FFT spectrum of the noisy signal
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The SFD spectrum, generated by the proposed method, is shown in Fig. 8. Due to the existence
of white noise, there are some prominent energy concentration regions in the SFD spectrum (Fig. 8a).
However, the spectral component of the harmonic component is still dominant, and there are only
three spectral lines in the main lobe (Fig. 8b). Comparing the spectral lines of the main-lobes in Figs. 4
and 8b, they are almost the same. An approximation signal ỹn (t) can be reconstructed using the spectral
lines in the main-lobe. The related quantization error between ỹn (t) and y(t) is ||y (t) − ŷn (t) ||∞ =
0.0542. The above analysis shows that the presence of noise does not affect the effectiveness of the
SFD method. That is, the harmonic components can still be sparsely represented.

Figure 8: (a) FFT spectrum with (b) zoom-in plot of the noisy signal

4.3 SFD of Periodic Impact Characteristics
In this subsection, the performance of SFD on PICs is validated. In the time domain, a typical

PIC can be modeled as

Pic (t) =
NI∑
i=1

imp (t − iT) (16)

where NI is the number of impulses in the signal and T is the interval between adjacent impulses. The
impulse in the PIC can be expressed as

imp(t) = e−βt sin(2πfrest) (17)

where β > 0 is the decaying rate and fres is the ringing frequency of the impulse. Let β = 60, fres =
160 + π , T = 0.9, a synthesized PIC and its noisy version (SNR = 20 dB) are shown in Fig. 9. The
SFD spectra of the two simulated signals are shown in Fig. 10. The bandwidth of the main-lobes of
each harmonic component is still very narrow, and the side lobes are rapidly attenuated. It can be
concluded from the above results that SFD still has a good sparse representation ability for cycle-
stationary processes such as PIC.
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Figure 9: Time domain waveform of the simulated noisy signal
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Figure 10: Comparison of PSD spectrum and FFT spectrum of the noisy signal

5 Proposed Fault Diagnosis Approach

In the condition monitoring of EV, the PIC caused by the local damage of mechanical parts can
be regarded as a multi-harmonic signal with noise in the envelope demodulation spectrum. Combined
with FWD and SFD introduced in this paper, an intelligent fault diagnosis method is proposed. Taking
the mechanical transmission chain and fault frequency and speed as prior knowledge, the procedure
of the algorithm is as below. For a wavelet packet wp(t), either a DWP or an IWP, the compound
impulsiveness indicator can be defined as below:

IMP{wp(t)} = sgn(PICER{wp(t), fc} − TPIC) · Kurt{wp(t)} (18)

where the operator Kurt{·} calculates the kurtosis value of the input signal, PICER{wp(t), fc} calculate
the energy proportion of PICs at the frequency fc, and sgn(·) outputs one for positive input and zero
otherwise. The optimal wavelet packet is selected based on the maximization of the IMP indicator.

6 Case Study of Fault Diagnosis
6.1 Descriptions of the Experiment

To verify the effectiveness of the proposed approach, a case study using actual signals from
engineering experiments, is investigated. The tested mechanical part is a roller element bearing with
slight peeling on the outer race. Specifications of the test bearing are shown in Table 3. This test
bearing was removed from a certain type of electric drive vehicle. It provides mechanical support for
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the drive shaft of the AC motor and works under heavy load. In this test, the bearing was placed in a
hydraulically driven loading device. Schematic diagrams of the test set-up are shown in Fig. 11.

Table 3: Specifications of the test bearing

Item Value

Contacting angle [◦] 0
Pitch diameter D [mm] 225
Roller diameter d [mm] 34
Roller number 17

Bearing support

Tachometer

Hydralic Cylinder

Hydralic Motor

A
cc

el
er

om
et

er

Testing Bearing

Outer Ring Peeling

Figure 11: Schematic diagrams of the experimental set-up

6.2 Descriptions of the Experiment
The time domain waveform and the FFT spectrum of a record of vibration signals are shown in

Fig. 12. It can be seen from the figure that there is a lot of noise, which complicates the identification
of fault features. The proposed method is applied to the acceleration signal. In the fault diagnosis
algorithm, fc = 57.8 Hz, TPIC = 0.5. The evaluated impulsiveness values of the decomposed wavelet
subspaces are shown in Fig. 13. An optimal wavelet subspace is selected. It is an implicit wavelet packet.
The central frequency and the theoretical passband are 400 Hz and [200, 600] Hz. The kurtosis value
of this IWP is 4.633. The associated time domain waveform and its envelope spectrum are shown in
Fig. 14. In the time domain waveform, it can be found that the frequency of the periodic impact is
very close to the ball pass frequency of outer-race (BPFO, Fig. 14a), and the energy proportion of the
PIC component in the envelope spectrum is 0.68 (see Fig. 14b).
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Figure 12: (a) Time domain waveform and (b) FFT spectrum of the noisy signal

Optimal Wavelet Packet

Figure 13: The impulsiveness values of the decomposed wavelet subspaces by the proposed method

6.3 Comparisons
If the indicator of PER is not calculated in the algorithm, the processing results are shown in

Fig. 15. The central frequency and the theoretical passband of the selected wavelet subspace are
5750 Hz and [5750, 5800] Hz. The kurtosis value of the extracted feature is 9.00. Although the subspace
extracted by the comparison method is significantly larger than that of the method proposed in
this paper, it is not a periodic impact feature to characterize the failure of mechanical parts. In the
envelope spectrum, even if the PSD algorithm proposed in this paper is used, there is no energy
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concentration region characterizing the harmonic components. The PER indicator of this wavelet
subspace is calculated as 0.17. This value is significantly less than 0.5, so the wavelet subspace is
identified as a non-periodic impact component and filtered out in the method proposed in this paper.
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Figure 14: (a) Time domain waveform and (b) PSD spectrum of extracted by the proposed method
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Figure 15: (a) Time domain waveform and (b) PSD spectrum of extracted features by the comparison
method

7 Discussion on the Sharp Resolution of SFD Spectrum

From the materials given above, it is known that the SFD spectrum has an extremely high
resolution. This is quite different from the classical windowed spectral analysis. According to the
Heisenberg uncertainty principle, the main lobe resolution and the side lobe attenuation rate cannot
be improved simultaneously. The SFD spectrum proposed in this paper is based on the principle of
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sparse representation and does not depend on the window function, which can ensure a very high
resolution of the main lobe while accelerating the rate of side lobe attenuation. Nevertheless, it is also
found that such improvements are limited and still cannot completely break through the constraints
of the Heisenberg uncertainty principle.

8 Conclusions

In this paper, the problem of PICs extraction is studied, which is the core problem in the
mechanical fault diagnosis of electric vehicles. In order to improve the accuracy and robustness of
fault feature identification, statistical information and model information in the monitoring signal
were combined comprehensively. A sparse Fourier decomposition method based on OFD is proposed,
which realizes the quantitative evaluation of the energy proportion of fault feature components
on the envelope spectrum in signal time-frequency representation. This model information plays
an important role in eliminating the interference of measurement noise in the analysis signal. The
effectiveness of the proposed sparsity-enhanced model-based fault diagnosis method is demonstrated
by numerical simulations and case studies.
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