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ABSTRACT

This article considers three types of biological systems: the dengue fever disease model, the COVID-19 virus
model, and the transmission of Tuberculosis model. The new technique of creating the integration matrix for
the Bernoulli wavelets is applied. Also, the novel method proposed in this paper is called the Bernoulli wavelet
collocation scheme (BWCM). All three models are in the form system of coupled ordinary differential equations
without an exact solution. These systems are converted into a system of algebraic equations using the Bernoulli
wavelet collocation scheme. The numerical wave distributions of these governing models are obtained by solving
the algebraic equations via the Newton-Raphson method. The results obtained from the developed strategy are
compared to several schemes such as the Runge Kutta method, and ND solver in mathematical software. The
convergence analyses are discussed through theorems. The newly implemented Bernoulli wavelet method improves
the accuracy and converges when it is compared with the existing methods in the literature.
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1 Introduction

The evolution and development of the contemporary world can’t be separated from mathematics.
Mathematics is related to nearly all human movement. A mathematical model is a helpful tool for
solving real-life problems. Application to determine the blowout of the transmittable disease model in
a particular region is one of the finest examples of this. Researchers started studying biological systems
over many years. These biological systems are usually in the form of a system of coupled ordinary
differential equations. Only a few of these biological models have exact solutions and are typically
intricate. Therefore, there is a necessity for a decent approximated solution. Numerical methods are
often the best choice for these systems as they will produce nonnegative solutions and describe these
systems’ dynamic behavior. In these systems, the specified variables commonly represent nonnegative
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quantities, such as the size of the population, number of chemical components, concentration, and
physical properties.

Due to technological advances in medical research, like vaccination and antibodies to viral
diseases, it was predictable that the spread of transmissible diseases would be overcome. But it didn’t.
The reason is that most of the developed countries have concentrated their research on cancer and
other incurable diseases. Consequently, infectious diseases still cause intense suffering and a high
mortality rate. Ebola, Yellow fever, Aids, Malaria, and other names have left a deep scar on the history
of humanity forever.

Among all the above viruses, Dengue fever is mainly extensive in Southern Asia. Dengue is
a complicated disease transmitted to humans through mosquitoes belonging to the Genus Aedes.
They exist in two forms: Dengue Haemorrhagic Fever (DHF) and classical dengue. The furthermost
problematic characteristic of dengue is that it can be triggered by four different serotypes known as
DEN1, DEN2, DEN3, and DEN4. If the person is infected with any one of the types will never
be infected by the same type again, a phenomenon called homologous immunity. Though, once the
human is infected by any of the above types, in about 12 weeks, he loses immunity to the other types,
known as heterologous immunity.

The mathematical modelling of Dengue fever is [1]:
dS (t)

dt
= μh (1 − S (t)) − αS (t) R (t)

dI (t)
dt

= αS (t) R (t) − βI (t)

dR (t)
dt

= γ (1 − R (t)) I (t) − δ1R (t)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

where S (t) represents the potential victims of the dengue virus (Suspectable), I (t) represents the people
who are already infected with dengue (Infected) and R (t) represents the recovered patients from the
dengue virus (Recovered), μh is the natural death rate of the human population, βh is the rate of
infection in the human population, α is the vaccine efficacy coefficient, γ is the recovery rate, δ1 is the
number of death among the susceptible population. Some of the numerical techniques implemented for
the SIR Model of Dengue fever are: M. Khalid et al. proposed a new approach called the Perturbation
Iteration Algorithm (PIM) [1]. Rangkutti et al. implemented Homotopy Perturbation method and
Variational Iteration method [2]. Mungkasi proposed an Improved Variational Iteration method for
the SIR Model of Dengue [3]. Umar et al. proposed a Stochastic numerical computing scheme with
artificial neural networks [4]. Lede et al proposed Euler and Heun methods [5].

Coronavirus disease (COVID-19) is a new disease generated by a recently recognized virus, Severe
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was first reported in Wuhan, China, in
December 2019 and was declared a pandemic by the World Health Organisation (WHO) on 11th March
2020. The transmission of viruses in human beings from the compartment of S(t) to the I(t) and from
the compartment of I(t) to the R(t) can be described by the set of three systems of non-linear ordinary
differential equations with only two constraint approximations.
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The simple SIR model for COVID-19 virus transmission is [6]:

dS (t)
dt

= −α0S (t) I (t)

dI (t)
dt

= α0S (t) I (t) − α1I (t)

dR (t)
dt

= α1I (t)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2)

where S(t) represents the fraction of Susceptible persons, I(t) represents the fraction of Infected
persons, R(t) represents the fraction of recovered persons, α0 is the infection rate and α1 is the removal
rate. Some numerical techniques implemented for the Coronavirus model are: Suba et al. implemented
the current mathematical models and numerical simulation of the SIR Model for coronavirus
(COVID-19) [6], Zeb et al. presented the mathematical model for coronavirus disease and a numerical
solution is obtained by the nonstandard finite difference (NSFD) scheme [7]. Annas et al. proposed
a stability analysis and numerical simulation of the SIR model for the COVID-19 pandemic [8]. ud
Din et al. implemented the numerical simulation using the Nonstandard finite difference (NSFD)
scheme [9]. Shahrear et al. imposed a mathematical analysis of the coronavirus outbreak [10].

TB (Tuberculosis) is an infectious epidemic usually produced by bacteria named Mycobacteria
Tuberculosis which outbreaks human lungs. In some situations, it can also affect the other parts of the
body, like the kidney, spine, skin, brain, etc. TB is spread from an infected person to an average person
through air droplets that are contaminated with germs. A person will become easily contaminated
when they breathe a few microorganism germs. TB-infected individuals can be diagnosed through
blood and skin tests. TB creates a high risk for HIV and diabetes patients. The signs of the live TB
disease include a cough that tests for more than three weeks, loss in weight, coughing up blood,
felt tiredness, exhaustion, chest pain, and night sweats. The World Health Organisation states that
Tuberculosis has infected one-third of the world population. In 2018, an estimated 10 million new
cases of TB disease were described, and a total of 1.5 million people died from TB worldwide. Apart
from this, 1.2 million estimated TB patients died HIV-negative, and 0.25 million died HIV-positive in
2018. A large number of TB patients died in the region of low- and middle-income countries (LMICs),
including India (27%), Nigeria (4%), Indonesia (8%), Pakistan (6%), Philippine (6%), Bangladesh (4%)
and South Africa (24%). Southeast Asia (44%) has reported most of the occurred cases of TB [11], even
though TB is a treatable transferrable disease using drug therapy [12].

The SIR Model of Tuberculosis is as follows [13]:

dS (t)
dt

= A − μS (t) − rI (t) S (t)
N

dI (t)
dt

= rI (t) S (t)
N

− (μ + a) I (t)

dR (t)
dt

= aI (t) − μR (t)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3)

where N = S + I + R, S(t) is the number of vulnerable individuals in the population at the time t, I(t)
is the number of infected individuals in the population at time t, R(t) is the number of individuals
who recovered in the population at time t, r is the rate of transmission of disease from susceptible
become infectious (0 ≤ r ≤ 1), a is the rate of recovery from infectious to recovered, A is the initial
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value, μ is the death rate. Some of the numerical techniques implemented for the Tuberculosis model
are: Side et al. proposed a numerical solution for transmission of Tuberculosis by the Runge Kutta
method [13]. Kanwal et al. implemented the three numerical techniques, which are the nonstandard
finite difference (NSFD), Runge-Kutta method of order 4 (RK4), and forward Euler (FD) scheme
[14]. Ibrahim et al. presented Homotopy Analysis method [15]. Das et al. studied the mathematical
transmission analysis of the model [16]. Ningsi et al. proposed Variational Iteration method [17]. The
epidemic model of childhood disease and the fractional model of vector-borne diseases and tumor
invasion and metastasis have been studied in [18–20]. The massive stirring and non-linear liénard
differential models have been investigated in [21,22].

The subject of wavelet appeared in the mid-1980s, influenced by ideas from both pure and
applied mathematics. In 1807, Joseph Fourier developed a method for representing signals with a
series of coefficients based on an analysis function. He laid the mathematical basis from which the
wavelet theory was developed. The first to mention wavelets was Alfred Haar in 1909 in his Ph.D.
thesis. The wavelet theory is a relatively renewed and emerging theory in mathematical research.
wavelet analysis is a great tool that significantly impacts study and engineering. The primary criteria
that draw researchers to the wavelet are orthogonality and effective localization. With the help of
wavelets that are mathematical operations, data may be divided into several frequency components,
each of which can then be analyzed at a different resolution. It is possible to employ wavelets as
a mathematical tool to extract information from a variety of data formats. Wavelets are based on
the fundamental theory of expressing a complicated function by a set of self-similar functions by
super positioning, a principle introduced by Joseph Fourier in the 1800s. They have advantages over
traditional Fourier methods in analyzing physical situations where the signal contains discontinuities
and sharp spikes. Bernoulli wavelet is one of the continuous basis wavelets with orthogonality, compact
support, etc. Due to these properties, wavelet methods yield better accuracy in the solution. Some of the
problems tackled by the wavelets collocation method on mathematical models arising in science and
technology are Laguerre, Hermite, and Legendre wavelets methods to solve some of the mathematical
models [23–31], the Bernoulli wavelets scheme for fractional delay differential equations [32] and
Fractional pantograph differential equations [33], Non-linear second-order Lane–Emden pantograph
delay differential mode solved by Bernoulli wavelets [34], Fractional Riccati differential equation [35],
Fractional order model of novel coronavirus outbreak [36], non-linear singular Lane–Emden type
equations arising in astrophysics are successfully tackled by Bernoulli wavelet [37], Designing of Morlet
wavelet as a neural network for a novel prevention category in the HIV system [38], Bernstein wavelets
for SIR epidemic infectious model [39], Bernstein wavelets for predator-prey dynamical system [40],
Bernoulli wavelets collocation method newly applied for different mathematical problems [41–44],
Bernoulli wavelets for Glucose-Insulin regulatory dynamical system [45], and Fibonacci wavelets [46].
The results of BWCS are compared with other methods, like the Runge Kutta method and ND Solver.
The results obtained in this paper are new and do not exist in the literature. This paper is organized as
follows: Section 2 gives the preliminaries of the Bernoulli wavelet, and its properties, Section 3 deals
with the functional matrix of the Bernoulli wavelet, and Section 4 reflects the method of solution and
application of the proposed method deals with Section 5. Lastly, Section 6 presents conclusions on the
new BWCS.
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2 Preliminaries of Bernoulli Wavelet and Its Properties

The Bernoulli wavelets are defined as [47]:

θn,m (x) =
⎧⎨
⎩2

k−1
2 b̃m

(
2k−1x − n̂

)
,

n̂
2k−1

≤ x <
n̂ + 1
2k−1

0, Otherwise

with

b̃m (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, m = 0
1√

(−1)
m−1

(m ! )2

(2 m) !
a2 m

bm (x) , m > 0

where m = 0, 1, 2, . . . , M − 1, n = 1, 2, . . . , 2k−1.

The coefficient
1√

(−1)
m−1

(m ! )2

(2m) !
a 2m

is intended for normality, the dilation parameter is f = 2−(k − 1)

and the translation parameter g = n̂ 2−( k−1 ). Here, bm (x) are the well-known Bernoulli polynomials

of order m, which can be described as bm (x) = ∑m

i=0

(
m
i

)
am−ixi, where ai, i = 0 , 1 , . . . , m are

Bernoulli numbers. Those numbers are a sequence of signed rational numbers that rise within the series
enlargement of trigonometric capabilities and can be defined by employing the identity,

x
ex − 1

=
∑∞

i=0
a i

x i

i !

Some initial Bernoulli numbers are:

a0 = 1, a1 = −1
2

, a2 = 1
6

, a4 = −1
30

, a6 = 1
42

, a8 = −1
30

, a10 = 5
66

, a12 = − 691
2730

,

a14 = 7
6

, a16 = −3617
510

, a18 = 43867
798

, . . .

with a2i+1 = 0, i = 1, 2, 3, . . .

Some initial Bernoulli polynomials are:

b0 = 1, b1 = −1
2

+ x, b2 = 1
6

− x + x2, b3 = x
2

− 3x
2

+ x3,

b4 = − 1
30

+ x2 − 2x3 + x4, b5 = −x
6

+ 5x3

3
− 5x4

2
+ x5,

b6 = 1
42

− x2

2
+ 5x4

2
− 3x5 + x6, b7 = x

6
− 7x3

6
+ 7x5

2
− 7x6

2
+ x7,

b8 = − 1
30

+ 2x2

3
− 7x4

3
+ 14x6

3
− 4x7 + x8, b9 = −3x

10
+ 2x3 − 21x5

5
+ 6x7 − 9x8

2
+ x9,

b10 = 5
66

− 3x2

2
+ 5x4 − 7x6 + 15x8

2
− 5x9 + x10, . . .
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Theorem 1 [48]: Let H be a Hilbert space and W be a closed subspace of H such that dim W < ∞
and {w1, w2, . . . , wn} is any basis for W . Let g be an arbitrary element in H and g0 be the unique best
approximation to g out of W . Then,

||g − g0||2 = Gg, where Gg =
(

Z (g, w1, w2, . . . wn)

Z (g, w1, w2, . . . wn)

) 1
2

and Z is introduced inas below:

Z (g, w1, w2, . . . wn) =

∣∣∣∣∣∣∣∣
< g, g > < g, w1 > . . . < g, wn >

< w1, g > < w1, w1 > . . . < w1, wn >

. . . . . . . . . . . .

< wn, g > < wn, w1 > . . . < wn, wn >

∣∣∣∣∣∣∣∣
Theorem 2 [48,49]: Let L2 [0, 1] be the Hilbert space generated by the Bernoulli wavelet basis. Let

η (x) be the continuous bounded function in L2 [0, 1]. Then the Bernoulli wavelet expansion of η (x)

converges to it.

3 Functional Matrix of Bernoulli Wavelets

Some Bernoulli wavelet basis at k = 1 are [48]:

θ1,0 (x) = 1

θ1,1 (x) = √
3 (−1 + 2x)

θ1,2 (x) = √
5

(
1 − 6x + 6x2

)
θ1,3 (x) = √

210
(
x − 3x2 + 2x3

)
θ1,4 (x) = 10

√
21

(
− 1

30
+ x2 − 2x3 + x4

)

θ1,5 (x) =
√

462
5

(−x + 10x3 − 15x4 + 6x5
)

θ1,6 (x) =
√

1430
691

(
1 − 21x2 + 105x4 − 126x5 + 42x6

)
θ1,7 (x) = 2

√
143
7

(
x − 7x3 + 21x5 − 21x6 + 6x7

)
θ1,8 (x) =

√
7293
3617

(−1 + 20x2 − 70x4 + 140x6 − 120x7 + 30x8
)

θ1,9 (x) =
√

1939938
219335

(−3x + 20x3 − 42x5 + 60x7 − 45x8 + 10x9
)

θ1,10 (x) = 22

√
125970
174611

(
5
66

− 3x2

2
+ 5x4 − 7x6 + 15x8

2
− 5x9 + x10

)

θ1,11 ( x ) = 2

√
676039
854513

(
5x − 33x3 + 66x5 − 66x7 + 55x9 − 33x10 + 6x11

)
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where,

θ10 ( x ) = [θ1,0 (x) , θ1,1 (x) , θ1,2 (x) , θ1,3 (x) , θ1,4 (x) , θ1,5 (x) , θ1,6 (x) , θ1,7 (x) , θ1,8 (x) , θ1,9 (x)]T

On integrating the above basis concerning x limit from 0 to x, and then expressing it as a linear
combination of Bernoulli wavelet basis, we obtain∫ x

0

θ1,0 (x) dx =
[

1
2

1

2
√

3
0 0 0 0 0 0 0 0

]
θ10 ( x )∫ x

0

θ1,1 (x) dx =
[
− 1

2
√

3
0

1

2
√

15
0 0 0 0 0 0 0

]
θ10 (x)∫ x

0

θ1,2 (x) dx =
[

0 0 0
1√
42

0 0 0 0 0 0
]

θ10 (x)∫ x

0

θ1,3 (x) dx =
[ √

7

2
√

30
0 0 0

1

2
√

10
0 0 0 0 0

]
θ10 (x)∫ x

0

θ1,4 (x) dx =
[

0 0 0 0 0

√
5

3
√

22
0 0 0 0

]
θ10 (x)∫ x

0

θ1,5 (x) dx =
[
−

√
11
210

0 0 0 0 0

√
691

10
√

273
0 0 0

]
θ10 (x)∫ x

0

θ1,6 (x) dx =
[

0 0 0 0 0 0 0

√
35

1382
0 0

]
θ10 (x)∫ x

0

θ1,7 (x) dx =
[√

143

20
√

7
0 0 0 0 0 0 0

√
3617

20
√

357
0

]
θ10 (x)∫ x

0

θ1,8 (x) dx =
[

0 0 0 0 0 0 0 0 0

√
219335

3
√

962122

]
θ10 (x)

∫ x

0

θ1,9 (x) dx =
[
−

√
146965
2895222

0 0 0 0 0 0 0 0 0

]
θ10 (x)

+
√

1222277

10
√

482537
θ1,10 (x)

Hence,∫ x

o

θ (x) dx = |B10×10 θ10 (x) + θ10 (x) (4)
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where,

|B10×10 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1

2
√

3
0 0 0 0 0 0 0 0

− 1

2
√

3
0

1

2
√

15
0 0 0 0 0 0 0

0 0 0
1√
42

0 0 0 0 0 0
√

7

2
√

30
0 0 0

1

2
√

10
0 0 0 0 0

0 0 0 0 0

√
5

3
√

22
0 0 0 0

−
√

11
210

0 0 0 0 0

√
691

10
√

273
0 0 0

0 0 0 0 0 0 0

√
35

1382
0 0√

143

20
√

7
0 0 0 0 0 0 0

√
3617

20
√

357
0

0 0 0 0 0 0 0 0 0

√
219335

3
√

962122

−
√

146965
2895222

0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

θ10 (x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0
0√

1222277

10
√

482537
θ1,10 (x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
In general, the Bernoulli wavelet’s first integration can be depicted as;

∫ x

0

θ (x) dx = |Bn×nθn (x) +
θn (x).

4 Bernoulli Wavelet Method

Here, we would like to bring the solution of the Dengue Fever Model (1.1) to the Bernoulli wavelet
space. Assume that,

dS
dt

= ATθ (t) (5)

dI
dt

= BTθ (t) (6)
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dR
dt

= CTθ (t) (7)

where, AT = [
a1,0, . . . a1,M−1, a2,0, . . . a2,M−1, a2k−1,0, . . . .a2k−1,M−1

]
BT = [

b1,0, . . . b1,M−1, b2,0, . . . b2,M−1, b2k−1,0, . . . b2k−1,M−1

]
CT = [

c1,0, . . . c1,M−1, c2,0, . . . c2,M−1, c2k−1,0, . . . c2k−1,M−1

]
θ (t) = [θ(t)1,0, . . . θ(t)1,M−1, θ(t)2,0, . . . θ(t)2,M−1, θ(t)2k−1,0, . . . θ

(
t)2k−1,M−1

]
Integrate Eqs. (5)–(7) concerning ‘t’ from ‘0’ to ‘t’. We get

S (t) = S (0) +
∫ t

0

AT θ (t) dtA

I (t) = I (0) +
∫ t

0

BT θ (t) dt

R (t) = R (0) +
∫ t

0

CT θ (t) dt

From the Eq. (4) along with initial conditions expressed in terms of θ (t). We obtain

S (t) = DTθ (t) + AT
[|B θ (t) + θ (t)

]
I (t) = ETθ (t) + BT

[|B θ (t) + θ (t)
]

R (t) = FTθ (t) + CT
[|B θ (t) + θ (t)

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (8)

where D, E, and F are the known vectors. Substitute Eqs. (5)–(8) in (1) we get

ATθ (t) = μh

(
1 − DTθ (t) + AT

[|B θ (t) + θ (t)
]) − α

(
DTθ (t) + AT

[|B θ (t) + θ (t)
])(

FTθ (t) + CT
[|B θ (t) + θ (t)

])
BTθ (t) = α

(
DTθ (t) + AT

[|B θ (t) + θ (t)
]) (

FTθ (t) + CT
[|B θ (t) + θ (t)

])
−β

(
ETθ (t) + BT

[|B θ (t) + θ (t)
])

CTθ (t) = γ
(
1 − FTθ (t) + CT

[|B θ (t) + θ (t)
]) (

ETθ (t) + BT
[|B θ (t) + θ (t)

])
−δ

(
FTθ (t) + CT

[|B θ (t) + θ (t)
])

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9)

Now collocate each Eq. (9) with the following grid points:

ti = 2i − 1
2M

, i = 1, 2, . . . , M

We get a non-linear system of algebraic equations from the above procedure:

ATθ (ti) = μh

(
1 − DTθ (ti) + AT

[|B θ (ti) + θ (ti)
]) − α

(
DTθ (ti) + AT

[|B θ (ti) + θ (ti)
])(

FTθ (ti) + CT
[|B θ (ti) + θ (ti)

])
BTθ (ti) = α

(
DTθ (ti) + AT

[|B θ (ti) + θ (ti)
]) (

FTθ (ti) + CT
[|B θ (ti) + θ (ti)

])
−β

(
ETθ (ti) + BT

[|B θ (ti) + θ (ti)
])

CTθ (ti) = γ
(
1 − FTθ (ti) + CT

[|B θ (ti) + θ (ti)
]) (

ETθ (ti) + BT
[|B θ (ti) + θ (ti)

])
−δ

(
FTθ (ti) + CT

[|B θ (ti) + θ (ti)
])

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)
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Eq. (10) can be solved by Newton’s Raphson method. This yields the values of Bernoulli’s
unknown coefficients and substituting these values on (8) yields Bernoulli’s wavelet-based numerical
solutions for the defined model.

Next, we would like to bring the solution of the Coronavirus Model (2) to the Bernoulli wavelet
space. Substitute Eqs. (5)–(8) in (2) we get

ATθ (t) = −α0

(
DTθ (t) + AT

[|B θ (t) + θ (t)
]) (

ETθ (t) + BT
[|B θ (t) + θ (t)

])
BTθ (t) = α0

(
DTθ (t) + AT

[|B θ (t) + θ (t)
]) (

ETθ (t) + BT
[|B θ (t) + θ (t)

])
−α1

(
ETθ (t) + BT

[|Bθ (t) + θ (t)
])

CTθ (t) = α1

(
ETθ (t) + BT

[|B θ (t) + θ (t)
])

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(11)

Now collocate each equation in (11) with the following grid points:

ti = 2i − 1
2M

, i = 1, 2, . . . , M

We get a non-linear system of algebraic equations from the above procedure:

ATθ (ti) = −α0

(
DTθ (ti) + AT

[|B θ (ti) + θ (ti)
]) (

ETθ (ti) + BT
[|B θ (ti) + θ (ti)

])
BTθ (ti) = α0

(
DTθ (ti) + AT

[|B θ (ti) + θ (ti)
]) (

ETθ (ti) + BT
[|B θ (ti) + θ (ti)

])
−α1

(
ETθ (ti) + BT

[|B θ (ti) + θ (ti)
])

CTθ (ti) = α1

(
ETθ (ti) + BT

[|B θ (ti) + θ (ti)
])

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(12)

Eq. (12) can be solved by Newton’s Raphson method. This yields the values of Bernoulli’s
unknown coefficients, after substituting these values on (8) delivers Bernoulli’s wavelet-based numer-
ical solutions for the defined model.

Next, we would like to bring the solution of the Tuber coulis model (3) to the Bernoulli wavelet
space. Substitute Eqs. (5)–(8) in (3) we get

ATθ (t) = A − μ
(
DTθ (t) + AT

[|B θ (t) + θ (t)
]) − r

N

(
ETθ (t) + BT

[|B θ (t) + θ (t)
])(

DTθ (t) + AT
[|B θ (t) + θ (t)

])
BTθ (t) = r

N

(
ETθ (t) + BT

[|B θ (t) + θ (t)
]) (

DTθ (t) + AT
[|B θ (t) + θ (t)

])
(μ + a)

(
ETθ (t) + BT

[|B θ (t) + θ (t)
])

CTθ (t) = a
(
ETθ (t) + BT

[|B θ (t) + θ (t)
]) − μ

(
FTθ (t) + CT

[|B θ (t) + θ (t)
])

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13)

Now collocate each equation in (13) with the following grid points:

ti = 2i − 1
2M

, i = 1, 2, . . . , M

We get a non-linear system of algebraic equations from the above procedure:

ATθ (ti) = −α0

(
DTθ (ti) + AT

[|B θ (ti) + θ (ti)
]) (

ETθ (ti) + BT
[|B θ (ti) + θ (ti)

])
BTθ (ti) = α0

(
DTθ (ti) + AT

[|B θ (ti) + θ (ti)
]) (

ETθ (ti) + BT
[|B θ (ti) + θ (ti)

])
−α1

(
ETθ (ti) + BT

[|B θ (ti) + θ (ti)
])

CTθ (ti) = α1

(
ETθ (ti) + BT

[|B θ (ti) + θ (ti)
])

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(14)
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Eq. (14) can be solved by Newton’s Raphson method. This yields the values of unknown coeffi-
cients, after substituting these values on (8) produces Bernoulli’s wavelet-based numerical solutions
for the defined model.

5 Numerical Implementation of the Biological Models
5.1 SIR Model of Dengue Fever [1]

Here we present our computational results and provide a discussion of the results. Considering

the mathematical model (1) with the initial conditions: S (0) = 5070822
5071126

, I (0) = 304
5071126

,

R (0) = 0.01 with parameter values α = 0.006, β = 0.333333, γ = 0.375, δ1 = 0.02941, μh =
0.0045. We obtained the BWCS solution and compared it with the Runge-Kutta and ND Solver
solutions. Tables 1–3 reveal that the solutions obtained from the BWCS are accurate and yields better
approximations than the Runge-Kutta method. Also in these tables, the absolute error (AE) of the
proposed method is compared with the Runge-Kutta method and ND Solver. Also, absolute error is
reduced by increasing the value of M (size of the operational matrix) which is shown in Tables 4–6.
The solution obtained from the proposed method, Runge Kutta method, and ND Solver are drawn in
Figs. 1–3. It clearly shows that solutions obtained from the proposed method are much closer to the
ND solver solution. The absolute error of the proposed method and the Runge Kutta method with
the ND Solver are compared graphically in Figs. 4–6 due to the non-availability of the exact solution.
The flat line in the graph suggests that the developed scheme (BWCS) obtains the consistent absolute
error at all the points in the given interval and also gives a better approximation than the Runge Kutta
method.

Table 1: Comparison of solutions with different methods and their Absolute Errors (AE) for S(t)

t Bernoulli wavelet
(M = 10)

Runge Kutta
method

ND Solver AE of BW with
ND Solver

AE of Runge Kutta
with ND Solver

0 0.9999400530 0.9999400536 0.9999400530 0 0
0.1 0.9998801861 0.9998801931 0.9998801860 1.1756 × 10−10 7.0638 × 10−9

0.2 0.9998205233 0.9998205347 0.9998205231 2.3306 × 10−10 1.1505 × 10−8

0.3 0.9997610628 0.9997610764 0.9997610625 3.1937 × 10−10 1.3789 × 10−8

0.4 0.9997018029 0.9997018175 0.9997018027 2.5242 × 10−10 1.4232 × 10−8

0.5 0.9996427419 0.9996427552 0.9996427417 2.4456 × 10−10 1.3457 × 10−8

0.6 0.9995838783 0.9995838898 0.9995838780 2.3690 × 10−10 1.1756 × 10−8

0.7 0.9995252103 0.9995252196 0.9995252101 2.2981 × 10−10 9.4493 × 10−9

0.8 0.9994667366 0.9994667433 0.9994667364 2.2504 × 10−10 6.8165 × 10−9

0.9 0.9994084556 0.9994084595 0.9994084554 2.1984 × 10−10 4.0952 × 10−9

1.0 0.9993503659 0.9993503672 0.9993503657 2.1457 × 10−10 1.4883 × 10−9
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Table 2: Comparison of solutions with different methods and their Absolute Errors (AE) for I (t)

t Bernoulli wavelet
(M = 10)

Runge Kutta ND Solver AE of BW with
ND Solver

AE of Runge Kutta
with ND Solver

0 0.0000599472 0.0000599472 0.0000599472 0 2.0328 × 10−20

0.1 0.0001169012 0.0001165536 0.0001169059 4.6388 × 10−9 3.5226 × 10−7

0.2 0.0001718139 0.0001712498 0.0001718230 9.1168 × 10−9 5.7318 × 10−7

0.3 0.0002247537 0.0002240797 0.0002247661 1.2385 × 10−8 6.8633 × 10−7

0.4 0.0201957869 0.0201950873 0.0201957966 9.6512 × 10−9 7.0926 × 10−7

0.5 0.0003249776 0.0003243164 0.0003249869 9.2506 × 10−9 6.7042 × 10−7

0.6 0.0003723877 0.0003718111 0.0003723966 8.8607 × 10−9 5.8546 × 10−7

0.7 0.0004180770 0.0004176152 0.0004180855 8.4998 × 10−9 4.7032 × 10−7

0.8 0.0004621033 0.0004617726 0.0004621116 8.2561 × 10−9 3.3899 × 10−7

0.9 0.0005045226 0.0005043273 0.0005045306 7.9905 × 10−9 2.0330 × 10−7

1.0 0.0005453889 0.0005453232 0.0005453966 7.7217 × 10−9 7.3397 × 10−8

Table 3: Comparison of solutions with different methods and their Absolute Error (AE) for R (t)

t Bernoulli wavelet
(M = 10)

Runge Kutta ND Solve AE of BW with
ND Solve

AE of Runge Kutta
with ND Solve

0 0.1000000000 0.1000000000 0.1000000000 0 0
0.1 0.0997093188 0.0997096880 0.0997093137 5.0381 × 10−9 3.7423 × 10−7

0.2 0.0994213779 0.0994219772 0.0994213680 9.9070 × 10−9 6.0919 × 10−7

0.3 0.0991361027 0.0991368190 0.0991360892 1.3464 × 10−8 7.2980 × 10−7

0.4 0.0988534211 0.0988541651 0.0988534106 1.0493 × 10−8 7.5450 × 10−7

0.5 0.0985732633 0.0985739669 0.0985732532 1.0060 × 10−8 7.1366 × 10−7

0.6 0.0982955618 0.0982961760 0.0982955521 9.6388 × 10−9 6.2382 × 10−7

0.7 0.0980202512 0.0980207438 0.0980202419 9.2478 × 10−9 5.0188 × 10−7

0.8 0.0977472682 0.0977476219 0.0977472592 8.9807 × 10−9 3.6268 × 10−7

0.9 0.0974765517 0.0974767618 0.0974765430 8.6907 × 10−9 2.1880 × 10−7

1.0 0.0972080425 0.0972081151 0.0972080341 8.3976 × 10−9 8.0993 × 10−8

Table 4: Comparison of solutions and Absolute error with different values of M for S (t)

t ND Solver Bernoulli
wavelet
(M = 6)

Bernoulli
wavelet
(M = 10)

AE of
BWCM
(M = 6) with
ND Solver

AE of
BWCM
(M = 9) with
ND Solver

AE of BWCM
(M = 10) with
ND Solver

0 0.9999400530 0.9999400527 0.9999400530 0 0 0
0.1 0.9998801860 0.9998801632 0.9998801861 2.3854×10−7 2.5682×10−9 1.1756 × 10−10

0.2 0.9998205231 0.9998205524 0.9998205233 1.2085×10−7 1.3306×10−9 2.3306 × 10−10

(Continued)
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Table 4 (continued)

t ND Solver Bernoulli
wavelet
(M = 6)

Bernoulli
wavelet
(M = 10)

AE of
BWCM
(M = 6) with
ND Solver

AE of
BWCM
(M = 9) with
ND Solver

AE of BWCM
(M = 10) with
ND Solver

0.3 0.9997610625 0.9997610412 0.9997610628 5.2360×10−7 6.5231×10−9 3.1937 × 10−10

0.4 0.9997018027 0.9997018124 0.9997018029 1.4372×10−7 1.6325×10−9 2.5242 × 10−10

0.5 0.9996427417 0.9996427632 0.9996427419 6.6288×10−7 9.6325×10−9 2.4456 × 10−10

0.6 0.9995838780 0.9995838457 0.9995838783 9.1005×10−7 2.5682×10−9 2.3690 × 10−10

0.7 0.9995252101 0.9995252421 0.9995252103 7.8187×10−7 5.6321×10−9 2.2981 × 10−10

0.8 0.9994667364 0.9994667214 0.9994667366 1.2528×10−7 3.2531×10−9 2.2504 × 10−10

0.9 0.9994084554 0.9994084741 0.9994084556 1.7670×10−6 5.2301×10−9 2.1984 × 10−10

1.0 0.9993503657 0.9993503412 0.9993503659 2.2759×10−7 5.3241×10−9 2.1457 × 10−10

Table 5: Comparison of solutions and Absolute error with different values of M for I (t)

t ND Solver Bernoulli
wavelet
(M = 6)

Bernoulli
wavelet
(M = 10)

AE of
BWCM
(M = 6) with
ND Solver

AE of
BWCM
(M = 9) with
ND Solver

AE of BWCM
(M = 10) with
ND Solver

0 0.1000000000 0.1000000000 0.1000000000 0 0 0
0.1 0.0997093137 0.0997041574 0.0997093188 2.0153×10−6 1.0231×10−8 5.0381 × 10−9

0.2 0.0994213680 0.0994216325 0.0994213779 1.0365×10−6 2.3012×10−8 9.9070 × 10−9

0.3 0.0991360892 0.0991352365 0.0991361027 5.3651×10−5 5.321 × 10−7 1.3464 × 10−8

0.4 0.0988534106 0.0988563251 0.0988534211 4.3625×10−5 2.3214×10−7 1.0493 × 10−8

0.5 0.0985732532 0.0985723652 0.0985732633 5.3625×10−5 6.3214×10−7 1.0060 × 10−8

0.6 0.0982955521 0.0982942573 0.0982955618 1.2301×10−6 2.2314×10−8 9.6388 × 10−9

0.7 0.0980202419 0.0980212547 0.0980202512 2.3214×10−6 3.2145×10−8 9.2478 × 10−9

0.8 0.0977472592 0.0977476325 0.0977472682 6.3251×10−6 4.2135×10−8 8.9807 × 10−9

0.9 0.0974765430 0.0974764251 0.0974765517 1.0231×10−6 2.3214×10−8 8.6907 × 10−9

1.0 0.0972080341 0.0972080524 0.0972080425 6.3251×10−6 4.1245×10−8 8.3976 × 10−9

Table 6: Comparison of solutions and Absolute error with different values of M for R (t)

t ND Solver Bernoulli
wavelet
(M = 6)

Bernoulli
wavelet
(M = 10)

AE of BWCM
(M = 6) with
ND Solver

AE of
BWCM
(M = 9) with
ND Solver

AE of BWCM
(M = 10) with
ND Solver

0 0.0000599472 0.0000599472 0.0000599472 8.8240 × 10−17 0 0
0.1 0.0001169059 0.0001169012 0.0001169012 2.3154 × 10−6 3.2154×10−8 4.6388 × 10−9

0.2 0.0001718230 0.0001718139 0.0001718139 1.0254 × 10−6 6.3251×10−8 9.1168 × 10−9

(Continued)
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Table 6 (continued)

t ND Solver Bernoulli
wavelet
(M = 6)

Bernoulli
wavelet
(M = 10)

AE of BWCM
(M = 6) with
ND Solver

AE of
BWCM
(M = 9) with
ND Solver

AE of BWCM
(M = 10) with
ND Solver

0.3 0.0002247661 0.0002247537 0.0002247537 6.2314 × 10−6 2.3265×10−7 1.2385 × 10−8

0.4 0.0201957966 0.0201957869 0.0201957869 4.2135 × 10−6 1.6325×10−8 9.6512 × 10−9

0.5 0.0003249869 0.0003249776 0.0003249776 3.2145 × 10−6 4.2536×10−8 9.2506 × 10−9

0.6 0.0003723966 0.0003723877 0.0003723877 3.2153 × 10−6 1.3265×10−8 8.8607 × 10−9

0.7 0.0004180855 0.0004180770 0.0004180770 6.3251 × 10−6 4.2563×10−8 8.4998 × 10−9

0.8 0.0004621116 0.0004621033 0.0004621033 2.3215 × 10−6 1.2365×10−8 8.2561 × 10−9

0.9 0.0005045306 0.0005045226 0.0005045226 6.3235 × 10−6 2.3652×10−8 7.9905 × 10−9

1.0 0.0005453966 0.0005453889 0.0005453889 1.2584 × 10−6 1.2653×10−8 7.7217 × 10−9

Figure 1: Graphical comparison of the BWCS solution, Runge-Kutta method solution with ND Solver
solution for S (t)

Figure 2: Graphical comparison of the BWCS solution, Runge-Kutta method solution with ND Solver
solution for I (t)
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Figure 3: Graphical comparison of the BWCS, Runge-Kutta method solution with ND Solver solution
for R (t)

Figure 4: Graphical representation of Absolute Errors (AE) for S (t)

Figure 5: Graphical representation of Absolute Errors (AE) for I (t)

Figure 6: Graphical representation of Absolute Errors (AE) for R (t)
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5.2 Sir Model of COVID-19 Virus
Here we are considering the mathematical model of the COVID-19 virus (2) with the initial

conditions: S (0) = 0.999, I (0) = 0.001, R (0) = 0 with the parameter values α0 = 0.8, α1 = 0.1. We
obtained the solution by the proposed method and compared it with the Runge-Kutta method and ND
Solver solutions. Tables 7–9 reveal that the solutions obtained from the BWCS are accurate and yield
better approximations than the Runge Kutta method. Also, absolute error is reduced by increasing
the value of M which is shown in Tables 10–12. Figs. 7– 9 clearly show that solutions obtained from
the proposed method are much closer to the ND solver solution than the Runge-Kutta method. The
present model has no exact solution, therefore, the absolute error of the proposed method and the
Runge Kutta method compared with the NDSolver are shown graphically in Figs. 10–12. The flat line
in the graph suggests that the developed scheme (BWCS) obtains the consistent absolute error at all
the points in the given interval and also it gives a better approximation than the Runge Kutta method.

Table 7: Comparison of solutions with different methods and their Absolute Errors (AE) for S (t)

t Bernoulli wavelet
(M = 10)

Runge Kutta
method

ND Solver AE of BW with
ND Solver

AE of Runge Kutta
with ND Solver

0 0.99900000000 0.99900000000 0.9990000000 0 0
0.1 0.9989172232 0.9989163568 0.9989172107 1.2521 × 10−8 8.5396 × 10−7

0.2 0.9988284598 0.9988273803 0.9988284386 2.1135 × 10−8 1.0583 × 10−6

0.3 0.9987332780 0.9987324082 0.9987332632 1.4780 × 10−8 8.5503 × 10−7

0.4 0.9986312151 0.9986307783 0.9986311979 1.7241 × 10−8 4.1967 × 10−7

0.5 0.9985217755 0.9985218282 0.9985217554 2.0052 × 10−8 7.2671 × 10−8

0.6 0.9984044278 0.9984048956 0.9984044050 2.2774 × 10−8 4.9041 × 10−7

0.7 0.9982786029 0.9982793182 0.9982785791 2.3768 × 10−8 7.3097 × 10−7

0.8 0.9981436908 0.9981444337 0.9981436654 2.5327 × 10−8 7.6824 × 10−7

0.9 0.9979990382 0.9979995799 0.9979990109 2.7288 × 10−8 5.6887 × 10−7

1.0 0.9978439454 0.9978440943 0.9978439161 2.9280 × 10−8 1.7818 × 10−7

Table 8: Comparison of solutions with different methods and their Absolute Errors (AE) for I (t)

t Bernoulli wavelet
(M = 10)

Runge Kutta
method

ND Solver AE of BW with
ND Solver

AE of Runge Kutta
with ND Solver

0 0.0010000000 0.0010000000 0.0010000000 0 0
0.1 0.0010724188 0.0010731754 0.0010724298 1.0949 × 10−8 2.6153 × 10−6

0.2 0.0011500743 0.0011510169 0.0011500928 1.8481 × 10−8 3.2849 × 10−6

0.3 0.0012333439 0.0012341032 0.0012333568 1.2924 × 10−8 2.6950 × 10−6

0.4 0.0013226320 0.0013230134 0.0013226471 1.5074 × 10−8 1.4358 × 10−6

0.5 0.0014183722 0.0014183261 0.0014183897 1.7531 × 10−8 1.2808 × 10−10

0.6 0.0015210288 0.0015206204 0.0015210488 1.9911 × 10−8 1.2205 × 10−6

0.7 0.0016310995 0.0016304749 0.0016311203 2.0780 × 10−8 1.9390 × 10−6

0.8 0.0017491174 0.0017484686 0.0017491395 2.2144 × 10−8 1.9836 × 10−6

(Continued)
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Table 8 (continued)

t Bernoulli wavelet
(M = 10)

Runge Kutta
method

ND Solver AE of BW with
ND Solver

AE of Runge Kutta
with ND Solver

0.9 0.0018756534 0.0018751804 0.0018756773 2.3858 × 10−8 1.3080 × 10−6

1.0 0.0020113193 0.0020111890 0.0020113449 2.5600 × 10−8 6.0513 × 10−9

Table 9: Comparison of solutions with different methods and their Absolute Error (AE) for R (t)

t Bernoulli wavelet
(M = 10)

Runge Kutta
method

ND Solver AE of BW with
ND Solver

AE of Runge Kutta
with ND Solver

0 0.0000000000 0.0000000000 0.0000000000 0 0
0.1 0.0000103578 0.0000104678 0.0000103594 1.5723 × 10−9 1.0836 × 10−7

0.2 0.0000214658 0.0000216028 0.0000214684 2.6541 × 10−9 1.3435 × 10−7

0.3 0.0000333780 0.0000334885 0.0000333799 1.8565 × 10−9 1.0858 × 10−7

0.4 0.0000461527 0.0000462083 0.0000461549 2.1664 × 10−9 5.3371 × 10−8

0.5 0.0000598522 0.0000598453 0.0000598547 2.5205 × 10−9 9.0875 × 10−9

0.6 0.0000745432 0.0000744840 0.0000745461 2.8634 × 10−9 6.2105 × 10−8

0.7 0.0000902975 0.0000902068 0.0000903004 2.9875 × 10−9 9.3647 × 10−8

0.8 0.0001071917 0.0001070975 0.0001071949 3.1832 × 10−9 9.7327 × 10−8

0.9 0.0001253082 0.0001252397 0.0001253116 3.9245 × 10−9 7.1966 × 10−8

1.0 0.0001447352 0.0001447166 0.0001447389 3.6793 × 10−9 2.2272 × 10−8

Table 10: Comparison of solutions and Absolute error with different values of M for S (t)

t ND Solver Bernoulli
wavelet
(M = 6)

Bernoulli
wavelet
(M = 10)

AE of BWCM
(M = 6) with
ND Solver

AE of BWCM
(M = 9) with
ND Solver

AE of BWCM
(M = 10) with
ND Solver

0 0.9990000000 0.99900000000 0.99900000000 0 0 0
0.1 0.9989172107 0.9989172232 0.9989172232 2.0365 × 10−5 5.2651 × 10−7 1.2521 × 10−8

0.2 0.9988284386 0.9988284598 0.9988284598 3.2651 × 10−5 1.2251 × 10−7 2.1135 × 10−8

0.3 0.9987332632 0.9987332780 0.9987332780 2.3265 × 10−5 2.5243 × 10−7 1.4780 × 10−8

0.4 0.9986311979 0.9986312151 0.9986312151 5.2369 × 10−5 6.0326 × 10−7 1.7241 × 10−8

0.5 0.9985217554 0.9985217755 0.9985217755 6.3265 × 10−5 3.3265 × 10−7 2.0052 × 10−8

0.6 0.9984044050 0.9984044278 0.9984044278 1.3264 × 10−5 3.4785 × 10−7 2.2774 × 10−8

0.7 0.9982785791 0.9982786029 0.9982786029 6.3256 × 10−5 3.2652 × 10−7 2.3768 × 10−8

0.8 0.9981436654 0.9981436908 0.9981436908 5.3265 × 10−5 2.3265 × 10−7 2.5327 × 10−8

0.9 0.9979990109 0.9979990382 0.9979990382 4.2514 × 10−5 3.6524 × 10−7 2.7288 × 10−8

1.0 0.9978439161 0.9978439454 0.9978439454 1.0326 × 10−5 1.2541 × 10−7 2.9280 × 10−8
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Table 11: Comparison of solutions and Absolute error with different values of M for R(t)

t ND Solver Bernoulli
wavelet
(M = 6)

Bernoulli
wavelet
(M = 10)

AE of BWCM
(M = 6) with
ND Solver

AE of BWCM
(M = 9) with
ND Solver

AE of BWCM
(M = 10) with
ND Solver

0 0.0000000000 0.0000000000 0.0000000000 0 0 0
0.1 0.0000103594 0.0000152362 0.0000103578 2.3265 × 10−5 4.6251 × 10−7 1.5723 × 10−9

0.2 0.0000214684 0.0000215632 0.0000214658 2.3614 × 10−6 2.6598 × 10−8 2.6541 × 10−9

0.3 0.0000333799 0.0000335632 0.0000333780 1.3265 × 10−6 1.6542 × 10−8 1.8565 × 10−9

0.4 0.0000461549 0.0000468563 0.0000461527 1.3652 × 10−6 2.3265 × 10−7 2.1664 × 10−9

0.5 0.0000598547 0.0000595236 0.0000598522 1.4587 × 10−6 1.3265 × 10−8 2.5205 × 10−9

0.6 0.0000745461 0.0000746352 0.0000745432 1.8598 × 10−6 2.3652 × 10−8 2.8634 × 10−9

0.7 0.0000903004 0.0000906857 0.0000902975 3.2654 × 10−5 1.2542 × 10−8 2.9875 × 10−9

0.8 0.0001071949 0.0001076321 0.0001071917 1.9874 × 10−6 3.2654 × 10−8 3.1832 × 10−9

0.9 0.0001253116 0.0001258965 0.0001253082 1.6587 × 10−6 2.6521 × 10−8 3.9245 × 10−9

1.0 0.0001447389 0.0001445969 0.0001447352 2.6587 × 10−6 3.2651 × 10−8 3.6793 × 10−9

Table 12: Comparison of solutions and Absolute error with different values of M for I (t)

t ND Solver Bernoulli
wavelet
(M = 6)

Bernoulli
wavelet
(M = 10)

AE of BWCM
(M = 6) with
ND Solver

AE of BWCM
(M = 9) with
ND Solver

AE of BWCM
(M = 10) with
ND Solver

0 0.0010000000 0.0010000000 0.0010000000 0 0 0
0.1 0.0010724298 0.0010724188 0.0010724188 4.1254 × 10−5 2.3215 × 10−7 1.0949 × 10−8

0.2 0.0011500928 0.0011500743 0.0011500743 5.3265 × 10−5 5.2365 × 10−7 1.8481 × 10−8

0.3 0.0012333568 0.0012333439 0.0012333439 1.3265 × 10−5 2.5231 × 10−7 1.2924 × 10−8

0.4 0.0013226471 0.0013226320 0.0013226320 1.3652 × 10−5 2.3365 × 10−7 1.5074 × 10−8

0.5 0.0014183897 0.0014183722 0.0014183722 1.6524 × 10−5 3.2654 × 10−7 1.7531 × 10−8

0.6 0.0015210488 0.0015210288 0.0015210288 1.7854 × 10−5 3.4785 × 10−7 1.9911 × 10−8

0.7 0.0016311203 0.0016310995 0.0016310995 2.6598 × 10−5 1.2654 × 10−7 2.0780 × 10−8

0.8 0.0017491395 0.0017491174 0.0017491174 4.6254 × 10−5 2.3265 × 10−7 2.2144 × 10−8

0.9 0.0018756773 0.0018756534 0.0018756534 4.3265 × 10−5 5.2365 × 10−7 2.3858 × 10−8

1.0 0.0020113449 0.0020113193 0.0020113193 1.5687 × 10−5 4.2315 × 10−7 2.5600 × 10−8
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Figure 7: Graphical comparison of the BWCS solution, Runge-Kutta method solution with ND Solver
solution for S (t) of the model (2)

Figure 8: Graphical comparison of the BWCS solution, Runge-Kutta method solution with ND Solver
solution for I (t) of the model (2)

Figure 9: Graphical comparison of the BWCS solution, Runge-Kutta method solution with ND Solver
solution for R (t) of the model (2)

Figure 10: Graphical representation of Absolute Errors (AE) for S (t)
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Figure 11: Graphical representation of Absolute Errors (AE) for I (t)

Figure 12: Graphical representation of Absolute Errors (AE) for R (t)

5.3 SIR Model for Transmission of Tuberculosis
In this section, we are considering the mathematical model for transmission of Tuberculosis (3)

with the initial conditions: S (0) = 1446093
1449401

, I (0) = 1885
1449401

, R (0) = 1423
1449401

with the parameter

values r = 1
2

, a = 1
9

, μ = 0.001167, N = A = 1449401. We obtained the solution from the BWCS

and compared it with the Runge-Kutta method and ND Solver solutions. Tables 13–15 reveal that the
solutions obtained from the BWCS are accurate and yield better approximations than the Runge-Kutta
method. Also, absolute error is reduced by increasing the value of M which is shown in Tables 16–18.
Figs. 13–18 clearly show that solutions obtained from the proposed method are much closer to the
ND solver solution. The absolute error of the proposed method and the Runge Kutta method with
the ND Solver are compared graphically in Figs. 16–18.

Table 13: Comparison of solutions with different methods and their Absolute Errors (AE) for S (t)

t Bernoulli wavelet
(M = 10)

Runge Kutta ND Solve AE of BWCS
with ND Solve

AE of Runge Kutta
with ND Solve

0 0.9977176781 0.9977176785 0.99771767801 0 3.5171 × 10−11

0.1 144932.64067 144932.64077 144932.640672 9.8079 × 10−9 7.5411 × 10−6

0.2 289847.37108 289847.37116 289847.371084 9.0221 × 10−9 9.3909 × 10−6

(Continued)
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Table 13 (continued)

t Bernoulli wavelet
(M = 10)

Runge Kutta ND Solve AE of BWCS
with ND Solve

AE of Runge Kutta
with ND Solve

0.3 434745.19092 434745.19098 434745.190927 9.0221 × 10−9 7.6295 × 10−6

0.4 579626.10217 579626.10225 579626.102175 8.9639 × 10−9 4.0174 × 10−6

0.5 724490.10680 724490.10689 724490.106801 9.0804 × 10−9 1.3271 × 10−8

0.6 869337.20677 869337.20687 869337.206777 9.3122 × 10−9 3.3617 × 10−6

0.7 1014167.4040 1014167.40465 1014167.40407 9.5460 × 10−9 5.2668 × 10−6

0.8 1158980.7006 1158980.70187 1158980.70067 9.7788 × 10−9 5.3166 × 10−6

0.9 1303777.0985 1303777.09969 1303777.09852 1.0710 × 10−8 3.4609 × 10−6

1.0 1448556.5996 1448556.65875 1448556.59961 1.1175 × 10−9 2.5378 × 10−8

Table 14: Comparison of solutions with different methods and their Absolute Errors (AE) for I (t)

t Bernoulli
wavelet(M = 10)

Runge Kutta ND Solve AE of BWCS
with ND Solve

AE of Runge Kutta
with ND Solve

0 0.00130053726 0.00130053726 0.00130053726 0 0
0.1 0.00128923573 0.00129185112 0.00128923573 1.1542 × 10−12 2.6153 × 10−6

0.2 0.00128443784 0.00128772262 0.00128443761 2.2406 × 10−10 3.2849 × 10−6

0.3 0.00128607061 0.00128876546 0.00128607036 2.4361 × 10−10 2.6850 × 10−6

0.4 0.00129415784 0.00129559347 0.00129415762 2.1567 × 10−10 1.4358 × 10−6

0.5 0.00130882066 0.00130882040 0.00130882053 1.2741 × 10−10 1.2808 × 10−10

0.6 0.00133028055 0.00132906002 0.00133028057 2.6063 × 10−11 1.2205 × 10−6

0.7 0.00135886493 0.00135692610 0.00135886519 2.5283 × 10−10 1.9390 × 10−6

0.8 0.00139501555 0.00139303240 0.00139501609 5.6478 × 10−10 1.9836 × 10−6

0.9 0.00143929971 0.00143799275 0.00143930073 1.0120 × 10−9 1.3080 × 10−6

1.0 0.00149242539 0.00149242075 0.00149242677 1.3751 × 10−9 6.0151 × 10−9

Table 15: Comparison of solutions with different methods and their Absolute Errors (AE) for R (t)

t Bernoulli
wavelet(M = 10)

Runge Kutta ND Solve AE of BWCS
with ND Solve

AE of Runge Kutta
with ND Solve

0 0.00098178488 0.00098178488 0.00098178488 0 0
0.1 0.00099605101 0.00099615133 0.00099605101 9.0274 × 10−14 1.0032 × 10−7

0.2 0.00101022614 0.00101035632 0.00101022615 1.3503 × 10−11 1.3016 × 10−7

0.3 0.00102438206 0.00102449143 0.00102438210 3.6126 × 10−11 1.0933 × 10−7

0.4 0.00103859026 0.00103864824 0.00103859032 6.1830 × 10−11 5.7988 × 10−8

0.5 0.00105292302 0.00105291832 0.00105292311 8.8882 × 10−11 4.7879 × 10−9

0.6 0.00106745453 0.00106739326 0.00106745465 1.1861 × 10−10 6.1393 × 10−8

0.7 0.00108226200 0.00108216462 0.00108226215 1.5253 × 10−10 9.7530 × 10−8

0.8 0.00109742690 0.00109732400 0.00109742709 1.9233 × 10−10 1.0309 × 10−7

(Continued)
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Table 15 (continued)

t Bernoulli
wavelet(M = 10)

Runge Kutta ND Solve AE of BWCS
with ND Solve

AE of Runge Kutta
with ND Solve

0.9 0.00111303627 0.00111296295 0.00111303650 2.3294 × 10−10 7.3549 × 10−8

1.0 0.00112918423 0.00112917307 0.00112918450 2.7084 × 10−10 1.1430 × 10−8

Table 16: Comparison of solutions and Absolute error with different values of M for S (t)

t ND Solver Bernoulli
wavelet
(M = 6)

Bernoulli
wavelet
(M = 10)

AE of BWCM
(M = 6) with
ND Solver

AE of BWCM
(M = 9) with
ND Solver

AE of BWCM
(M = 10) with
ND Solver

0 0.99771767801 0.9977176781 0.9977176781 0 0 0
0.1 144932.640672 144932.52412 144932.64067 2.3265 × 10−6 4.6251 × 10−8 9.8079 × 10−9

0.2 289847.371084 289847.56842 289847.37108 2.3614 × 10−6 2.6598 × 10−8 9.0221 × 10−9

0.3 434745.190927 434745.23652 434745.19092 1.3265 × 10−6 1.6542 × 10−8 9.0221 × 10−9

0.4 579626.102175 579624.52458 579626.10217 1.3652 × 10−5 2.3265 × 10−7 8.9639 × 10−9

0.5 724490.106801 724490.63254 724490.10680 1.4587 × 10−6 1.3265 × 10−8 9.0804 × 10−9

0.6 869337.206777 869337.52897 869337.20677 1.8598 × 10−6 2.3652 × 10−8 9.3122 × 10−9

0.7 1014167.40407 1014165.5869 1014167.4040 3.2654 × 10−6 1.2542 × 10−8 9.5460 × 10−9

0.8 1158980.70067 1158987.5236 1158980.7006 1.9874 × 10−6 3.2654 × 10−8 9.7788 × 10−9

0.9 1303777.09852 1303776.5824 1303777.0985 1.6587 × 10−5 2.6521 × 10−7 1.0710 × 10−8

1.0 1448556.59961 1448557.6325 1448556.5996 2.6587 × 10−6 3.2651 × 10−8 1.1175 × 10−9

Table 17: Comparison of solutions and Absolute error with different values of M for I (t)

t ND Solver Bernoulli
wavelet
(M = 6)

Bernoulli
wavelet
(M = 10)

AE of BWCM
(M = 6) with
ND Solver

AE of BWCM
(M = 9) with
ND Solver

AE of BWCM
(M = 10) with
ND Solver

0 0.00130053726 0.00130053726 0.00130053726 0 0 0
0.1 0.00128923573 0.00128923652 0.00128923573 2.3265 × 10−8 4.6251 × 10−11 1.1542 × 10−12

0.2 0.00128443761 0.00128445632 0.00128443784 2.3614 × 10−7 2.6598 × 10−9 2.2406 × 10−10

0.3 0.00128607036 0.00128608421 0.00128607061 1.3265 × 10−7 1.6542 × 10−9 2.4361 × 10−10

0.4 0.00129415762 0.00129416325 0.00129415784 1.3652 × 10−7 2.3265 × 10−9 2.1567 × 10−10

0.5 0.00130882053 0.00130889657 0.00130882066 1.4587 × 10−7 1.3265 × 10−9 1.2741 × 10−10

0.6 0.00133028057 0.00133027425 0.00133028055 1.8598 × 10−8 2.3652 × 10−10 2.6063 × 10−11

0.7 0.00135886519 0.00135888542 0.00135886493 3.2654 × 10−7 1.2542 × 10−9 2.5283 × 10−10

0.8 0.00139501609 0.00139503625 0.00139501555 1.9874 × 10−7 3.2654 × 10−9 5.6478 × 10−10

0.9 0.00143930073 0.00143928572 0.00143929971 1.6587 × 10−7 2.6521 × 10−8 1.0120 × 10−9

1.0 0.00149242677 0.00149248574 0.00149242539 2.6587 × 10−7 3.2651 × 10−8 1.3751 × 10−9
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Table 18: Comparison of solutions and Absolute error with different values of M for R (t)

t ND Solver Bernoulli
wavelet
(M = 6)

Bernoulli
wavelet
(M = 10)

AE of BWCM
(M = 6) with
ND Solver

AE of BWCM
(M = 9) with
ND Solver

AE of BWCM
(M = 10) with
ND Solver

0 0.00098178488 0.00098178488 0.00098178488 0 0 0
0.1 0.00099605101 0.00099605102 0.00099605101 2.3265 × 10−10 4.6251 × 10−13 9.0274 × 10−14

0.2 0.00101022615 0.00101022524 0.00101022614 2.3614 × 10−8 2.6598 × 10−10 1.3503 × 10−11

0.3 0.00102438210 0.00102438632 0.00102438206 1.3265 × 10−8 1.6542 × 10−10 3.6126 × 10−11

0.4 0.00103859032 0.00103859754 0.00103859026 1.3652 × 10−8 2.3265 × 10−10 6.1830 × 10−11

0.5 0.00105292311 0.00105292854 0.00105292302 1.4587 × 10−8 1.3265 × 10−10 8.8882 × 10−11

0.6 0.00106745465 0.00106744251 0.00106745453 1.8598 × 10−7 2.3652 × 10−9 1.1861 × 10−10

0.7 0.00108226215 0.00108224251 0.00108226200 3.2654 × 10−7 1.2542 × 10−9 1.5253 × 10−10

0.8 0.00109742709 0.00109743652 0.00109742690 1.9874 × 10−7 3.2654 × 10−9 1.9233 × 10−10

0.9 0.00111303650 0.00111304125 0.00111303627 1.6587 × 10−7 2.6521 × 10−9 2.3294 × 10−10

1.0 0.00112918450 0.00112917451 0.00112918423 2.6587 × 10−7 3.2651 × 10−9 2.7084 × 10−10

Figure 13: Graphical comparison of the BWCS, Runge-Kutta method solution with ND Solver
solution for S (t)
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Figure 14: Graphical comparison of the BWCS solution, Runge-Kutta method solution with ND
Solver solution for I (t)

Figure 15: Graphical comparison of the BWCS solution, Runge-Kutta method solution with ND
Solver solution for R (t)

Figure 16: Graphical representation of Absolute Errors (AE) for S (t)
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Figure 17: Graphical representation of Absolute Errors (AE) for I (t)

Figure 18: Graphical representation of Absolute Errors (AE) for R (t)

6 Conclusion

In this article, we primarily concentrated on the numerical computations of three biological
models: the Dengue fever model, the COVID-19 model, and the transmission of Tuberculosis
model. We developed the functional integration matrix for the Bernoulli wavelet and generated a
novel technique called BWCS. We used this functional matrix to estimate the mathematical model’s
numerical solution, which is in the form of a non-linear system of ordinary differential equations. Our
numerical results are compared with the Runge-Kutta method and ND solver solution through tables
and Figures. Tables and Figures exposed the efficiency of our projected approach and compared it
with different techniques. The received computational result indicates that our projected procedure
is valuable and specific in contrast with other techniques. Also, we have introduced some theorems
on convergence analysis. Tables 1–9 reveal that the BWCM solution is better than the Runge-Kutta
method solution as compared with the ND solver solution. Figs. 1–3, 7–9, and 13–15 show that the
BWCS solution is very close to the ND solver solution. Figs. 4–6, 10–12, and 16–18 reveal that the
absolute error of the proposed method is better than the absolute error of the Runge-Kutta method
when compared with the ND solver solution. Tables and Figures reveal that the BWCS converges
rapidly compared to the Runge-Kutta method. This concludes that the developed strategy is a well-
suited technique for the numerical approximations of biological models.
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