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ABSTRACT

This paper presents a restricted SIR mathematical model to analyze the evolution of a contagious infectious disease
outbreak (COVID-19) using available data. The new model focuses on two main concepts: first, it can present
multiple waves of the disease, and second, it analyzes how far an infection can be eradicated with the help of
vaccination. The stability analysis of the equilibrium points for the suggested model is initially investigated by
identifying the matching equilibrium points and examining their stability. The basic reproduction number is
calculated, and the positivity of the solutions is established. Numerical simulations are performed to determine
if it is multipeak and evaluate vaccination’s effects. In addition, the proposed model is compared to the literature
already published and the effectiveness of vaccination has been recorded.
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1 Introduction

The World Health Organization (WHO) reports that COVID-19 was first reported in Wuhan,
China, in December 2019 and was later designated a global pandemic on 11 March 2020. The
beginning of the virus era can be traced back to 1965 when Tyrrell and Bynoe identified the B814
virus [1]. An adult’s respiratory system can contain the B814 virus, which causes the disease to spread
[2]. Coronavirus antibody experiment [3], human coronavirus infections [4], and coronavirus isolation
with some epidemiological studies [5] are some examples of early research on this disease. As a recent
but common epidemic disease, the ability of COVID-19 to spread depends on the following:

• The inherent danger of viruses, such as their incubation period, infection rate, and recovery
rate;

• The understanding of viruses in modern medicine and their therapeutic effects, such as the time
it takes for patients to recover and the efficacy of vaccines;

• Countermeasures, such as travel bans, patient isolation, and importation restrictions.
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Taking into account all of these factors, vaccination should be a primary goal of health admin-
istrators to protect people from these epidemic diseases. The invention of vaccines against pediatric
infectious diseases has benefited civilization. Developing a system that could predict the ideal level of
coverage of vaccines required to stop the spread of these diseases is essential because vaccination is
considered the most successful therapy against pediatric infections.

Without considering antivirals or effective vaccines, mathematical models are crucial to
understanding how epidemics spread and developing control tactics for their rapid development.
Kermack et al. [6] investigated the SIR compartmental model in London during the Black Death.
Kermack and McKendrick’s SIR model has contributed significantly to the study of infectious disease
dynamics and is the most traditional and fundamental model used to research infectious diseases. The
SIR model divides the total population into the following three populations: susceptible S, which
represents those who are not infected but are likely to contract this type of disease; infectious I, which
represents those who have been exposed to the disease as patients and are capable of spreading it;
and removed R, which represents those who have been isolated from the infected. The traditional SIR
model of Kermack et al. [6] is defined as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt

= −βS(t)I(t),

dI(t)
dt

= βS(t)I(t) − μI(t),

dR(t)
dt

= μI(t).

(1)

where S(t), I(t) and R(t) signify the percentage of the population susceptible, infected, and recovered
at time t with spread rate β and recovery rate μ.

To examine the spread of disease in human contact networks, the researchers presented several
models that explain the underlying structure of the network [7]. Most infectious diseases are still
studied using the well-documented SIR epidemic model, if not with the latency-based SEIR model,
due to its simplicity and ease of access with many numerical schemes [8]. As a result, academics
continue examining the SIR model using computational and theoretical tools with deterministic vs.
stochastic aspects. Chronically, some epidemic diseases, such as tuberculosis, HIV, and fever, were
numerically analyzed within the SIR framework in [9]. The theoretical analysis in [10] demonstrated,
using an optimal control problem approach, that optimal vaccination policies are not unique, as
studied using the extended SIR model. Also vaccination was proposed in [11] to eliminate infectious
diseases, as was also mentioned in [10]. The SIR model was applied to vaccinated and reinfected
after vaccination in order to represent the indirect and direct impacts of influenza vaccination within
individuals exposed to the seasonal transmission of multiple influenza strains in [12], and it was
observed that when the reproduction number is close to the endemic value, the indirect vaccination
effects are stronger. References [13–15] provided an excellent overview of several fractional operators
used in infectious disease. The consequences of vaccination on an epidemic with constant removal
from the susceptible population were modeled in [16]. Reference [17] estimated the disease time
history using both variational iteration and successive methods for a regular vaccination SIR epidemic
model. The SEIR model was introduced in [18] to analyze and examine the evolution of COVID-
19 in India using available data. Based on the SIR model, the simulation results in [19] indicated
that timely identification and isolation of infected are more productive than those based on social
distancing, which is an important premise in treating COVID-19. To understand the impact of network
heterogeneity on epidemic propagation, Moreno et al. [20] suggested an epidemiological paradigm
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considering the network. By combining control mechanisms, Li et al. [21] investigated the effect of
evolving small-world networks on epidemic transmission. Using a degree-based mean field technique,
Pastor-Satorras et al. [22] elucidated the dynamics of epidemics in the complex network.

To illustrate how COVID-19 spread throughout Italy and the effects of emergency containment
measures, Gatto et al. constructed a model. The authors took into account the mobility of people and
used the spatial network of 107 Italian provinces. The author’s network is founded on the notion
of community and incorporates both local and imported infections as a result of contacts within
the neighborhood or linked to people’s mobility by considering the community-dependent force of
infection. It is comparable to the movement of flux from one place to another, where the second place
may be a community [23]. Until 1927, Hamer, Ross, and others have made a great effort to develop
mathematical models of infectious diseases [24,25].

Several model assumptions are included below. A vulnerable person will join the infected group
when they come into contact with an infected person. The interaction was recently applied as a
product term

√
SI in Mustafa Turkyilmazoglu’s SIR model [26], and the results were remarkable. Sudi

Mungkasi suggested a SIR model [17] that considers both natural death and vaccination parameters.
Here, we provide a model that incorporates data from both models and generates a more precise
diagnosis of an epidemic disease. The interaction terms in this model, provided by the following system
of differential equations, are now expressed in terms of the square roots of the variables (see Fig. 1).⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= (1 − p)αN − β
√

SI
N

− μ
√

S,

dI
dt

= β
√

SI
N

− (γ + μ) I ,

dR
dt

= pαN + γ I − μR.

(2)

The parameter β is the average contact rate between a susceptible and infected person. The
recovery rate of an infected person joining the deleted group is γ . The natural birth rate is defined
by α. μ denotes the decay rate for the population. All parameters p, α, β, γ and μ are nonnegative
constants according to the aforementioned assumptions. Furthermore, this type of strategy has already
been used in academic work [27,28]. Although this assumption can be justified from an epidemiological
point of view, it is nonetheless in keeping with the current goal of obtaining simple analytical solutions.
From a general perspective, an epidemic disease does not need to spread according to the nonlinear
interaction SI . However, occasionally, as suggested in [27], a susceptible-infected nonlinear incidence
rate of a generic interaction SmIn may change in particular time regimes or over time. As demonstrated
by the smoking-free model in [29], modifications can be made to actual epidemiological situations by
carefully choosing the characteristics of the epidemic. It is also important to note that the choice of the
square root model here, instead of the conventional SIR model, can be anticipated to have qualitative
similarities for some sample parameters, which is another motivation for the current analysis. This is
in addition to the epidemiological perspective.

Liu et al. [27] and Mickens [30] have previously discussed square-root transition or interaction
terms in the context of disease transmission models. The population of our SIR model is constant

because
d
dt

(S+ I +R) = d
dt

(N) = 0 still holds for our model. Qualitatively, for given S ≥ 0 and I ≥ 0,√
SI has the same general mathematical characteristics as SI ; the same is true for

√
S concerning S.
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This new model focuses on two main concepts: first, it can present multiple waves of a given
disease, and second, it analyzes how far an infection can be eradicated with the help of vaccination.
The paper is structured as follows. Section 2 organizes the stability analysis of the equilibrium points
for the suggested model, calculates the basic reproduction number, and establishes the positivity of
the solutions. In Section 3, numerical simulations are performed to determine if it is multipeak and
evaluate vaccination’s effects. In Section 4, the proposed model is compared to the literature already
published, and the effectiveness of vaccination has been recorded. The consequences of vaccination
are also discovered for a novel outstanding case of a disease. The conclusion is reached in Section 5,
along with financial details.

Figure 1: Flow chart of restricted SIR model with vaccination effect

2 Equilibrium Points and Stability Analysis
2.1 Equilibrium Points

Consider the system (2)⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= (1 − p)αN − β
√

SI
N

− μ
√

S

dI
dt

= β
√

SI
N

− (γ + μ) I

dR
dt

= pαN + γ I − μR

The equilibrium point for a dynamic system is the value of the variables at which the variables do
not vary over time. Derivatives in the mathematical model should be zero to identify the equilibrium
points because they represent the change in the variables. Therefore, the equilibrium points are
provided by solving the following set of equations:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dS
dt

= 0

dI
dt

= 0

dR
dt

= 0
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implies⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 − p)αN − β
√

SI
N

− μ
√

S = 0

β
√

SI
N

− (γ + μ) I = 0

pαN + γ I − μR = 0

(3)

For disease free equilibrium points put I = 0 in (3){
(1 − p)αN − μ

√
S = 0

pαN − μR = 0
.

Hence

E0 = (S0, I0, R0) =
((

(1 − p)αN
μ

)2

, 0,
pαN
μ

)
(4)

is the disease-free equilibrium point.

We can now solve the first two equations in (3) for the values of S and I for the epidemic
equilibrium point, and then we can use I to find R. The only equilibrium for an epidemic is at

E1 =
((

N(γ + μ)

β

)2

,
(1 − p)α

γ + μ
− μ

β
,

pαβN − μ

μβ
+ γ (1 − p)α

μ(γ + μ)

)
. (5)

2.2 Stability at Equilibrium Points
We must calculate the eigenvalues of the Jacobian matrix related to the system (2) to evaluate the

stability of the equilibrium points, at the locations of equilibrium evaluated. For the system of the type⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dS
dt

= f (S, I , R)

dI
dt

= g(S, I , R)

dR
dt

= h(S, I , R)

the Jacobian matrix is defined as

J =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂f
∂S

∂f
∂I

∂f
∂R

∂g
∂S

∂g
∂I

∂g
∂R

∂h
∂S

∂h
∂I

∂h
∂R

⎞
⎟⎟⎟⎟⎟⎟⎠
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From (2) it can be seen that

f (S, I , R) = (1 − p)αN − β
√

SI
N

− μ
√

S

g(S, I , R) = β
√

SI
N

− (γ + μ) I

h(S, I , R) = pαN + γ I − μR

The disease-free equilibrium point described in (4) has the following Jacobian matrix:

J[E0] =

⎛
⎜⎜⎜⎜⎜⎝

− μ2

2N (1 − p) α
−N (1 − p) αβ

μ
0

0 −γ + N (1 − p) αβ

μ − μ
0

0 γ −μ

⎞
⎟⎟⎟⎟⎟⎠

with eigenvalues as
{
−μ, − μ2

2αN(1 − p)
,
αβN(1 − p) − μ(μ + γ )

μ

}
. As the first two eigenvalues are

already negative, therefore the system (2) will be stable at the disease-free equilibrium point if and
only if μ(μ + γ ) > Nαβ(1 − p).

Again the Jacobian matrix associated with equilibrium point stated by (5) is

J[E1] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−

β

⎛
⎜⎜⎝μ +

β

(
N (1 − p) α − Nμ (γ + μ)

β

)
γ + μ

⎞
⎟⎟⎠

2N (γ + μ)
−N (γ + μ) 0

β2

(
N (1 − p) α − Nμ (γ + μ)

β

)
2N(γ + μ)

2 −γ − μ + N (γ + μ) 0

0 γ −μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and eigenvalues are {λ1, λ2, λ3}⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−μ,
1

4N(γ + μ)
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Nαβ2 + Npαβ2 − 2Nγ 3 + 2N2γ 3 − βγμ + Nβγμ − 6Nγ 2μ +
6N2γ 2μ − βμ2 + Nβμ2 − 6Nγμ2 + 6N2γμ2 − 2Nμ3 + 2N2μ3

−

√√√√√√√√√√√√√√√√√

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎝Nαβ2 − Npαβ2 + 2Nγ 3 − 2N2γ 3 + βγμ − Nβγμ +

6Nγ 2μ − 6N2γ 2μ + βμ2 − Nβμ2 + 6Nγμ2 −
6N2γμ2 + 2Nμ3 − 2N2μ3

⎞
⎠

2

−4

⎛
⎜⎜⎜⎜⎜⎜⎝

2N2αβ2γ 3 − 2N2pαβ2γ 3 + 6N2αβ2γ 2μ −
6N2pαβ2γ 2μ + 2Nβγ 4μ − 4N2βγ 4μ +
6N2αβ2γμ2 − 6N2pαβ2γμ2 + 8Nβγ 3μ2 −
16N2βγ 3μ2 + 2N2αβ2μ3 − 2N2pαβ2μ3 +
12Nβγ 2μ3 − 24N2βγ 2μ3 + 8Nβγμ4 −
16N2βγμ4 + 2Nβμ5 − 4N2βμ5

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

1

4N(γ + μ)
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Nαβ2 + Npαβ2 − 2Nγ 3 + 2N2γ 3 − βγμ + Nβγμ − 6Nγ 2μ +
6N2γ 2μ − βμ2 + Nβμ2 − 6Nγμ2 + 6N2γμ2 − 2Nμ3 + 2N2μ3

+

√√√√√√√√√√√√√√√√√

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎝Nαβ2 − Npαβ2 + 2Nγ 3 − 2N2γ 3 + βγμ − Nβγμ +

6Nγ 2μ − 6N2γ 2μ + βμ2 − Nβμ2 + 6Nγμ2 −
6N2γμ2 + 2Nμ3 − 2N2μ3

⎞
⎠

2

−4

⎛
⎜⎜⎜⎜⎜⎜⎝

2N2αβ2γ 3 − 2N2pαβ2γ 3 + 6N2αβ2γ 2μ −
6N2pαβ2γ 2μ + 2Nβγ 4μ − 4N2βγ 4μ +
6N2αβ2γμ2 − 6N2pαβ2γμ2 + 8Nβγ 3μ2 −
16N2βγ 3μ2 + 2N2αβ2μ3 − 2N2pαβ2μ3 +
12Nβγ 2μ3 − 24N2βγ 2μ3 + 8Nβγμ4 −
16N2βγμ4 + 2Nβμ5 − 4N2βμ5

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Particularly for N = 1 eigenvalues are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−μ,
1

4(γ + μ)
2

⎛
⎜⎜⎜⎝

−αβ2(1 − p)

−

√√√√√
⎛
⎝α2β4(1 − p)2

−8β

(
αβ (1 − p)

(
γ 3 + 3γ 2μ + 3γμ2 + μ3

)−
μ

(
γ 4 + 4γ 3μ + 6γ 2μ2 + 4γμ3 + μ4

) )⎞
⎠

⎞
⎟⎟⎟⎠ ,

1

4(γ + μ)
2

⎛
⎜⎜⎜⎝

−αβ2(1 − p)

+

√√√√√
⎛
⎝α2β4(1 − p)2

−8β

(
αβ (1 − p)

(
γ 3 + 3γ 2μ + 3γμ2 + μ3

)−
μ

(
γ 4 + 4γ 3μ + 6γ 2μ2 + 4γμ3 + μ4

) )⎞
⎠

⎞
⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Two cases are taken into account.

Case(I)

If⎛
⎝α2β4(1 − p)2

−8β

(
αβ (1 − p)

(
γ 3 + 3γ 2μ + 3γμ2 + μ3

)−
μ

(
γ 4 + 4γ 3μ + 6γ 2μ2 + 4γμ3 + μ4

) )⎞
⎠ ≤ 0

The system is asymptotically stable at equilibrium because there are two complex eigenvalues with
negative real components or three negative eigenvalues.
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Case(II)

If⎛
⎝α2β4(1 − p)2

−8β

(
αβ (1 − p)

(
γ 3 + 3γ 2μ + 3γμ2 + μ3

) −
μ

(
γ 4 + 4γ 3μ + 6γ 2μ2 + 4γμ3 + μ4

) )⎞
⎠ > 0

thus the system will be asymptotically Â stable whenever

β (1 − p)
(
γ 3 + 3γ 2μ + 3γμ2 + μ3

)
>

(
γ 4 + 4γ 3μ + 6γ 2μ2 + 4γμ3 + μ4

)
and unstable on the opposite side.

2.3 Basic Reproduction Number and Positivity of the Solution
As we all know that mathematical modelling can help to accurately measure possible disease

control schemes by putting emphasis on the crucial components of a disease, evaluating threshold
quantities for disease survival, and evaluating the impact of specific control strategies. The basic
reproduction number, usually denoted by �0, is a critical threshold quantity. �0 is defined epidemi-
ologically as the predicted number of cases that will be directly created by an infection instance
in a population where all members are susceptible. There is a disease free equilibrium (DFE) with

(S0, I0, R0) =
((

(1 − p)αN
μ

)2

, 0,
pαN
μ

)
. The initial behavior of the I equation in (2) is determined by

the sign of
β
√

S0

N
−(γ + μ), or equivalently

β(1 − p)α

μ (γ + μ)
−1. Therefor by using the technique mentioned

in [31], we get

�0 = β(1 − p)α

μ (γ + μ)
.

The positivity of the system will be proved by using the reference method stated in [32].

Theorem 2.1. (Positivity of Solutions) The Solutions S(t), I(t), R(t) of system (2) will be positive
for all t ≥ 0 given that S0, I0, R0 ≥ 0.

Proof.

Considering (2) and solving
dS
dt

≥ −μ
√

S ⇒ S(t) ≥ (−2μ + S0)
2 ≥ 0

dI
dt

≥ −μI ⇒ I(t) ≥ I0e−μt ≥ 0

dR
dt

≥ −μR ⇒ R(t) ≥ R0e−μt ≥ 0

3 Numerical Simulation Results and Discussions

On the Mathematica 12.0 software platform, numerical simulations are performed. The influence
of vaccination has been observed, and multipeak has been recorded. From Fig. 2, the effects of
vaccination on SIR variables are first shown in graphs 1a to 1d that possess an asymptotically stable
equilibrium point as defined by (5) for p = 0 with a reproductive number �0 = 1.61992. Finding
eigenvalues using the Jacobian matrix is how stability analysis is carried out in this case and in all
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subsequent cases. Here, we have the eigenvalues {−0.00669421 ± 0.0372425i, −0.01}. When there is
no vaccination, it shows the population density of susceptible, infected, and recovered individuals.
Multipeak is observed to occur without vaccination, which can be seen as a wave of disease. A disease
such as COVID-19 can be thought of as having waves, with the first wave occurring from time t = 0
to time t = 50 and infecting approximately 18% of the total population shown in graph 1b, the second
wave occurring from t = 160 to t = 280 and infecting approximately 4% of the total population as
shown in graph 1c, and the third wave occurring from t = 300 to t = 450 and infect approximately 2%
of the total population presented by graph 1d.

Figure 2: For β = 0.450 and γ = 0.265, multipeak exists in the SIR model without vaccination.
Susceptible (Dashed), infected (Line), recovered (Dotted)

Additionally, it is evident that in the absence of vaccination, individuals who have recovered from
infection relapse to susceptibility, and the density of susceptible and recovered individuals behaves
incongruously, increasing and decreasing over time.

In Fig. 3 the effects on the density of the infected population have been studied while infection
and recovery rates are constant and vaccination rates vary as follows:

• 35% population vaccinated

• 65% population vaccinated

• 90% population vaccinated
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Figure 3: For β = 0.450 and γ = 0.265, vaccination effect with (2a) p = 0.35 (2b) p = 0.65 (2c) p = 0.90

Fig. 2a refers to the asymptotically stable equilibrium point of type described by Eq. (5) and
Figs. 2b and 2c uses the asymptotically stable equilibrium point of type stated in Eq. (4) as the reference
point, all graphs demonstrate the effect of vaccination on SIR variables. The vaccination provides
complete protection in this instance. The vaccination helps to reduce the number of infected persons
over time; after an early rise with lower vaccination rates, the peak of infected substantially drops
as more people are vaccinated, and the final peak time is also reduced. This vaccination behavior is
consistent with the analytical findings in [33]. When vaccination is taken into account, it is seen that
there will not be any multi-peaks, which is a significant benefit of immunization. Additionally, with
35% of the population vaccinated, the infected population drops from 18% to 15%, and with 60% to
90% of the population vaccinated, it falls from 18% to 90%. The time of infection is shortened from
t = 50 to t = 40 as a result of vaccination.

We now examine how our approach performs when applied to some early literature and when the
80 percent vaccine is used. The goal is to foresee how vaccination-induced immunity reduction may
change how the epidemiology of the population reacts.

4 Discussion on Results

By manipulating the typical parameters of a running epidemic, many significant inferences
can be obtained from such a formula during an epidemic disease in real time; otherwise, complex
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computations from numerical simulations are needed. In particular, if the peak time calculation is
needed as a subroutine in an iterative operation to estimate parameters, it will be called multiple times.
Its numerical evaluation can become quite expensive. Therefore, the analytic substitution shown here
can enable calculations to be performed more effectively. This section will look at how our approach
performs when applied to some early published literature and when using the 80 percent vaccine. The
goal is to predict how vaccination-induced immunity reduction will affect population epidemiology.

We compared our model to a large body of published and unpublished literature. The results of
the comparison for the Â published literature given in Table 1 are discussed below. In addition, we have
given an example of a disease for which vaccination is ineffective. Fig. 4 depicts a graphical simulation
with zero percent vaccination and eighty percent vaccination. The topic of stability, as well as the
effect of vaccination, is discussed. We used the Jacobian matrix to examine stability at the equilibrium
point for each graph and discussed the vaccine’s impact. It is clear from graphs 3a and 3b use the
asymptotically stable equilibrium point of the type stated by Eq. (5) as the reference point and states
that the disease peaks around t = 4 (where t stands for time; it might be a day, week, month, or year).
Without a Â vaccine, the disease affects about 40% of the population, but with 80% vaccination, the
infection drops to 8%. Infections have been seen to climb above the zero level in graph 3c and 3d refers
to the asymptotically stable equilibrium point defined by Eq. (5), and if we draw a graph up to t =
400, we can see that there are multiple waves of disease in the absence of vaccination. However, due
to graph 3d, the infection would not spread at all if we applied eighty percent vaccination. Fig. 3e
refers to the asymptotically stable equilibrium point of the type stated by Eq. (5), and Fig. 3f refers
to the asymptotically stable equilibrium point of the type specified by Eq. (4) both figures show that
the disease peaks so quickly and ends without the need for vaccination, but if there is no vaccination,
then the recovered become susceptible once more, increasing the population of susceptible. On the
other hand, the susceptible population becomes stable with a vaccination rate of 80%. If there is no
vaccination, the disease contains multipeak, as seen in Fig. 3g with regard to an asymptotically stable
equilibrium point of the type specified by Eq. (5) and graph 3h referring to an asymptotically stable
equilibrium point of type stated by Eq. (4). Additionally, those who had recovered shifted into the
susceptible class due to a lack of vaccination. Vaccinating up to 80% of the population can resolve all
issues and model instability. It can be shown in Figs. 3i and 3j both refer to the asymptotically stable
equilibrium point stated by Eq. (5) that the graph would not change at all with any level of vaccination,
which is involved in this study to demonstrate that for some diseases, vaccination is entirely useless.
Such diseases typically only last a short period Â and do not result in a Â significant loss.

Table 1: Compared to the old literature at 0% vaccination and the analyses of the effects at 80%
vaccination

Reference β γ S0 I0 R0 �0 p

[10] 0.450 0.02 0.4444 0.3333 0.2223 9.9995 0,0.80
[14] 0.9178 0.7068 0.9999 0.000001 0.000099 1.28035 0,0.80
[9] 4.6291 2.82 0.9732 0.0268 0 1.61366 0,0.80
[27] 0.50 0.30 0.9999 0.00000127 0.00009873 1.61282 0,0.80
[12] 10 1 0.95 0.05 0 9.65029 0,0.80
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Figure 4: (Continued)



CMES, 2023, vol.137, no.3 2421

Figure 4: Comparison of the published literature with our model and analysis of the 80% vaccination

4.1 Influence of Vaccination on Endemic Infection
Here, we established the infection rate so that about 90% of the population contracted the disease.

Then, we employed vaccination techniques to determine the results. Here, four different instances are
considered, and numerical simulation is displayed in Fig. 5.

(i) No Vaccinations

(ii) 35% Vaccination

(iii) 65% Vaccination

(iv) 95% Vaccination

First, whether the equilibrium point was stable for each case was determined, after which it was
noted whether vaccination had any effects. And the effects of vaccination on a disease that has affected
nearly the whole population have been determined. From Fig. 4a, which possesses a stable equilibrium
point as defined by Eq. (5), it is clear that the disease expanded to up to 90% of the population
without vaccination in the least amount of time and persisted for the entire time with 80% of the
people infected. There is no doubt that 80% of the population will always be infected if no vaccination
strategy is in place. According to graph 4b about the equilibrium-stable point of type (5), the virus
can be reduced up to 50% of the population if just 35% of the population receives vaccinations. From
Fig. 4c an equilibrium point with the asymptotically stable feature defined by (5), it can be seen that if
up to 65% of persons receive vaccinations, the infection rate drops to 40%. From graph 4d possessing
a stable equilibrium point as defined by (5), it is evident that the disease will be eradicated if 95% of
the population receive the vaccination. According to Figs. 4e–4h, which are graph same as 4a–4d with
restriction on t upto t = 50 we have identified that, if a 95% vaccination rate is used, recovered persons
will outnumber diseased people before t = 50. Therefore, it is evident from the explanation above that
effective vaccination tactics can be used to combat a pandemic disease.
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Figure 5: Effects of vaccination when 90% of the population is infected
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5 Conclusion

Applying for vaccination programs is one efficient way to manage and reduce the effects of a
contagious infectious disease outbreak. On the other hand, the well-known pandemic SIR model
is altered by vaccination, as recently applied in [33] using the SIRV model. The SIRV vaccination
model described in [33] assumes complete immunity against infectious diseases. To accomplish the
goal, the conventional SIR model is changed so that interactions between susceptible and infected
compartments that result in new infection Â occur proportionally to the exposed square root and
infected cases. According to this supposition, the new SIR model is initially investigated by identifying
the matching equilibrium points and examining their stability. Graphical representations of the
solutions validate the anticipated actions of epidemic variables such as susceptible, infected, and
recovered people. The main takeaway from the current research is that populations are only marginally
impacted when the loss immunity rate is less than or equal to unity, with an increase in the infected
population during the peak period and a decline in the vaccinated and an increase in the recovered
population. Variables related to the epidemic experience fluctuations depending on the pace of
immunization Â and the whole Reproduction number. When these two epidemic factors are vital,
persistence against the oscillatory epidemiology is anticipated.
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