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ABSTRACT

We advanced an emerging federated learning technology in city intelligentization for tackling a real challenge— to
learn damaged objects in aerial videos. A meta-learning system was integrated with the fuzzy broad learning system
to further develop the theory of federated learning. Both the mixed picture set of aerial video segmentation and
the 3D-reconstructed mixed-reality data were employed in the performance of the broad federated meta-learning
system. The study results indicated that the object classification accuracy is up to 90% and the average time cost in
damage detection is only 0.277 s. Consequently, the broad federated meta-learning system is efficient and effective
in detecting damaged objects in aerial videos.
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1 Introduction

Unmanned aerial vehicles have irreplaceable advantages in large-scale monitoring areas to achieve
effective video scheduling and risk prediction [1–3]. However, data privacy is still a problem in debate
[4]. Federated learning can present a possible solution [5], where each UAV can run the same and
complete model and there is no communication between the UAVs. Technologies are already mature
in object detection and classification, but the precision understanding and learning of damaged objects
in aerial videos are still great challenges [6]. The ultimate reason is that there are significant differences
in the features of damaged objects in the real world and even for the same object, the damaged degree
and features can also be very different in different situations [7]. Considering the influences of COVID-
19 and the necessity to extend the applications of unmanned intelligent technologies, this is an urgent
problem to be solved [8,9].
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In the traditional oblique photography technology, the methods of machine learning and the
related theories of federated learning are rarely applied, and most of them stay at the level of three-
dimensional modeling [9–12]. After using the UAV to complete the 3D modeling, the problem of image
classification and recognition can be solved with some effective machine learning system, especially
the theory of federated learning can be further introduced. Meta-learning and fuzzy broad learning
system (FBLS) have been proven to be effective for image recognition [13–22]. Integration with these
two learning systems can also further develop the federated learning theory.

Therefore, the major objectives of this study are (1) to introduce the federated learning theory in
the treatment of UAV photography, which improves the texture methodology and the massive video-
integrated mixed reality technology [23,24], and (2) to further develop the theory of federated learning
through an integration with the method of meta-learning and FBLS to segment the 3D modeling
virtual-real fusion video as a data set, which realizes image classification and recognition with high
accuracy. The organization of the article is as follows. Section 2 uses a five-eye UAV system for oblique
photography and builds a 3D model. The mixed reality of surveillance video and 3D model will be
carried out and a broad federated meta-learning system will be constructed. Section 3 uses the theory
of learning the damaged objects in aerial videos. The broad federated meta-learning system will be
used to recognize and classify images, respectively, and its performance in damaged degree analyses is
compared with traditional CNN networks. The conclusions and some next priorities are presented in
Section 4.

2 Theoretical Analyses

As shown in Fig. 1, the five-view camera is used from orthogonal and four oblique directions to
shoot the target objects, where the camera views the target from orthogonal and four oblique directions
object to shoot [18].

Date treatment for federated learning in the position orientation system is shown in Fig. 2. A local
image transformation is performed for mapping the mean and variance of the selected window to the
rest of the image so that the mean and variance of the selected area are balanced, and the selected
window area is moved in a certain order to filter the image globally. The selected window areas can be
moved in a certain order to filter the picture globally [19–21].

The broad federated meta-learning processes are as follows. First, data were collected by the
UAVs according to Fig. 1 and inertially calculated according to Fig. 2. The well-treated data from
each UAV were transformed for privacy protection and collected by the server for broad learning
and meta-learning. The UAVs can download the latest model from the server in turn. Second, each
user trained the model with local data and uploaded the encryption gradient to the server. Integrating
with the inertial calculations, the server can aggregate the gradient information for updating model
parameters. After then, the server returns the updated model parameters to each UAV. Finally, all the
UAVs updated their models to learn about damaged objects in aerial videos. The users can be people
from different regions. They have absolute control over associated UAVs and data. Each user can
stop computing and participate in communication at any time. In meta-learning and broad learning
systems, the server acquires the candidate worker nodes and then controls the selected nodes by
updating the model parameters and nodes values.



CMES, 2023, vol.137, no.3 2883

Figure 1: Mechanisms for data acquisition through the oblique photography technology—(a) the
x-axis and y-axis of the image space coordinate system; (b) the angle between the projection and
the image plane [18]; (c) the coordinates of the image points obtained from the central projection
relationship; (d) the coordinated rotations to find the ground points (Image encryption display)
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Figure 2: Date treatment for federated learning in the position orientation system, which consists of
an on-board GPS (Global Positioning System) and an INS (Inertial Navigation System), which is
composed of the UAV position information obtained by differential GPS technology and the IMU
(Inertial Measurement Unit) captured by the INS

3 Implementation of the Theory
3.1 Mixed Reality from 3D Reconstruction

For mixed reality from 3D reconstruction, we first perform feature extraction and match on the
3D point cloud formed by aerial triangulation using ORB, then construct Digital Terrain Model
(DTM) by multi-visual matching, then process the surveillance video sequences, and finally integrate
the virtual and real fusion based on the surveillance video images and DTM model to achieve lossless
zooming of local areas and scene recognition with classification [20], as shown in Fig. 3.

Figure 3: Flow chart of ORB key-point detector and federated learning [25,26]. The ORB (Oriented
FAST and Rotated BRIEF) method is adopted in this paper to extract feature points in multi-view
matching for the 3D model fusion and fast secondary processing of the aerial videos
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3.2 Approach to Learning of Damaged Objects
Utilizing the subsystems with fuzzy rules for federated learning of damaged objects, we define the

activation level (fire strength) and membership function corresponding to fuzzy sets with defuzzified
outputs. We choose the Gaussian membership function and initialize the coefficients in the polynomial
function of the first-order fuzzy system. Applying the k-means method to divided the data into classes
and derive K clustering centers, the centers of Gaussian membership functions are initialized by the
values of clustering centers.

The intermediate output matrix for each training sample is calculated without aggregation.
During federated learning of damaged objects, the output matrix of the ith fuzzy subsystem for all
the training samples can be derived for all the training samples. The output matrix of intermediate
output can be calculated from the output matrix of the enhancement layer and the output matrix of
each fuzzy subsystem for all the training samples. The fuzzy subsystems are constructed on certain
fuzzy rules—defining the activation level (fire strength) and membership function corresponding to
fuzzy sets and the defuzzified outputs can be interpreted by finite IF-THEN rules, as follows:

If xs1 is Ai
k1 and xs2 is Ai

k2 . . . and xsM is Ai
kM , then zi

sk = fk (x1, x2, . . . , xM) , k = 1, 2, . . . , Ki. (1)

where Ai
ki is a fuzzy set, xsj is the system input (j = 1, 2, . . . , M), and Ki is the number of fuzzy rules in

the i th fuzzy subsystem.

Taking f i
k to be a polynomial function of x and using the Gaussian membership function, this

learning system can obtain the first-order fuzzy model with a first-order polynomial f i
k [14,16].

The meta-learning system can be defined as a procedure to process the dataset D and make
predictions ŷ∗ from the known factors x∗ [27]. As a particular function that maps x∗ to ŷ∗, f can be
linked with the meta-learning methods [28–31]. Exactly, the goal of such learning process is to recover a
function from data, including meta-learning classifiers, regression, and policies for effective prediction
and control [32]. The learning function f is said to be consistent if [33]
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i

) → y∗
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Hence the broad federated meta-learning of damaged objects can be formulated as a large-scale
task classification. We improve the traditional gradient descent to update the weights of the meta-
learning function f , which can be represented as
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)
and fout(·, θ l

out) are respectively the input and output of the
meta-learning system,

∏N

i=1 Wi is the weight matrices.

The considered scenarios are to detect damaged objects in aerial videos. A real-time detection
should be expected and hence, the communication cost of federated learning can be majorly focused
on time. The roles of the two integrated learning systems are different—the fuzzy broad learning
system serves for differentiate the damaged objects from other ones and meta-learning system serves
for objects recognition. The meta-learning system works at first and presents the necessary basis
for the broad fuzzy learning system. We also utilized CNN to classify the data that participated in
the federated learning processes to ensure their independence. To minimize the influences of feature
differences in learning the damaged objects in aerial videos, meta-learning as a “learn to learn” process
is further utilized, as shown in Fig. 4.
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Figure 4: Broad federated meta-learning processes, including the structure of FBLS and meta-learning
parameter updating process—the first green arrow is parallel to the second green arrow from left to
right, which means that as the federated gradients in the same direction are updated simultaneously
in approaches to learn damaged objects in aerial videos

Specifically, for each client, the latest global model parameters are first downloaded from the
central server. The client then trains its own CNN model using its local data for 50–100 epochs and
calculates the gradient of the FBLs model relative to the binary cross-entropy loss function of its
local data. The client then uploads this local model gradient information to the central server. Once
the central server has received all the uploaded gradient information from the clients, it aggregates the
gradients using the Federated Averaging algorithm and updates the weights and bias parameters of the
global model. Finally, the central server sends the updated global model weights and bias parameters
to the clients, who use their local optimizers to update their local model parameters and minimize their
local loss function.
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Upload gradient information of local model parameters, which is the local data loss function
gradient according to the classification model trained by each client, to a central server.

For the cross entropy function, we have:

lossk = −
s∑

i=1

c∑
j=1

yijlnŷij (k = 1, 2, 3 . . . , n), (4)

where lossk represents the calculation result of the kth client’s cross entropy, yij represents the real value
of the jth category label in the ith sample, ŷij ∈ [0, 1] represents the predicted value of the model for the jth

category in the ith sample, s and c are respectively the number of samples and the number of categories.

For the binary model of whether the target is damaged, we take c = 2, then yi2 = 1−yi1, ŷi2 = 1−ŷi1,
thus we can simplify the above equation as:

lossk = −
s∑

i=1

[
yi1lnŷi1 + (1 − yi1) ln

(
1 − ŷi2

)]
(k = 1, 2, 3 . . . , n), (5)

for the loss of image category, we take the label value y to 1, so we have:

lossk = −
s∑

j=1

ln(ŷi) (k = 1, 2, 3 . . . , n). (6)

In FBLS, ŷi = f (ω) ∈ [0, 1], where ω = (ω1, ω2, ω3 . . . , ωl)(l = 1, 2, 3 . . . , m) is for the weight of
the lth middle layer, m represents FBLS in the middle layer to the total number of nodes, then we have:

lossk = −
s∑

i=1

ln(ŷi(ω)) = −
s∑

i=1

Ji (ω) = Jk(ω) (k = 1, 2, 3 . . . , n). (7)

For the update of the kth client weight parameter ωk, we have:

ωt+1
k = ωt

k − α
∂Jk

(
ωt

k

)
∂ωt

k

(k = 1, 2, 3 . . . , n), (8)

where t is the number of iterations, α represents the learning rate,
∂Jk

(
ωt

k

)
∂ωt

k

is the gradient information

of fbls loss function, represents the update of the tth weight parameter of the kth client, which is denoted
as �ωt

k.

With respect to the central server, we aggregate �ωt
k according to the Federated algorithm and

return the obtained parameters to the client for parameter iteration and optimization in accordance
with Eq. (8).

These devices participate in federated learning through online communication. Considering the
unstable situations and the difference in their computing capabilities, we perform the system on each
class of objects, respectively. This reduced the number of communications so that they can work
together and finish learning tasks simultaneously. To make it possible to quickly learn new tasks based
on the acquisition of existing “knowledge”, the system is trained by feeding it many support sets to
achieve good recognition in the testing set and for new-shot learning, it learns with an alternative
strategy—learns from small samples and constantly correcting the model parameters to achieve good
recognition and classification in a new testing set. The key point of broad federated meta-learning is to
find the meta-learner that can be adapted to the new damaged objects through the updating data. The
key point is not to find the mapping between input and output by computing the loss function to better
implement the mapping between features and labels (requiring the input of too many data sets for
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training and validation), but to learn autonomously with only a small amount of data. Consequently,
the broad federated meta-learning system can learn damaged objects quickly and accurately with new,
small amounts of data.

4 From Theory to Practices
4.1 Damaged Objects in Federated Learning

As shown in Fig. 5 (left), the meta-learning system achieves lossless enlargement and screen
recognition of the details on 3D-reconstructed data sets with damaged objects. We divided the degree
of lawn into four categories according to the percentage of damaged areas from 0% to 100% with a
25% interval width. After adding morphological operators to extract the breakage and pre-training the
algorithm by introducing the lawn damage instances of the 4 categories of damage in 3D-reconstructed
data sets, we use the improved algorithm to classify Chaparral, Baseball Field, Golf course, Meadow,
in the reality data sets. The classification results are shown in Fig. 5 (right).

Figure 5: Meta-learning of objects from 3D-reconstructed data sets and mixed picture data sets.
The mixed picture data sets for Chaparral, Baseball Field, Golf course, and Meadow were manually
processed to ensure that the percentage of damaged areas was in a quartile interval from 0% to 100%
with a 25% interval width (Image encryption display)

The training results of the broad federated meta-learning system are represented in a confusion
matrix with the actual model, as shown in Figs. 6 and 7. The performance of the 3D-reconstructed data
from the oblique photography of the UAV was compared with that of the mixed data set of aerial videos
segmentation pictures. For 3D-reconstructed data, damaged objects are divided into three categories
according to lawn, road and roof. For the mixed picture data sets, we used the same classification as
before, setting up Chaparral, Baseball Field, Golf course, and Meadow as four different degrees of
deterioration.
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Figure 6: Real label vs. predicted label confusion matrix—the 3D-reconstructed data from the oblique
photography of the UAV and the surveillance footage are processed according to the video, and the
images are extracted frame by frame, and each image is divided into sixteen equal parts

Figure 7: Real label vs. predicted label confusion matrix—the mixed picture set of aerial videos
segmentation are processed according to the video, and the images are extracted frame by frame, and
each image is divided into sixteen equal parts

In the figure above, the federated learning model is trained relatively quickly on the 3D-
reconstructed data sets, with the accuracy of the model essentially stabilising at 90% after 50 steps.
The picture on the right shows that only a small number of damaged targets are incorrectly identified
and the model performs well overall.

In the above figure, the classification accuracy of meta-learning on mixed picture data sets is not
as high as that in Fig. 6, and its classification accuracy is volatile and does not converge. As shown in
Figs. 8c and 8d, for the classification of mixed picture data sets, we can achieve over 90% accuracy by
using conventional CNN.
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Figure 8: Performance of a non-federated learning system–CNN network for the comparison of the
loss function of the training set and the validation set (left) and the comparison of the accuracy of the
training set and the validation set (right)

4.2 Performance of Federated Learning System
As shown in Fig. 8, on 3D-reconstructed data sets, the traditional CNN network is unstable in

both training and verification phases compared to meta learning, while on mixed picture data sets,
convergence speed and final accuracy are superior to meta learning final results. The calculated loss
values and accuracies on the training set loss function train_loss and the validation set loss function
val_loss are shown respectively.

For federated meta-learning, the divided dataset is also divided into a training set and a testing set.
In contrast with the non-federated learning system, the loss function of the federated meta-learning
system (used for both training and testing sets of the model, respectively) converged very quickly
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under the assumption of small samples. The CNN network did not converge under the same data
input conditions, but in some cases the accuracies of the federated meta-learning system recognition
fluctuated more. For an effective recognition and classification of damaged objects, it is necessary for
the federated meta-learning system to be further integrated with FBLS, as shown in Fig. 9.

Figure 9: Performance of the federated meta-learning system with the comparison of the loss function
of the training set and the validation set (left) and the comparison of the accuracy of the training set and
the validation set (right). Due to the large initial loss of the system, the details after loss convergence
will be compressed. Therefore, the figure starts from the step whose loss is less than 1

After integrated with FBLS, the broad federated meta-learning system become more efficient, as
shown in Table 1.
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Table 1: Performance of the broad federated meta-learning system from two users—in comparisons
of training accuracy, training time, testing accuracy and testing time

Damaged
objects

Training
accuracy

Training
time

Testing
accuracy

Testing
time

User1 User2 User1 User2 User1 User2 User1 User2

Initial broad federated meta-learning system

Roof 96.3% 90.3% 1.669 s 1.663 97.8% 91.5% 0.233 s 0.252
Road 71.5% 70.5% 1.408 s 1.502 55.5% 55.6% 0.274 s 0.274
Lawn 71.8% 68.9% 1.535 s 1.524 76.4% 60.37% 0.221 s 0.225

Performance in server 78.2% 1.563 s 72.9% 0.250 s

Improved broad federated meta-learning system with morphological operators and damage instances

Roof 96.3% 90.3% 1.669 s 1.664 97.8% 91.5% 0.233 s 0.252
Road 85.5% 80.2% 1.765 s 1.740 95.5% 80.5% 0.269 s 0.280
Lawn 82.8% 76.3% 1.865 s 1.831 90.6% 84.6% 0.295 s 0.301

Performance in server 85.2% 1.745 s 90.8% 0.277 s

Through actual observation, we believe that the damaged area can be determined as roof damage
if the proportion of the damaged area reaches more than 10%, while for the classification of roads
and lawns, we adjust the threshold to 25%. It can be seen from Table 1 that the identification accuracy
of roof damage is high, while the identification effect of road and lawn is poor. It can be seen from
the analysis that most of the roofs are rusty, and the color difference between the damaged area and
the surrounding area is obvious, while it is difficult to accurately identify whether the damaged area is
damaged due to the close color between the damaged area and the surrounding area. Through further
experiments, we found that the extraction of crack areas can better extract the damaged areas and
improve the accuracy of identifying the damaged areas of roads and lawns by comparing them with
specific instances of roads and lawns. As shown in the Fig. 10, for the extraction of damaged areas, we
further segment the image, introduce the threshold we set, convert the image set of the objects into a
binary image, and then use the erosion and expansion operators in morphology to process the binary
image, and compare it with the damaged examples in the example to judge the damage of the road.
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Figure 10: Introducing thresholds for crack extraction by morphological operators

As shown in Table 1, the average accuracy of multiple classification of roof, road and grass is
90%, and the accuracy of damage identification of rusty roof directly reaches 96.3%. After adding
damaged cases for pre-training and morphological operator extraction of damaged parts, the testing
accuracy of judging whether the grass and road are damaged is above 90%. For the calculation of
the area proportion of the damaged part, the accuracy of CNN classification converges at 90%, no
matter the mixed reality data sets or the mixed picture set of aerial video segmentation images. The
classification of damaged objects and the detection of the damaged area show good effect on the
two types of data sets and the mixed data set, and the accuracy is higher than 90%. In comparisons of
the performance on two different data sets, we found that meta-learning system works much better in
the 3D-reconstructed data from the oblique photography of the UAV and the mixed reality than in the
mixed picture set of aerial videos segmentation. This also highlighted the necessity to introduce CNN
further as an alternative system for integrating with federated learning. We also met some overlapping
data features in federated learning processes and in order to reduce overlapping samples, we introduced
necessary thresholds to match the information and improve the model capability, as shown in Figs. 11
and 12.

Figure 11: Improved the model capability—learning of damaged green belts as an example (Image
encryption display)
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Figure 12: Learning results of four green areas with the improved model

Comparative analysis was adopted in the lawn damage ratio analysis. The residential area was
divided into two parts manually and aerial sampling was conducted on the two parts, respectively.
To be specific, we view the three-dimensional model established by UAV aerial photography in the
two regions, respectively, according to the specific route, and carry out statistical analysis on it. It can
be seen from the histogram that the green area roughly follows the rule of normal distribution. In
this experiment, we calculated the lawn damage ratio by using the two-dimensional numerical map
of the complete aerial map of manually divided areas. That is, the real lawn damage ratio could be
obtained by calculating the area proportion of damaged lawn in the two-dimensional map. Finally,
the experimental data are consistent with the average of the normal distribution of lawn damage ratio
obtained by statistical analysis of the tilting camera model. Therefore, it is reasonable to calculate the
lawn damage ratio of green belts by aerial photography method.

As can be seen from the figure above, after the video shot according to the specific route has
been divided, the lawn damage ratio in the picture has been tested by Quantile-Quantile Plots, and the
distribution of lawn damage ratio in the two areas is basically consistent with the expected curve of
the normal red distribution. Therefore, we can use the normal distribution to calculate the proportion
of damage of the whole damaged lawn. The area of the damaged lawn was manually divided and the
proportion of damaged lawn area in the two areas was statistically analyzed using the binary graph
as the true value. That is, the true value of damaged lawn rate in Area1 and Area2 was 38.35% and
55.73%, respectively. After four tests, the error of the average lawn damage ratio was 5.76%, indicating
that the broad federated meta-learning system could accurately calculate the proportion of damaged
areas.

According to the lawn damage image recognition classification method shown in 4.1, we classified
the damage areas into 4 categories by the preliminary screening of the damage areas calculated by
the algorithm and fine screening of the manually classified damage area proportions and sent these 4
categories of data to meta-learning and CNN for multi-classification, which can yield the above results.
Overall, the CNN was more accurate in classifying the proportion of lawn area damaged, while meta-
learning was faster but less robust.
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4.3 Outstanding Questions and Next Research Priorities
Based on the virtual-real fusion model obtained in oblique photography, the image is extracted

and segmented frame by frame. This provides sufficient data for federal learning [34–36]. At the same
time, in order to verify the damage recognition accuracy of the model on UAV aerial images without
virtual-real fusion, we also added the real aerial video images, forming a mixed date set of virtual
reality and reality fusion. This data is in contrast to 3D reconstruction data in Federated Learning.
In the decision-making part of federated learning, we use the meta-learning method to conduct multi-
classification of segmented images to realize the detection of roofs, lawns and roads [37–40]. Further,
for the results of multiple classifications, the fuzzy width learning method is used to distinguish the
damage of the three, and the classification of the damage degree of the roof is realized directly. Then,
according to the characteristics of road and lawn image damage, the damage detection algorithm is
designed, and damage samples are introduced to pre-train the model, so as to improve the detection
accuracy of damage [41–45]. In the second part, based on the 3D-reconstructed data, an improved
broad federated meta-learning system with morphological operators and damage instances was used
to calculate the proportion of the damaged area of regional lawns. And the damage degree is divided
into four categories, respectively input meta-learning model and CNN training model. At the same
time, we also verified the feasibility of classifying damaged images on realistic data sets for federation
learning [46–50]. We define 3D-reconstructed data sets and Mixed picture data sets from User1 and
User2, respectively. From Figs. 8 to 9 and Table 1, we weighed the training results of different users
according to the number of pictures to measure the overall performance of the server. In the end, the
average testing accuracy is 90.8% and the average testing time is 0.277 s.

In image classification, we use the mixed data set of virtual reality and real image segmentation
to carry out experiments and adopt the method of meta-learning and fuzzy broad learning system
to classify images. The Federal Learning Process [51] classifies images into three categories: roofs,
lawns, and roads. Firstly, the modeling images obtained in oblique photography were segmented,
manually marked, and sent into the meta-learning model for learning, and the classification results
were obtained to verify the accuracy. In the damage section, we assessed the damage to roofs, roads
and lawns. Secondly, we select the corresponding image set in the meta-learning multi-classification,
use convolution to filter the damaged image set, and roughly determine the size of the damaged area.
Then, according to the set damaged area threshold, the image is divided into lossless and damaged.
These two kinds of images are then sent to the fuzzy width learning network for training and final
classification. For damaged roofs, the color difference between the damaged area and the surrounding
area is larger. The size of the damaged region can be determined by direct convolution filtering. For
roads and lawns, morphological operators and damage instances need to be introduced to extract
cracks. Then, we manually produced four data sets with different damage ratios and used the damaged
area ratio of images as damage examples to train the improved broad federated meta-learning system.
Finally, we applied the model to calculate the damage ratio of the two regions in the data set that was
segmented after shooting according to specific routes and verified the damage ratio calculated by the
model.

From the federated learning results, we can see that our algorithm for judging the damaged area
and the algorithm for calculating the proportion of the damaged lawn area also have high accuracy in
the real data set. Next, research priorities to future improve the federated learning system for detecting
damaged objects can be described as follows. How to check the damage rate according to a uniform
route to ensure learning accuracy? How to define the damage degree of different objects without a loss
in the model performance? The federated learning accuracy of the accurate identification element of
the damaged area of lawn is poor, which is not as good as the traditional CNN method and needs to be
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further improved. Possible solutions are as follows [52–56]. For federated learning of the proportion
of damaged lawn areas, we take the model of virtual and real fusion as the basis, view the model
according to a certain route and extract the picture frame by frame and segment it [52]. First, calculate
the greening rate, then use the algorithm in the previous part to extract the collection of damaged lawn
images, and calculate the proportion of damaged lawn areas, and divide the damage degree into four
categories, which are sent into the meta-learning and CNN training model. Finally, we made a data
set with fixed damaged area using the public aerial photography data set, and verified the feasibility
of classifying the damaged image according to the proportion of damaged area in the quality aerial
photography image. In the calculation of the overall greening rate, first of all, we divide the observation
area into two parts. In these two parts, we view and record the 3D model obtained by the combination
of oblique photography and video images according to a certain route, and segment it frame by frame.
Through convolution filtering, we identified the green area of the extracted picture, calculated the
greening rate, and carried out statistical analysis on it. The experimental observation shows that its
distribution follows the normal distribution, and the greening rate myopia obtained from the manual
division of two parts of the observation area and accurate calculation of the green area, that is, the
average value can be used to calculate the greening rate of the aerial photos of specific routes.

5 Conclusions

The traditional UAV mapping system has a low degree of automation and relies on manual
mapping for damaged objects, which requires the measurement of plenty of control point position
coordinates. Broad federated meta-learning systems can make full use of GPS positioning and inertial
navigation in the role of IMU units in accurate positioning, providing accurate initial values for the
error equation. The recognition accuracy is high, and the convergence speed is fast, but the accuracy
rate can be improved. In the subsequent research, we can try to combine the advantages of the two to
form an image classification and recognition system with fast convergence speed and high accuracy
rate at the same time.
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