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ABSTRACT

Various data sets showing the prevalence of numerous viral diseases have demonstrated that the transmission is
not truly homogeneous. Two examples are the spread of Spanish flu and COVID-19. The aim of this research is to
develop a comprehensive nonlinear stochastic model having six cohorts relying on ordinary differential equations
via piecewise fractional differential operators. Firstly, the strength number of the deterministic case is carried out.
Then, for the stochastic model, we show that there is a critical number R

S
0 that can predict virus persistence

and infection eradication. Because of the peculiarity of this notion, an interesting way to ensure the existence
and uniqueness of the global positive solution characterized by the stochastic COVID-19 model is established by
creating a sequence of appropriate Lyapunov candidates. A detailed ergodic stationary distribution for the stochastic
COVID-19 model is provided. Our findings demonstrate a piecewise numerical technique to generate simulation
studies for these frameworks. The collected outcomes leave no doubt that this conception is a revolutionary
doorway that will assist mankind in good perspective nature.

KEYWORDS
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1 Introduction

Coronavirus disease 2019 is a contagious infection transmitted by the serious acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). Headaches, congestion, weariness, muscle aches, breathless-
ness, diminished appetite, taste and aroma are typical problems. Effects including bronchitis, multi-
organ failure, chronic pulmonary disruption phenomenon, septicaemia, tachycardia, cardiogenic
shock, thrombosis, cardiac arrest, convulsions, meningitis, dementia and Guillain Barré syndrome may
occur in certain people [1]. The implantation phase might last anywhere from two to fourteen days.
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The new coronavirus transmits through fluids created by inhaling, breathing or conversing.
Liquids emitted by sick individuals are breathed into the trachea of others, developing quality
infestations. If individuals contact infected materials and then their faces with unhygienic fingers
after the particles tumble on them, they can transmit the disease. Whereas saliva and mucous are key
infection transmitters, new evidence indicates that the infection is transferred via faecal contamination
pathways. Aerosol-generating methods (AGMs) potentially assist in simpler pathogen propagation
than standard pathogen propagation.

SARS-CoV-2 shares characteristics with the severe acute respiratory syndrome coronavirus
(SARS-CoV or SARS-CoV1), an encapsulated, newly infected cause that primarily attacks the trachea
after entering the host organism and binding to angiotensin-converting-enzyme 2 (ACE2), which is
highly prevalent in atelectasis type II (AT2) keratinocytes of the respiratory system [2,3]. It is classified
as a congenital illness since it is spread to people via bats as biological transmitters. According to
chromosomal investigation, the infection belongs to the Betacoronavirus species and includes two
bat-derived viruses [4].

COVID-19 was reported on December 31, 2019, in Wuhan, China’s Hubei region, and has since
proliferated globally. On January 30, 2020, the WHO labelled the epidemic a Public Health Emergency
of International Concern (PHEIC), and on March 11, 2020, it designated the disease a global epidemic
[4,5]. As of August 20, 2020, 217 nations and entities, such as Pakistan, had recorded 30.6 million
documented infections and 890,000 fatalities. The very first COVID-19 incidence in Pakistan was
detected on February 26, 2020. On September 20, 2020, the government had 306,304 documented
favourable patients, 6420 fatalities, and 292,869 recovered [6].

COVID-19 has had a negative impact on the world’s economic development, basic necessities,
price volatility, cultural activities and entertainment domains, religious ceremonies, recreation, film,
hospitality, academia, care facilities, and democracy. Several specifics about the spread, mitigation,
and therapy of this novel ailment are being investigated by mathematicians and virologists [7–9].
Numerous studies using mathematical simulations to understand infection processes and epidemic
interventions have been presented [10–14]. Tang et al. [15] developed a cohort system in which
the community was classified into nine ordinary differential equations. Considering evidence from
scientifically verified COVID-19 occurrences in central China during the month of January, they
approximated the virus’s fundamental reproductive rate. It was discovered that prevention strategies
can successfully diminish the reproductive capacity. Tang et al. [16] examined a simplified form of their
earlier approach, anticipating time-dependent interaction and identification outcomes. This resulted in
a lower reproductive rate than had been forecasted in their prior investigation. Li et al. [17] discussed
coronavirus dissemination utilizing an SEIR approach for the incidents reported in Wuhan as well
as the proportion of exported infections. It is demonstrated that implementing preventive actions,
including immigration prohibitions, might be critical in understanding epidemic patterns and the
chances of controlling their dissemination. In [18], it seems to be other noteworthy research where
the propagation speed is regarded to be a time-dependent variable. The structure is created by adding
three additional compartments to the SEIR system. Other significant breakthroughs in innovative
coronavirus modelling methodologies can be discovered in [19–24].

Scientists in numerous classifications and scientific disciplines have gravitated toward using frac-
tional systems of differential equations (DEs) in the majority of their novel evidence and investigations
as a consequence of the emergence of fractional derivatives [25–27]. In addition, to see this realistically,
we can resort to numerical techniques of the proliferation and evolution of numerous infections and
communicable conditions, which have emerged as an intriguing issue for scholars in past centuries,
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employing fractional frameworks of initial value problems. While reviewing the articles, we discovered
that various scholars have proposed kernels that can be employed to create fractional differential
formulations. The major motivation behind this is that serious challenges exhibit signs of mechanisms
that are similar to the behaviours of precise scientific expressions. Fractional calculus incorporating a
power law kernel is led by the contributions of Riemann, Liouville, Cauchy, and Abel. Caputo later
improved their approach, and this form has been employed in several scientific disciplines owing to
its capacity to enable classical initial conditions (ICs) [28]. Prabhakar proposed an appropriate kernel
containing three components as a combo of index-law and the generalized Mittag-Leffler (GML)
kernel [29–31]. This form has likewise piqued the interest of numerous scholars and investigations into
both concepts and implementations have been conducted [32,33].

Furthermore, the various kernels have distinctive features; for instance, index-kernel only aids
in the replication of systems that indicate index-kernel tendencies. GML, the combination of the
index kernel and the generalized three distinct, has its own applicability domain [34]. Because the
phenomenon is multifaceted, Caputo and Fabrizio developed a novel kernel, a particular exponential
kernel exhibiting Delta Dirac characteristics. A differential formulation that is becoming increasingly
popular because of its capacity to repeat processes after fading memory [35–38]. Furthermore, the
notion of fractional derivative having a nonsingular kernel was pioneered by this kernel, marking
the inauguration of a revolutionary era in fractional calculus [39]. A scientist’s observation regarding
the kernel’s non-fractionality resulted in the creation of a novel kernel, the GML function, including
one component. Atangana et al. [40] proposed this formulation, which represents another advance-
ment in the discipline of fractional calculus. The formulationsÂ have been employed successfully in a
variety of fields of study. Glancing at reality and its intricacies, it is clear that these proposed kernels
are insufficient to forecast all of our universe’s complicated characteristics. Following the remark, one
will look for a different kernel or modified kernel, or a set of procedures that will be used to add
novel differential formulations. Sabatier has proposed various kernel variants that will additionally
lead to novel avenues of inquiry [41]. In addition to these remarkable breakthroughs, numerous
additional notions were proposed, such as the conception of short memory and the definition of
a fractional derivative in the Caputo interpretation for distinct characteristics of fractional orders.
Notwithstanding the well-known formulation, which takes a fractional order to be time-dependent,
the goal is to achieve a different form of variable order derivative. Wu et al. [42] proposed and
implemented this scenario in chaotic theory. However, researchers have discovered that some real-
world phenomena demonstrate mechanisms exhibiting varying behaviours as a factor of space and
time. A transition from deterministic to stochastic, either from index-law to exponential decay, is an
example. Because conventional differential formulations may be incapable of accounting for these
tendencies, piecewise differential/integral formulations were devised to cope with issues manifesting
crossover phenomena [43]. The primary goal of this article is to present a detailed evaluation, potential
implementations, strengths and shortcomings of these two notions.

Mathematical modelling is a critical technique for understanding the transmission of a contagious
illness, making predictions, and developing prevention and extinction tactics. Inspired by the aforesaid
research, we propose to construct a stochastic framework to examine the impact of quarantine and
isolation in reducing the transmission of the coronavirus epidemic in Pakistan via the piecewise
differential operators. Pakistan is an emerging nation in the midst of an economic, environmen-
tal, and strategic crisis. The region’s health sector is indeed inefficient and faces several issues.
Atangana et al. [44] recently proposed the notions of piecewise differential/integral formulations.
This revolutionary notion may represent the direction of modelling, as we propose in this work a
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progressive frontier to analyze epidemiological challenges involving crossover behaviours. A COVID-
19 model in Pakistan will be discussed in this presentation stochastically. We will presume that
real world propagation reveals waves exhibiting diverse chaotic structures, classical, local/nonlocal,
randomness and that a permutation depending on the aforementioned mechanisms can lead to various
tendencies. Furthermore, the qualitative characteristics of the aforesaid model are displayed in terms of
Brownian motion, such as the existence-uniqueness of the global positive solutions, ergodic stationary
distribution, extinction and persistence of the epidemic.

The remainder of the article is organized as follows. Section 2 discusses the preliminaries, frame-
work construction, which is constructed on a variety of assumptions. Then we analyze the strength
number of the deterministic COVID-19 model. Section 3 investigates the existence-uniqueness of
the global non-negative solution of a stochastic system and calculates the crucial parameter that
can readily decide the extermination and permanence of the infection. We additionally show that
an ergodic stationary distribution emerges in the stochastic COVID-19 model. Section 4 introduces
several simulation studies to illustrate the conceptual framework and illustrate the impacts of envi-
ronmental white noise. Section 5 describes the results and discussion related to numerical findings. To
conclude this work, several findings and appendices are offered.

2 Model Configuration

Taking into account the underlying hypotheses (Fig. 1), we construct a quantitative framework to
investigate the behaviors of six classifications of people: susceptible S(t), exposed E(t), quarantined
Q(t), infected I(t), separated J(t), and recovered R(t).

Figure 1: Schematic diagram of COVID-19 epidemic model

The vulnerable group expands by � due to consistent new recruits and a massive influx of people
from the forced to evacuate and healed classifications at valuations of ϕ2(1−ϑ), where ϑ ∈ (0, 1) is the
proportion of people transmitted to the separated category due to therapeutic signs and symptoms,
respectively. The vulnerable people get the virus and acquire transmitters at the pace ψ , causing a
reduction in the vulnerable individual, which is additionally reduced by spontaneous mortality at the
rate χ . The vulnerable people who have still not exhibited disease manifestations but are transmitters
of the pathogen have boosted the number in the endangered category. The unprotected group is
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diminished at a pace of one by clinical manifestations η1, two by isolation, and three by spontaneous
mortality η2.

The vulnerable people who have not yet manifested pathological changes but are susceptible to
infection have increased the proportion of people in the η2 classification. Random fatality reduces
uncovered cohort seclusion by ϕ2ϑ , while initial symptoms reduce it by ϕ2(1 − ϑ).

People in the contaminated group acquire COVID-19 indications, resulting in an estimated
prevalence. It diminishes at a rate of ϕ1 due to quarantine of affected patients, recuperation at a rate ζ1,
and lingering death. People in the separated group have experienced COVID-19 indications and have
been separated to receive healthcare attention. These people are drawn at ϕ1 and ϕ2ϑ rates from the
infectious and confined categories, respectively. The segregated community shrinks as a consequence
of the rate of ζ1 recuperation and fatal disease. There is apparently no indication that people acquire
lifetime sensitivity to COVID-19. As a result, it is expected that the restored people are vulnerable at
a rate ξ . The populace grows at rates ζ1 and ζ2 due to the recovery of infectious and segregated people
and shrinks due to spontaneous mortality.

The associated dynamic scheme of ordinary DEs COVID-19 propagation mechanism was pro-
posed by [45] as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= � + ϕ2(1 − ϑ)Q + ξR − (ψI + χ)S,

dE
dt

= ψIS − (η1 + η2 + χ)E,

dQ
dt

= η2E − (χ + ϕ2)Q,

dI
dt

= η1E − (ϕ1 + ζ1 + χ)I,

dJ
dt

= ϕ1I + ϕ2ϑQ − (χ + ζ2)J,

dR
dt

= ζ1I + ζ2J − (ξ + χ)R,

(1)

supplemented to the positive ICs S ≥ 0, E ≥ 0, Q ≥ 0, I ≥ 0, J ≥ 0, R ≥ 0.

Furthermore, current outcomes indicate that white noise can disrupt the transmission of
contagious diseases, population movement, and the formulation of prevention mechanisms. As a
result, an increasing number of researchers have researched the appropriate stochastic models (see
[46–48]). In [49], Atangana et al. presented deterministic-stochastic modelling with crossover effects.
Rashid et al. [50] proposed the novel dynamics of a stochastic fractal-fractional immune effector
response to viral infection via latently infectious tissues. Regarding the epidemiologist’s ideas, we
assume that randomized white noise is independent and directly proportional to six cohorts. The
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stochastic form pertaining to scheme (1) can therefore be represented by the stochastic differential
equations shown below:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) = (� + ϕ2(1 − ϑ)Q + ξR − (ψI + χ)S
)+ ℘1S(t)dW1(t),

dE(t) = (ψIS − (η1 + η2 + χ)E
)+ ℘2E(t)dW2(t),

dQ(t) = (η2E − (χ + ϕ2)Q
)+ ℘3Q(t)dW3(t),

dI(t) = (η1E − (ϕ1 + ζ1 + χ)I
)+ ℘4I(t)dW4(t),

dJ(t) = (ϕ1I + ϕ2ϑQ − (χ + ζ2)J
)+ ℘5J(t)dW5(t),

dR(t) = (ζ1I + ζ2J − (ξ + χ)R
)+ ℘6R(t)dW6(t),

(2)

where Wι, ι = 1, . . . , 6 are two independent standard Brownian motions described on a complete
filtered probability space (�, F , {Fξ}ξ≥0, P) involving a ℘-filtration {Fξ}ξ≥0 [51]. ℘ι ≥ 0, ι = 1, . . . , 6
represents the intensities of the system. Here, we provide the accompanying description to help readers
who are acquainted with fractional calculus (see [34,39,40]).

C
0 Dβ

t F (t) = 1
�(1 − β)

t∫
0

F ′(r)(t − r)βdr, β ∈ (0, 1]. (3)

CF
0 Dβ

t F (t) = M (β)

1 − β

t∫
0

F ′(r) exp
[

− β

1 − β
(t − r)

]
dr, β ∈ (0, 1], (4)

where M (β) is defined to be normalized function having M (0) = M (1) = 1.

The formulation of the Atangana-Baleanu derivative is represented below:

ABC
0 Dβ

t F (t) = ABC(β)

1 − β

t∫
0

F ′(r)Eβ

[
− β

1 − β
(t − r)β

]
dr, β ∈ (0, 1], (5)

where ABC(β) = 1 − β + β

�(β)
signifies the normalization function.

3 Qualitative Aspects of COVID-19 Model

In this section, we will discuss some qualitative aspects of the deterministic and stochastic
characteristics of the COVID-19 models (1) and (2), respectively.

3.1 Deterministic Case
For COVID-19 model (1), there are two kind of steady states. The first one is disease-free

equilibrium point (DFEP) E0 =
(

�

χ
, 0, 0, 0, 0, 0

)
which always exists. According to [45], R0 is the

basic reproduction number

R0 = �ψη1

χ(η1 + η2 + χ)(ϕ1 + ζ1 + χ)
.
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Notice that if R0 > 1, in addition to the DFEP, model (1) has a fixed non-negative endemic
equilibrium point (EEP) E ∗ = (S∗, E∗, Q∗, I∗, J∗, R∗), where

E ∗ =
(

(η1 + η2 + χ)(ϕ1 + ζ1 + χ)

ψη1

,
ϕ1 + ζ1 + χ

η1

,
η2(ϕ1 + ζ1 + χ)

η1(ϕ2 + χ)
I∗,

χ(η1 + η2 + χ)(ϕ1 + ζ1 + χ) − ψη1�

ψη1(ϕ2(1 − ϑ)�1 + ξ�2) − ψ(η1 + η2 + χ)(ϕ1 + ζ1 + χ)
,
ϕ1η1(ϕ2 + χ) + ϕ2ϑη2(ϕ1 + ζ1 + χ)

η1(ϕ2 + χ)(ζ2 + χ)
I∗,

η1(ϕ2 + χ)(ζ1(ζ2 + χ) + ϕ1) + ϕ2ϑη2(ϕ1 + ζ1 + χ)

η1(ϕ2 + χ)(ζ2 + χ)
I∗
)

, (6)

where �1 = η2(ϕ1 + ζ1 + χ)

β1(χ + ϕ2)
and �2 = 1

ξ + χ

(
ζ1 + ζ2(ϕ1 + ϕ2ϑ�1)

χ + ζ2

)
.

Theorem 3.1. (i) If R0 < 1, the DFEP E0 is locally asymptotically stable.

(ii) If R0 > 1, the DFEP E0 is unstable but EEP E ∗ is locally asymptotically stable.

Proof. The proof can be followed by [45].

3.2 Strength Number
In previous decades, the idea of reproduction has been extensively used in epidemiological

modelling since it has been recognized as a valuable mathematical tool for evaluating reproduction in a
specific illness. According to the concept proposed by Atangana [52], one will identify two components
F and Ṽ, then

(FṼ − λI) = 0

will be analyzed to generate reproductive number [53]. The component F is particularly intriguing
because it is derived from the nonlinear part of the infected classes.

∂

∂I

(
I
N

)
= [N − I]

N2

and

∂2

∂I2

(
(N − I)

N2

)
= −2

[N − I]
N3

= −2(S + E + Q + J + R)

(S + E + Q + I + J + R)3
.

At disease free equilibrium E0 =
(

�

χ
, 0, 0, 0, 0, 0

)
, we have

∂2

∂I2

(
(N − I)

N2

)
= −2(S0)

(S0)3
.
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Therefore, we have

FA =

⎡
⎢⎢⎣

0 0
−2(η1S0)

(S0)3
0

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0
−2η1χ

2

�2
0

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ .

Then,

det(FA V−1 − λI) = 0

gives

A = −2η1ψ�

χ(η1 + η2 + χ)(ϕ1 + ζ1 + χ)
< 0.

Also, A indicates that the expansion will not repeat and will consequently have a single magnitude
and wipe out. A > 0 indicates that there is sufficient intensity to initiate the regeneration phase,
implying that the dispersion will have more than one cycle. Consequently, researchers will supply a
strong insight of the aforesaid number.

3.3 Dynamic of the Stochastic COVID-19 Model
In this paper, suppose a complete probability space (�, F , {Ft}t≥0, P) fulfilling the given assump-

tions (That is., it is nondecreasing and right continuous whilst F0 have all empty sets P), indicating
R+ = [0, ∞), Rd

+ = {x = (x1, . . . , xd) | xi > 0, i ∈ [1, d]}. Also, there is an integral mapping F1(t)
defined on [0, ∞). Introducing F u

1 = sup{F1(t) | t ≥ 0}, F l
1 = inf{F1(t) | t ≥ 0}.

Next, we will examine at the d-dimensional stochastic DE

dY(t) = F1(Y(t), t)dt + G (Y(t), t)dB(t), t ≥ t0

subject to intial condition Y(0) = X0 ∈ Rd, B(t) denotes a d-dimensional standard Brownian motion
presented on the complete probability space (�, F , {Ft}t≥0, P). Suppose C

2,1(Rd × [t0, ∞]; R+) the
collection of all positive H (x, t) on Rd × [t0, ∞] such that continuous twice differentiable in Y and
once in t. The differential operator L is proposed by [54]:

L = ∂

∂t
+

d1∑
ι=1

fι(Y, t)
∂

∂Xι

+ 1
2

d1∑
ι,κ=1

[
G T(Y, t)G (Y, t)

]
ικ

∂2

∂Xι∂Xκ

.

Now L imposed on a mapping H ∈ C
2,1(Rd × [t0, ∞]; R+), we have

LH (Y, t) = Ht(Y, t) + Hx(Y, t)F1(Y, t) + 1
2

trac
[
G T(Y, t)HxxG (Y, t)

]
,

where Ht = ∂H

∂t
, Hx =

(
∂H

∂x1

, . . . ,
∂H

∂xd

)
, Hxx =

(
∂2H

∂xι∂xκ

)
d1×d1

. By the Itô’s technique, if Y(t) ∈
Rd1 , then

dH (Y(t), t) = LH (Y(t), t)dt + Hx(Y(t), t)G (Y(t), t)dB(t).
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3.4 Existence-Uniqueness of the Global Non-Negative Solution
Theorem 3.2. Suppose there is a unique solution (S(t), E(t), Q(t), I(t), J(t), R(t)) of model (2) on

t ≥ 0 for every initial data (S(t), E(t), Q(t), I(t), J(t), R(t)) ∈ R
6
+ and the unique solution of stochastic

model (2) will stay in R
6
+ having probability 1.

Proof. Our argument is predicated on the research of Mao et al. [55]. Because the parameters of
scheme (2) are Lipschitz continuous locally. As a result, there is a unique local solution (S, E, Q, I, J, R)

on t ∈ (0, ρ0) for every ICs (S(0), E(0), Q(0), I(0), J(0), R(0)) ∈ R6
+, where ρ0, where ρ0 is the moment

of the explosive. We simply require to demonstrate ρ0 = ∞ (a.s) to show the local solution is global.
Allow �0 to be large enough for each factor of (S(0), E(0), Q(0), I(0), J(0), R(0)) inside this interval[
1/�0, �0

]
for every integer � ≥ �0, now introducing the stopping time

ρ� = inf
{

t ∈ [0, ρ0] | min{S(t), E(t), Q(t), I(t), J(t), R(t)
}

≤ 1
�

or max{S(t), E(t), Q(t), I(t), J(t), R(t)} ≥ �
}
.

Setting inf{∅} = ∞. Note that when � 	→ ∞ then ρ� is nondecreasing. Taking ρ∞ = lim
�	→∞

ρ�,

therefore ρ∞ ≤ ρ0 (a.s). We intend to prove ρ∞ = ∞ (a.s) then ρ0 = ∞ (a.s), which implies that
(S, E, Q, I, J, R) ∈ R6

+, ∀t ≥ 0. Also, if ρ∞ (a.s), then there are two constants T ≥ 0 and ε ∈ (0, 1)

such that P{ρ∞ ≤ T} ≥ ε. Therefore, there is an integer �1 ≥ �0 such that

P{ρ� ≤ T} ≥ ε, ∀� ≥ �1. (7)

Introducing a C
2-functional V̂ : R6

+ 	→ R+, i.e.,

V̂(S, E, Q, I, J, R) = (S + E + Q + I + J + R) − 7 − ln(S + E + Q + I + J + R).

The positivity of the C
2-function V̂ can be observed from u1 − 1 − ln u1 ≥ 0, ∀u1 > 0.

implementing Ito’s rule, we can obtain that

dV̂(S, E, Q, I, J, R) = LV̂(S, E, Q, I, J, R)dt + ℘1(S − 1)dW1(t) + ℘2(E − 1)dW2(t)

+ ℘3(Q − 1)dW3(t) + ℘4(I − 1)dW4(t) + ℘5(J − 1)dW5(t)

+ ℘6(R − 1)dW6(t),

where

dV̂(S, E, Q, I, J, R) =
(

1 − 1
S

){
� + ϕ2(1 − ϑ)Q + ξR − (ψI + χ)S

}
+ ℘2

1

2

+
(

1 − 1
E

){
ψIS − (η1 + η2 + χ)E

}
+ ℘2

2

2

+
(

1 − 1
Q

){
η2E − (χ + ϕ2)Q

}
+ ℘2

3

2

+
(

1 − 1
I

){
η1E − (ϕ1 + ζ1 + χ)I

}
+ ℘2

4

2
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+
(

1 − 1
J

){
ϕ1I + ϕ2ϑQ − (χ + ζ2)J

}
+ ℘2

5

2

+
(

1 − 1
R

){
ζ1I + ζ2J − (ξ + χ)R

}
+ ℘2

6

2

≤ � + 4χ + η1 + η2 + ϕ1 + ϕ2 + ζ1 + ζ2 − ξ − �

S
− ϕ2(1 − ϑ)

Q
S

− ξ
R
S

− ψ
IS
E

− η2

E
Q

− η1

E
I

− ϕ1

I
J

− ϕ2ϑ
Q
J

+ ζ1

I
R

− ζ2

J
R

− χ(S + E + Q + I + J + R)

+ 1
2

(
℘2

1 + ℘2
2 + ℘2

3 + ℘2
4 + ℘2

5 + ℘2
6

)
≤ � + 4χ + η1 + η2 + ϕ1 + ϕ2 + ζ1 + ζ2 − ξ

+ 1
2

(
℘2

1 + ℘2
2 + ℘2

3 + ℘2
4 + ℘2

5 + ℘2
6

)
:= ϒ1.

Therefore, we derive

dV̂(S, E, Q, I, J, R) ≤ ϒ1dt + ℘1(S − 1)dW1(t) + ℘2(E − 1)dW2(t)

+ ℘3(Q − 1)dW3(t) + ℘4(I − 1)dW4(t) + ℘5(J − 1)dW5(t)

+ ℘6(R − 1)dW6(t),

Furthermore, we have
∫ ρ�∧T

0

dV̂(S(t), E(t), Q(t), I(t), J(t), R(t))

≤
∫ ρ�∧T

0

ϒ1dt +
∫ ρ�∧T

0

℘1(S − 1)dW1(t)dt +
∫ ρ�∧T

0

℘2(E − 1)dW2(t)dt

+
∫ ρ�∧T

0

℘3(Q − 1)dW3(t)dt +
∫ ρ�∧T

0

℘4(I − 1)dW4(t)dt +
∫ ρ�∧T

0

℘5(J − 1)dW5(t)dt

+
∫ ρ�∧T

0

℘6(R − 1)dW6(t)dt.

Implementing expectation gives

EV̂(S(ρ� ∧ T), E(ρ� ∧ T), Q(ρ� ∧ T), I(ρ� ∧ T), J(ρ� ∧ T), R(ρ� ∧ T))

≤ ϒ1E(ρ� ∧ T) + V̂(S(0), E(0), Q(0), I(0), J(0), R(0))

≤ ϒ1T + V̂(S(0), E(0), Q(0), I(0), J(0), R(0)).

For � ≥ �1, suppose �� = {ρ� ≤ T}, from (7), then P(��) ≥ ε. Obviously, for each
ν ∈ ��, there is one or more of S(ρ�, ν), E(ρ�, ν), Q(ρ�, ν), I(ρ�, ν), J(ρ�, ν) and R(ρ�, ν) equals either
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1/� or �, therefore V̂
(
S(ρ�, ν), E(ρ�, ν), Q(ρ�, ν), I(ρ�, ν), J(ρ�, ν), R(ρ�, ν)

)
is not less than either

� − 1 ln � or 1/� − 1 + ln �, then

ϒ1T + V̂(S(0), E(0), Q(0), I(0), J(0), R(0))

≥ E
[
I��

(ν)V̂(S(ρ�, ν), E(ρ�, ν), Q(ρ�, ν), I(ρ�, ν), J(ρ�, ν), R(ρ�, ν))
]

≥ ε(� − 1 − ln �) ∧ (1/� − 1 + ln �
)
,

where I��
(.) represents the indicating mapping of ��. Thus, applying limit � 	→ ∞ yields contradiction

∞ = ϒ1T + V̂(S(0), E(0), Q(0), I(0), J(0), R(0)) < ∞.

Thus, we find ρ∞ = ∞, (a.s). This completes the proof.

3.5 Basic Reproduction Number for Stochastic Model
Utilizing fourth compartment of the model (2), we have

dI(t) = (η1E − (ϕ1 + ζ1 + χ)I
)+ ℘4I(t)dW4(t).

Considering Ito’s formulation for a twice differentiable mapping F (I) = ln(I), and expanding by
Taylor series

dF (t, I(t)) = ∂F

∂t
dt + ∂F

∂I
dI + 1

2
∂2F

∂I2
(dI)2 + ∂2F

∂t∂I
dIdt + 1

2
∂2F

∂t2
(dt)2,

⇒ dF (t, I(t)) = 0.dt + 1
I

{
(η1E − (ϕ1 + ζ1 + χ)I)dt + ℘4IdW4(t)

}

− 1
2I2

{
(η1E − (ϕ1 + ζ1 + χ)I)dt + ℘4IdW4(t)

}2

⇒ dF (t, I(t)) =
{
(η1E − (ϕ1 + ζ1 + χ))dt + ℘4dW4(t)

}

− 1
2I2

{
Q2

1(dt)2 + 2Q1Q2dtdW4(t) + Q2
2(dW4(t))2

}
,

where Q1 = η1E − (ϕ1 + ζ1 + χ)I and Q2 = ℘4I,

⇒ dF (t, I(t)) =
{
(η1E − (ϕ1 + ζ1 + χ))dt + ℘4dW4(t)

}
− 1

2I2

{
Q2

2(dW4(t))2
}

⇒ dF (t, I(t)) =
{
(η1E − (ϕ1 + ζ1 + χ))dt + ℘4dW4(t)

}
− 1

2I2

{
℘2

4 I2dt
}

︸ ︷︷ ︸
(By variance of Wiener technique)

⇒ dF (t, I(t)) =
{
(η1E − (ϕ1 + ζ1 + χ) − 1

2
℘2

4)
}

dt + ℘4dW4(t).

The next generation matrices are F =
[
η1E − 1

2
℘2

4

]
and V = [ϕ1 + ζ1 + χ

]
. At DFEP and by the

principal of next generation matrix, the dominant eigenvalue is the basic reproductive number. Hence

R
S
0 = ℘2

4

2(ϕ1 + ζ1 + χ)
.
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3.6 Extinction and Persistence of the Disease
One of the primary challenges in epidemiological data is how to control infection behaviours

so that the infection becomes endangered and persists throughout time. In this part, we attempt to
determine the important threshold for pathogen extermination and permanence.

Lemma 3.1. For the initial settings (S(0), E(0), Q(0), I(0), J(0), R(0)) ∈ R
6
+, the solution of the

stochastic system (2) admits

lim
t	→∞

ln S(t)
t

≤ 0, lim
t	→∞

ln E(t)
t

≤ 0, lim
t	→∞

ln Q(t)
t

≤ 0

lim
t	→∞

ln I(t)
t

≤ 0, lim
t	→∞

ln J(t)
t

≤ 0, lim
t	→∞

ln R(t)
t

≤ 0. (a.s). (8)

then

lim
t	→∞

S(t) + E(t) + Q(t) + I(t) + J(t) + R(t)
t

= 0, a.s. (9)

Also, if χ >
1
2
(℘2

1 ∨ ℘2
2 ∨ ℘2

3 ∨ ℘2
4 ∨ ℘2

5 ∨ ℘2
6), we find

lim
t	→∞

1
t

t∫
0

S(r)dW1(r) = 0, lim
t	→∞

1
t

t∫
0

E(r)dW1(r) = 0, lim
t	→∞

1
t

t∫
0

Q(r)dW1(r) = 0,

lim
t	→∞

1
t

t∫
0

I(r)dW1(r) = 0, lim
t	→∞

1
t

t∫
0

J(r)dW1(r) = 0, lim
t	→∞

1
t

t∫
0

R(r)dW1(r) = 0. (10)

Theorem 3.3. Suppose that χ >
1
2
(℘2

1 ∨ ℘2
2 ∨ ℘2

3 ∨ ℘2
4 ∨ ℘2

5 ∨ ℘2
6) and assume that

there is a positive solution of the system
(
S(t), E(t), Q(t), I(t), J(t), R(t)

)
having initial settings

(S(0), E(0), Q(0), I(0), J(0), R(0)), we find

(i) If RS
0 < 1, then

lim
t	→∞

sup
ln I(t)

t
≤
(

ϕ1 + ζ1 + χ + 1
2
℘2

4

)
(RS

0 − 1) < 0, (a.s). (11)

which means the diseases will be eliminated from a community.

(ii) If RS
0 > 1, then

lim
t	→∞

inf
1
t

t∫
0

I(r)dr ≥

(
ϕ1 + ζ1 + χ + 1

2
℘2

4

)
(RS

0 − 1)

K2

> 0 (a.s)., (12)

which means the diseases will persist in the community.

Proof. Implementing the Ito’s formula to ln I(t), we find

d ln I(t) =
{(

η1

E
I

− (ϕ1 + ζ1 + χ) − 1
2
℘2

4

)}
dt + ℘4dW4(t) (13)
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Integrating the aforesaid equation from 0 to t on both sides, then

ln I(t) − ln I(0) =
t∫

0

[
η1

E
I

− (ϕ1 + ζ1 + χ) − 1
2
℘2

4

]
dr + ℘4

t∫
0

dW4(r). (14)

By the strong law of large numbers for martingales [56], we have lim
t	→∞

1
t

t∫
0

dW4(r) = 0. (a.s).

According to the superior limit and considering stochastic comparison theorem, we have

lim
t	→∞

sup
ln I(t)

t
= lim

t	→∞
sup

1
t

t∫
0

[
η1

E
I

− (ϕ1 + ζ1 + χ + 1
2
℘2

4)

]
dr

≤ (ϕ1 + ζ1 + χ + 1
2
℘2

4)(R
S
0 − 1) < 0

⇒ (RS
0 − 1) < 0. (15)

Thus, RS
0 < 1. Hence, it shows that lim

t	→∞
I(t) = 0, (a.s).

As a result, the infection will be exterminated in the community.

(ii) Introducing C
2-mapping V1

V1(S, E, Q, I, J, R) = η1(N − (S + Q + I + J + R)) + (ϕ1 + ζ1 + χ)(N − (S + Q + E + J + R))

− 1
2
℘2

4 − (ϕ1 + ζ1 + χ). (16)

Utilizing the fact of RS
0 > 1, we have

LV1((S, E, Q, I, J, R) = η1(N − (S + Q + J + R)) + (ϕ1 + ζ1 + χ)(N − (S + Q + E + J + R))

− 1
2
℘2

4 − (ϕ1 + ζ1 + χ),

= (ϕ1 + ζ1 + χ)

{
�ψη1

χ(η1 + η2 + χ)(ϕ1 + ζ1 + χ)
− ℘2

4

2(ϕ1 + ζ1 + χ)
− 1
}

+ K2I.

(17)
Then,

dV1(S, E, Q, I, J, R) ≤ −(ϕ1 + ζ1 + χ)(RS
0 − 1) + K2I. (18)
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Assume that K3 = η1 + η2 + χ

ψη
+ η2

η1(ϕ2 + χ)
. As a result, we have

dV1(S, E, Q, I, J, R) = LV1dt − ℘4dW4(t) − ψ�

χ
℘1SdW1(t) − η1 + η2 + χ

ψ
℘2EdW2(t)

− ϕ2 + χ

η2

℘3QdW3(t) − K3℘4IdW4(t) − ζ2 + χ

ϕ1

℘5JdW5(t)

− ξ + χ

ζ1

℘6RdW6(t). (19)

Integrating both sides of (19), we find

V1(S(t), E(t), Q(t), I(t), J(t), R(t)) − V1(S(0), E(0), Q(0), I(0), J(0), R(0))

t

≤ −(ϕ1 + ζ1 + χ)(RS
0 − 1) + K2

1
t

t∫
0

I(r)dr − M (t)
t

− ψ�

χ

1
t

t∫
0

℘1SW1(r)dr

− η1 + η2 + χ

ψ

1
t

t∫
0

℘2EdW2(r) − ϕ2 + χ

η2

t∫
0

℘3QdW3(r) − K3

1
t

t∫
0

℘4IdW4(r)

− ζ2 + χ

ϕ1

1
t

t∫
0

℘5JdW5(s1) − ξ + χ

ζ1

1
t

t∫
0

℘6RdW6(r), (20)

where M (t) =
t∫

0

℘4dW4(r) represents a martingale. According to strong law of large numbers for

martingales, we have lim
t	→∞

M(t)
t

= 0, (a.s).

Utilizing Lemma 3.1, we find from (20)

lim
t	→∞

inf K2

1
t

t∫
0

I(r)d(r)

≥ −(ϕ1 + ζ1 + χ)(RS
0 − 1)

+ lim
t	→∞

inf
V1(S(t), E(t), Q(t), I(t), J(t), R(t)) − V1(S(0), E(0), Q(0), I(0), J(0), R(0))

t
≥ (ϕ1 + ζ1 + χ)(RS

0 − 1) > 0, (a.s).

Thus, if R
S
0 > 1, the sickness will remain for an extended period of time. This concludes the

evidence.

3.7 Ergodic Stationary Distribution (ESD)
In this subsection, we will discuss several perspectives about the stationary distribution. Despite

the fact that there is no EEP of the stochastic process (2), we wish to find the existence of an ESD,
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which demonstrates the virus’s endurance. Several noteworthy Has’Minskii theory outcomes can be
referenced in [57].

Lemma 3.2. ([58]) The Markov technique Y1(t) has a unique ESD π(.) if there exists a bounded
region G ⊂ E1 having regular boundary D , and

(i) A positive number M such that
d∑

ι,k=1

aιk(y1)ξιξk ≥ M |ξ |2, y1 ∈ G , ξ ∈ R
ι.

(ii) there exists a positive C
2-function V , such that LV is negative for any E1/G . Then,

P
{

lim
T 	→∞

1
T

T∫
0

F (Y1(t))dt =
∫
�d

F (y1)π(dy1) = 1
}

,

for all y1 ∈ E1, where F (.) is a mapping integrable regarding to the measure π(.).

We shall establish assumptions that assure the formation of an ESD relying on Has’minskii’s
hypothesis [57].

Theorem 3.4. Suppose that RS
0 > 1, then the solution (S(t), E(t), Q(t), I(t), J(t), R(t)) of model (2)

has a unique ESD for any initial settings (S(0), E(0), Q(0), I(0), J(0), R(0)) ∈ R
6
+.

Proof. Theorem 3.2 proof must meet the criteria of Lemma 3.2. Ensure that (i) satisfies. The
associated diffusion matrix of framework (2) appears to be represented by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

℘2
1 S 0 0 0 0 0

0 ℘2
2 E 0 0 0 0

0 0 ℘2
3 Q 0 0 0

0 0 0 ℘2
4 I 0 0

0 0 0 0 ℘2
5 J 0

0 0 0 0 0 ℘2
6 R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Because the matrix A is clearly positive definite for any compact subset of R6
+, criterion (i) in

Lemma 3.2 is achieved. Now we will demonstrate criterion (ii). Construct a C
2-function

Ṽ (S, E, Q, I, J, R) = M (−�1 ln S − �2 ln E − �3 ln Q − �4 ln I − �6 ln R − �5J)

+ 1
ϑ + 1

(S + E + Q + I + J + R) − ln S − ln E − ln Q − ln I − ln R

:= M V1 + V2 − ln S − ln E − ln Q − ln I − ln R,

where �ι, ι = 1, . . . , 6, ϑ and M are positive constants, which can be estimated later. It is simple to
verify this

lim
κ 	→∞(S,E,Q,I,J,R)∈R5+/Gκ

Ṽ (S, E, Q, I, J, R) = +∞,
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where Gκ = ∏6

ι=1

(
1
κ

, κ
)

. Additionally, Ṽ (S, E, Q, I, J, R) is a continuous mapping. Thus,

Ṽ (S, E, Q, I, J, R). There might be a minimum point (S0, E0, Q0, I0, J0, R0) ∈ R
6
+. Hence, we introduce

a positive C2-mapping V : R6
+ 	→ R+

V (S, E, Q, I, J, R) = Ṽ (S, E, Q, I, J, R) − Ṽ (S0, E0, Q0, I0, J0, R0).

Implementing the generalized Ito’s technique [51] to V1, one can find the differential operator L
of V1 as

LV1 = −�1

S

{
� + ϕ2 (1 − ϑ) Q + ξR − (ψI + χ) S

}+ �1℘
2
1

2
− �2

E

(
ψIS − (η1 + η2 + χ) E

)+ �2℘
2
2

2

− �3

Q

(
η2E − (χ + ϕ2) Q

)+ �3℘
2
3

2
− �4

I

(
η1E − (ϕ1 + ζ1 + χ) I

)+ �4℘
2
4

2

− �5

(
ϕ1I + ϕ2ϑQ − (χ + ζ2) J

)+ �6℘
2
6

2
− �6

R

(
ζ1I + ζ2J − (χ + ξ) R

)

≤ −
(

�1 (� + ϕ2 (1 − ϑ) Q + ξR)

S
+ �2 (ψIS)

E
+ �3η2E

Q
+ �4η1E

I
+ �6 (ζ1I + ζ2J)

R

)

+ �2 (η1 + η2 + χ) + �3 (χ + ϕ2) + �4 (ϕ1 + ζ1 + χ) + �5 (χ + ξ) − (�1ψ − ϕ1�5) I − (�2χ)

− �5ϕ2ϑQ − �5 (χ + ζ2) J + 1
2

(
�1℘

2
1 + �2℘

2
2 + �3℘

2
3 + �4℘

2
4 + �5℘

2
5

)

≤ −5 5
√

�1�2�3�4�5 (� + ϕ2 (1 − ϑ) + ξ) ψη2η1 (ζ1 + ζ2) + �2

(
η1 + η2 + ℘2

2

2

)

+ �3

(
χ + ϕ2 + ℘2

3

2

)
+ �4

(
ϕ1 + ζ1 + χ + ℘2

4

2

)
+ �5

(
χ + ξ + ℘2

5

2

)
− (�1ψ − ϕ1�5) I

− (�2χ) − �5ϕ2ϑQ − �5 (χ + ζ2) J + 1
2

(
�1℘

2
1

)
.

Suppose

�1 = 1, �2 = ℘2
1

2(η1 + η2 + ℘2
2)

, �3 = ℘2
1

2(χ + ϕ2 + ℘2
3)

, �4 = ℘2
1

2(ϕ1 + ζ1 + χ + ℘2
4)

,

�5 = ℘2
1

2(χ + ξ + ℘2
5)

, �6 =
(M + 1

M

)ψ

ϕ1

.

Then, it follows that

LV1 ≤ −5
[

(� + ϕ2(1 − ϑ) + ξ)ψη2η1(ζ1 + ζ2)℘
8
1

16(η1 + η2 + ℘2
2)(χ + ϕ2 + ℘2

3)(ϕ1 + ζ1 + χ + ℘2
4)(χ + ξ + ℘2

5)

]1/5

− ψ

ϕ1

I − ℘2
1ϕ2ϑ

2(χ + ξ + ℘2
5)

Q − (χ + ζ2)
℘2

1

2(χ + ξ + ℘2
5)

= −5(℘8
1)
(
R

S1/5

0 − 1
)

− ψ

ϕ1

I − ℘2
1ϕ2ϑ

2(χ + ξ + ℘2
5)

Q − (χ + ζ2)
℘2

1

2(χ + ξ + ℘2
5)

. (21)
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Analogously, we have

LV2 = (S + E + Q + I + J + R)ϑ
[
� − ϑ(S + E + Q + I + J + R)

]
+ ϑ

2
(S + E + Q + I + J + R)ϑ−1(℘2

1 S2 + ℘2
2 E2 + ℘2

3 Q2 + ℘2
4 I2 + ℘2

5 J2 + ℘2
6 R2)

≤ �(S + E + Q + I + J + R)ϑ − ϑ(S + E + Q + I + J + R)ϑ+1

+ ϑ

2
(℘2

1 ∨ ℘2
2 ∨ ℘2

3 ∨ ℘2
4 ∨ ℘2

5 ∨ ℘2
6)(S + E + Q + I + J + R)ϑ+1

≤ C0 − 1
2
ρ(S + E + Q + I + J + R)ϑ+1

≤ C0 − ρ(Sϑ+1 + Eϑ+1 + Qϑ+1 + Iϑ+1 + Jϑ+1 + Rϑ+1), (22)

where ρ assumed to be sufficiently small such that ρ = ℘8
1 > 0 and

C0 = sup
(S,E,Q,I,J,R)∈R6+

{
�(S + E + Q + I + J + R)ϑ − ρ

2
(S + E + Q + I + J + R)ϑ+1

}
< ∞. (23)

Also, we have
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(− ln S) = −�

S
− ϕ2(1 − ϑ)

Q
S

− ξ
R
S

+ (ψI + χ) + ℘2
1

2
,

L(− ln E) = −ψIS
E

+ (η1 + η2 + χ) + ℘2
2

2
,

L(− ln Q) = −η2E
Q

+ (ϕ2 + χ) + ℘2
3

2
,

L(− ln I) = −η1E
I

+ (ϕ1 + ζ1 + χ) + ℘2
4

2
,

L(− ln J) = −ϕ1I
J

− ϕϑ
Q
J

+ (ζ2 + χ) + ℘2
5

2
,

L(− ln R) = −ζ1I
R

− ζ1J
R

+ (ξ + χ) + ℘2
6

2
.

(24)

Utilizing (21)–(24), we then find that

LV ≤ −5(℘8
1)(R

S1/5

0 − 1) − ψ

ϕ1

I − ℘2
1ϕ2ϑ

2(χ + ξ + ℘2
5)

Q + C0 − �

S

− 1
2
�(Sϑ+1 + Eϑ+1 + Qϑ+1 + Iϑ+1 + Jϑ+1 + Rϑ+1)

+ ℘2
1

2
− ψIS

E
+ (η1 + η2 + χ) + ℘2

2

2
− η2E

Q
+ (ϕ2 + χ) + ℘2

3

2
− ϕ1I

J
− ϕϑ

Q
J

+ (ζ2 + χ) + ℘2
5

2

− ζ1I
R

− ζ1J
R

+ (ξ + χ) + ℘2
6

2
− η1E

I
+ (ϕ1 + ζ1 + χ) + ℘2

4

2

≤ −5(℘8
1)(R

S1/5

0 − 1) − ψ

ϕ1

I − ℘2
1ϕ2ϑ

2(χ + ξ + ℘2
5)

Q + C0 − �

S
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− 1
2
�(Sϑ+1 + Eϑ+1 + Qϑ+1 + Iϑ+1 + Jϑ+1 + Rϑ+1)

+ ℘2
1 + ℘2

2 + ℘2
3 + ℘2

4 + ℘2
5 + ℘2

6

2
− ψIS

E
+ (η1 + η2 + ϕ2 + ζ2 + ξ + ϕ1 + ζ1 + 5χ)

− η2E
Q

− ϕ1I
J

− ϕϑ
Q
J

− ζ1I
R

− ζ1J
R

− η1E
I

. (25)

We describe it for simplicity as

H1 = sup
{

− 5(℘8
1)(R

S1/5

0 − 1) − ψ

ϕ1

I − ℘2
1ϕ2ϑ

2(χ + ξ + ℘2
5)

Q − 1
5
�Jϑ+1

}
< ∞. (26)

and

H2 = C0 + ℘2
1 + ℘2

2 + ℘2
3 + ℘2

4 + ℘2
5 + ℘2

6

2
+ (η1 + η2 + ϕ2 + ζ2 + ξ + ϕ1 + ζ1 + 5χ). (27)

We can now design a bounded compact region Gε that fulfills the assumption (ii) in Lemma 3.2.
To do this, we construct a compact set as follows:

Gε =
{
(S, E, Q, I, J, R) ∈ R

6
+ : S ∈ [ε, 1/ε], E ∈ [ε3, 1/ε3], Q ∈ [ε4, 1/ε4], I ∈ [ε, 1/ε], J ∈ [ε2, 1/ε2],

R ∈ [ε5, 1/ε5]
}

,

where ε > 0 is sufficiently small constant such that

− 5(℘8
1)(R

S1/5

0 − 1) − ψ

ϕ1

ε − ℘2
1ϕ2ϑ

2(χ + ξ + ℘2
5)

ε4 + H2 < −1 (28)

and

−
(

�

ε
∧ η2

ε4
∧ ϕ1

ε
∧ ϕϑ

ε2
∧ ζ1

ε5
∧ ζ1

ε5
∧ η1

ε
∧ �

2ε4(ϑ+1)
∧ �

4εϑ+1

)
+ H1 + H2 < −1. (29)

For simplicity, we can subdivide R6
+ \ Gε into the following regions, where

G1 = {(S, E, Q, I, J, R) ∈ R
6
+ | S ∈ (0, ε)

}
, G2 = {(S, E, Q, I, J, R) ∈ R

6
+ | E ∈ (0, ε)

}
G3 = {(S, E, Q, I, J, R) ∈ R

6
+ | Q ∈ (0, ε2), I ≥ ε

}
, G4 = {(S, E, Q, I, J, R) ∈ R

6
+ | E ∈ (0, ε3)J ≥ ε

}
G5 = {(S, E, Q, I, J, R) ∈ R

6
+ | J >

1
ε2

}
, G6 = {(S, E, Q, I, J, R) ∈ R

6
+ | R ∈ (0, ε3)J ≥ ε

}

G7 = {(S, E, Q, I, J, R) ∈ R
6
+ | S >

1
ε

}
, G8 = {(S, E, Q, I, J, R) ∈ R

6
+ | E >

1
ε3

}

G9 = {(S, E, Q, I, J, R) ∈ R
6
+ | Q >

1
ε4

}
, G10 = {(S, E, Q, I, J, R) ∈ R

6
+ | R >

1
ε5

}
.

Evidently, R6
+ | Gε =⋃10

ι=1 Gι. Following that, we shall demonstrate that LV (S, E, Q, I, J, R) ≤ −1
for each (S, E, Q, I, J, R) ∈ R

6
+ | Gε, which is analogous to demonstrating it on the ten regions listed

above.
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Case I. For each (S, E, Q, I, J, R) ∈ G1, then (25) states that

LV ≤ −5(℘8
1)(R

S1/5

0 − 1) + C0 − �

S
+ ℘2

1 ∨ ℘2
2 ∨ ℘2

3 ∨ ℘2
4 ∨ ℘2

5 ∨ ℘2
6

2

+ (η1 + η2 + ϕ2 + ζ2 + ξ + ϕ1 + ζ1 + 5χ) − 1
2
�Jϑ+1

≤ −�

ε
+ H1 + H2. (30)

Case II. For each (S, E, Q, I, J, R) ∈ G2, then (25) states that

LV ≤ −5(℘8
1)(R

S1/5

0 − 1) + C0 + ℘2
1 ∨ ℘2

2 ∨ ℘2
3 ∨ ℘2

4 ∨ ℘2
5 ∨ ℘2

6

2
− ψIS

E
+ (η1 + η2 + ϕ2 + ζ2 + ξ + ϕ1 + ζ1 + 5χ)

− η2E
Q

− η1E
I

≤ −ψIS
ε2

+ H1 + H2, (31)

Case III. For each (S, E, Q, I, J, R) ∈ G3, then (25) states that

LV ≤ −5(℘8
1)(R

S1/5

0 − 1) − ℘2
1ϕ2ϑ

2(χ + ξ + ℘2
5)

Q + C0 − 1
2
�(Jϑ+1) + ℘2

1 ∨ ℘2
2 ∨ ℘2

3 ∨ ℘2
4 ∨ ℘2

5 ∨ ℘2
6

2

+ (η1 + η2 + ϕ2 + ζ2 + ξ + ϕ1 + ζ1 + 5χ) − η2E
Q

≤ −5(℘8
1)(R

S1/5

0 − 1) − ℘2
1ϕ2ϑ

2(χ + ξ + ℘2
5)

ε4 + H2. (32)

Case IV. For each (S, E, Q, I, J, R) ∈ G4, then (25) states that

LV ≤ −5(℘8
1)(R

S1/5

0 − 1) − ψ

ϕ1

I + C0 − �

S
− 1

2
�(Jϑ+1) + ℘2

1 ∨ ℘2
2 ∨ ℘2

3 ∨ ℘2
4 ∨ ℘2

5 ∨ ℘2
6

2
− ψIS

E

+ (η1 + η2 + ϕ2 + ζ2 + ξ + ϕ1 + ζ1 + 5χ) − η1E
I

≤ −η1

ε
+ H1 + H2. (33)

Case V. For each (S, E, Q, I, J, R) ∈ G5, then (25) states that

LV ≤ −5(℘8
1)(R

S1/5

0 − 1) − ℘2
1ϕ2ϑ

2(χ + ξ + ℘2
5)

Q + C0 − 1
2
�(Jϑ+1) + ℘2

1 ∨ ℘2
2 ∨ ℘2

3 ∨ ℘2
4 ∨ ℘2

5 ∨ ℘2
6

2

+ (η1 + η2 + ϕ2 + ζ2 + ξ + ϕ1 + ζ1 + 5χ)

− ϕ1I
J

− ϕϑ
Q
J

≤ −ϕ1

ε2
− ϕϑ

1
ε2

+ H1 + H2. (34)
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Case VI. For each (S, E, Q, I, J, R) ∈ G6, then (25) states that

LV ≤ −5(℘8
1)(R

S1/5

0 − 1) − ℘2
1ϕ2ϑ

2(χ + ξ + ℘2
5)

Q + C0 − �

S
− 1

2
�(Jϑ+1) + ℘2

1 ∨ ℘2
2 ∨ ℘2

3 ∨ ℘2
4 ∨ ℘2

5 ∨ ℘2
6

2

+ (η1 + η2 + ϕ2 + ζ2 + ξ + ϕ1 + ζ1 + 5χ)

≤ 1
2
�

1
εϑ+1

+ H1 + H2. (35)

Case VII. For each (S, E, Q, I, J, R) ∈ G7, then (25) states that

LV ≤ −5(℘8
1)(R

S1/5

0 − 1) − ℘2
1ϕ2ϑ

2(χ + ξ + ℘2
5)

Q + C0 − 1
2
�(Jϑ+1) + 1

2
�(Sϑ+1)

+ ℘2
1 ∨ ℘2

2 ∨ ℘2
3 ∨ ℘2

4 ∨ ℘2
5 ∨ ℘2

6

2
+ (η1 + η2 + ϕ2 + ζ2 + ξ + ϕ1 + ζ1 + 5χ)

≤ −1
2
�

1
ε3(ϑ+1)

+ H1 + H2. (36)

Case VIII. For each (S, E, Q, I, J, R) ∈ G8, then (25) states that

LV ≤ −5(℘8
1)(R

S1/5

0 − 1) − ℘2
1ϕ2ϑ

2(χ + ξ + ℘2
5)

Q + C0 − 1
2
�(Jϑ+1) + 1

2
�(Eϑ+1)

+ ℘2
1 ∨ ℘2

2 ∨ ℘2
3 ∨ ℘2

4 ∨ ℘2
5 ∨ ℘2

6

2
+ (η1 + η2 + ϕ2 + ζ2 + ξ + ϕ1 + ζ1 + 5χ)

≤ −1
2
�

1
ε4(ϑ+1)

+ H1 + H2. (37)

Case IX. For each (S, E, Q, I, J, R) ∈ G9, then (25) states that

LV ≤ −5(℘8
1)(R

S1/5

0 − 1) − ℘2
1ϕ2ϑ

2(χ + ξ + ℘2
5)

Q + C0 − 1
2
�(Jϑ+1) + 1

2
�(Qϑ+1)

+ ℘2
1 ∨ ℘2

2 ∨ ℘2
3 ∨ ℘2

4 ∨ ℘2
5 ∨ ℘2

6

2
+ (η1 + η2 + ϕ2 + ζ2 + ξ + ϕ1 + ζ1 + 5χ)

≤ −1
2
�

1
ε(ϑ+1)

+ H1 + H2. (38)

Case X. For each (S, E, Q, I, J, R) ∈ G2, then (25) states that

LV ≤ −5(℘8
1)(R

S1/5

0 − 1) − ℘2
1ϕ2ϑ

2(χ + ξ + ℘2
5)

Q + C0 − 1
2
�(Jϑ+1) + 1

2
�(Rϑ+1)

+ ℘2
1 ∨ ℘2

2 ∨ ℘2
3 ∨ ℘2

4 ∨ ℘2
5 ∨ ℘2

6

2
+ (η1 + η2 + ϕ2 + ζ2 + ξ + ϕ1 + ζ1 + 5χ)

≤ −1
2
�

1
ε2(ϑ+1)

+ H1 + H2. (39)
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As a result of (26)–(39), we have

LV < −1, ∀(S, E, Q, I, J, R) ∈ R
5
+ | Gε. (40)

This demonstrates that requirement (ii) is satisfied. As a result of the verification of the require-
ments in Lemma 3.2, the evidence is fulfilled.

4 Numerical Procedures of COVID-19 Framework for Various Fractional Derivative Operators
4.1 Caputo Fractional Derivative Operator

In this part, we will investigate the dynamical behaviour of COVID-19 transmission, which
displays three patterns for a country, involving classical, index-law, and eventually stochastic processes.
In this scenario, if we define T as the final time of transmission, that is, the penultimate time when a
secondary outbreak occurs, then the mathematical framework will be developed using the classical
derivative formulation in the first round, then the index-law kernel in the second step, and finally the
stochastic environment in the later phases. Following that, the mathematical formalism that explains
this phenomenon is offered as
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= � + ϕ2(1 − ϑ)Q + ξR − (ψI + χ)S,

dE
dt

= ψIS − (η1 + η2 + χ)E,

dQ
dt

= η2E − (χ + ϕ2)Q, if 0 ≤ t ≤ T1,

dI
dt

= η1E − (ϕ1 + ζ1 + χ)I,

dJ
dt

= ϕ1I + ϕ2ϑQ − (χ + ζ2)J,

dR
dt

= ζ1I + ζ2J − (ξ + χ)R,

(41)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c
0D

β

t S(t) = � + ϕ2(1 − ϑ)Q + ξR − (ψI + χ)S,

c
0D

β

t E(t) = ψIS − (η1 + η2 + χ)E,

c
0D

β

t Q(t) = η2E − (χ + ϕ2)Q, if T1 ≤ t ≤ T2,

c
0D

β

t I(t) = η1E − (ϕ1 + ζ1 + χ)I,

c
0D

β

t J(t) = ϕ1I + ϕ2ϑQ − (χ + ζ2)J,

c
0D

β

t R(t) = ζ1I + ζ2J − (ξ + χ)R,

(42)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) = (� + ϕ2(1 − ϑ)Q + ξR − (ψI + χ)S
)+ ℘1S(t)dW1(t),

dE(t) = (ψIS − (η1 + η2 + χ)E
)+ ℘2E(t)dW2(t),

dQ(t) = (η2E − (χ + ϕ2)Q
)+ ℘3Q(t)dW3(t), if T2 ≤ t ≤ T,

dI(t) = (η1E − (ϕ1 + ζ1 + χ)I
)+ ℘4I(t)dW4(t),

dJ(t) = (ϕ1I + ϕ2ϑQ − (χ + ζ2)J
)+ ℘5J(t)dW5(t),

dR(t) = (ζ1I + ζ2J − (ξ + χ)R
)+ ℘6R(t)dW6(t),

(43)

Here, we apply the technique described in [44] for the scenario of Caputo’s derivative to analyze
quantitatively the piecewise structure (41)–(43). We commence the technique as follows:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d�κ(t)
dt

= ϒ(t, �κ). �κ(0) = �κ,0, κ = 1, 2, . . . , n1 if t ∈ [0,T1],

c
T1

Dβ

t �κ(t) = ϒ(t, �κ), �κ(T1) = �κ,1, if t ∈ [T1,T2],

d�κ(t) = ϒ(t, �κ)dt + ℘κ�κdWκ(t), �κ(T2) = �κ,2, if t ∈ [T2,T].
It follows that

�r
κ
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�κ(0) +
r∑

k=2

{
23
12

ϒ(tk, �k)�t − 4
3
ϒ(tk−1, �k−1)�t + 5

12
ϒ(tk−2, �k−2)�t

}
, t ∈ [0,T�].

�κ(T1) + (�t)β−1

�(β + 1)

r∑
k=2

ϒ(tk−2, �k−2)�1

+ (�t)β−1

�(β + 2)

r∑
k=2

{
ϒ(tk−1, �k−1) − ϒ(tk−2, �k−2)

}
�2

+ β(�t)β−1

2�(β + 3)

r∑
k=2

{
ϒ(tk, �k) − 2ϒ(tk−1, �k−1) + ϒ(tk−2, �k−2)

}
�3, t ∈ [T1,T2],

�κ(T2) +
n1∑

k=r+3

{
5
12

ϒ(tk−2, �k−2)�t − 4
3
ϒ(tk−1, �k−1)�t + 23

12
ϒ(tk, �k)�t

}

+
n1∑

k=r+3

{
5
12

(
B(tk−1) − B(tk−2)

)
℘�k−2 − 4

3

(
B(tk) − B(tk−1)

)
℘�k−1

+23
12

(
B(tk+1) − B(tk)

)
℘�k

}
, t ∈ [T2,T],

where

�1 := (r − k − 1)β − (r − k)β , (44)

�2 := (r − k + 1)β(r − k + 2β + 3) − (r − k)β(r − k + 3β + 3) (45)
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and

�3 :=

⎧⎪⎪⎨
⎪⎪⎩

(r − k + 1)β

(
2(r − k)2 + (3β + 10)(r − k) + 2β2 + 9β + 12

)

+(r − k)β

(
2(r − k)2 + (5β + 10)(r − k) + 6β2 + 18β + 12

)
.

(46)

4.2 Caputo-Fabrizio Fractional Derivative Operator
In this section, we will examine the system dynamics of COVID-19 propagation, which shows three

phases for a particular country, comprising classical, exponential decay law, and finally stochastic
mechanisms. If we describe T as the concluding time of transmitted, that is, the final time when a
secondary epidemic appears, then the mathematical structure will be formed in the first round using
the classical derivative implementation, then the exponential decay kernel in the second step, and
eventually the stochastic environment in the subsequent periods. Regarding that, the mathematical
approach used to illustrate this occurrence is presented as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= � + ϕ2(1 − ϑ)Q + ξR − (ψI + χ)S,

dE
dt

= ψIS − (η1 + η2 + χ)E,

dQ
dt

= η2E − (χ + ϕ2)Q, if 0 ≤ t ≤ T1,

dI
dt

= η1E − (ϕ1 + ζ1 + χ)I,

dJ
dt

= ϕ1I + ϕ2ϑQ − (χ + ζ2)J,

dR
dt

= ζ1I + ζ2J − (ξ + χ)R,

(47)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CF
0 Dβ

t S(t) = � + ϕ2(1 − ϑ)Q + ξR − (ψI + χ)S,

CF
0 Dβ

t E(t) = ψIS − (η1 + η2 + χ)E,

CF
0 Dβ

t Q(t) = η2E − (χ + ϕ2)Q, if T1 ≤ t ≤ T2,

CF
0 Dβ

t I(t) = η1E − (ϕ1 + ζ1 + χ)I,

CF
0 Dβ

t J(t) = ϕ1I + ϕ2ϑQ − (χ + ζ2)J,

CF
0 Dβ

t R(t) = ζ1I + ζ2J − (ξ + χ)R,

(48)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) = (� + ϕ2(1 − ϑ)Q + ξR − (ψI + χ)S
)+ ℘1S(t)dW1(t),

dE(t) = (ψIS − (η1 + η2 + χ)E
)+ ℘2E(t)dW2(t),

dQ(t) = (η2E − (χ + ϕ2)Q
)+ ℘3Q(t)dW3(t), if T2 ≤ t ≤ T,

dI(t) = (η1E − (ϕ1 + ζ1 + χ)I
)+ ℘4I(t)dW4(t),

dJ(t) = (ϕ1I + ϕ2ϑQ − (χ + ζ2)J
)+ ℘5J(t)dW5(t),

dR(t) = (ζ1I + ζ2J − (ξ + χ)R
)+ ℘6R(t)dW6(t),

(49)

Here, we apply the technique described in [44] for the scenario of Caputo-Fabrizio derivative to
analyze quantitatively the piecewise structure (47)–(49). We commence the technique as follows:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d�κ(t)
dt

= ϒ(t, �κ). �κ(0) = �κ,0, κ = 1, 2, . . . , n1 if t ∈ [0,T1],

CF
T1

Dβ

t �κ(t) = ϒ(t, �κ), �κ(T1) = �κ,1, if t ∈ [T1,T2],

d�κ(t) = ϒ(t, �κ)dt + ℘κ�κdWκ(t), �κ(T2) = �κ,2, if t ∈ [T2,T].

(50)

It follows that

�r
κ
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�κ(0) +
r∑

k=2

{
23
12

ϒ(tk, �k)�t − 4
3
ϒ(tk−1, �k−1)�t + 5

12
ϒ(tk−2, �k−2)�t

}
, t ∈ [0,T�].

�κ(T1) + 1 − β

M(β)
ϒ(tn1

, �n1) + β

M(β)

r∑
k=2

{
5

12
ϒ(tk−2, �k−2)�t − 4

3
ϒ(tk−1, �k−1)�t

+23
12

ϒ(tk, �k)�t
}

, t ∈ [T1,T2],

�κ(T2) +
n1∑

k=r+3

{
5
12

ϒ(tk−2, �k−2)�t − 4
3
ϒ(tk−1, �k−1)�t + 23

12
ϒ(tk, �k)�t

}

+
n1∑

k=r+3

{
5
12

(
B(tk−1) − B(tk−2)

)
℘�k−2 − 4

3

(
B(tk) − B(tk−1)

)
℘�k−1

+23
12

(
B(tk+1) − B(tk)

)
℘�k

}
, t ∈ [T2,T].

(51)

4.3 Atangana-Baleanu Fractional Derivative Operator
Here, we will concentrate on the dynamic behavior of COVID-19 spreading in this portion, which

demonstrates three main phases for a certain region, including classical, generalized Mittag-Leffler
law, and lastly, stochastic causes. If we define T as the final time when a secondary epidemic appears,
the mathematical configuration will be constituted in the first round employing the classical derivative
application, followed by the Mittag-Leffler kernel in the second step, and finally the stochastic
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environment in subsequent periods. In this regard, the mathematical model utilized to describe this
phenomenon is as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= � + ϕ2(1 − ϑ)Q + ξR − (ψI + χ)S,

dE
dt

= ψIS − (η1 + η2 + χ)E,

dQ
dt

= η2E − (χ + ϕ2)Q, if 0 ≤ t ≤ T1

dI
dt

= η1E − (ϕ1 + ζ1 + χ)I,

dJ
dt

= ϕ1I + ϕ2ϑQ − (χ + ζ2)J,

dR
dt

= ζ1I + ζ2J − (ξ + χ)R,

(52)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ABC
0 Dβ

t S(t) = � + ϕ2(1 − ϑ)Q + ξR − (ψI + χ)S,

ABC
0 Dβ

t E(t) = ψIS − (η1 + η2 + χ)E,

ABC
0 Dβ

t Q(t) = η2E − (χ + ϕ2)Q, if T1 ≤ t ≤ T2

ABC
0 Dβ

t I(t) = η1E − (ϕ1 + ζ1 + χ)I,

ABC
0 Dβ

t J(t) = ϕ1I + ϕ2ϑQ − (χ + ζ2)J,

ABC
0 Dβ

t R(t) = ζ1I + ζ2J − (ξ + χ)R,

(53)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) = (� + ϕ2(1 − ϑ)Q + ξR − (ψI + χ)S
)+ ℘1S(t)dW1(t),

dE(t) = (ψIS − (η1 + η2 + χ)E
)+ ℘2E(t)dW2(t),

dQ(t) = (η2E − (χ + ϕ2)Q
)+ ℘3Q(t)dW3(t), if T2 ≤ t ≤ T

dI(t) = (η1E − (ϕ1 + ζ1 + χ)I
)+ ℘4I(t)dW4(t),

dJ(t) = (ϕ1I + ϕ2ϑQ − (χ + ζ2)J
)+ ℘5J(t)dW5(t),

dR(t) = (ζ1I + ζ2J − (ξ + χ)R
)+ ℘6R(t)dW6(t),

(54)

Here, we apply the technique described in [44] for the scenario of Atanagan-Baleanu-Caputo
derivative to analyze quantitatively the piecewise structure (52)–(54). We commence the technique as
follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d�κ(t)
dt

= ϒ(t, �κ). �κ(0) = �κ,0, κ = 1, 2, . . . , n1 if t ∈ [0,T1],

ABC
T1

Dβ

t �κ(t) = ϒ(t, �κ), �κ(T1) = �κ,1, if t ∈ [T1,T2],

d�κ(t) = ϒ(t, �κ)dt + ℘κ�κdWκ(t), �κ(T2) = �κ,2, if t ∈ [T2,T].
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It follows that

�r
κ
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�κ(0) +
r∑

k=2

{
23
12

ϒ(tk, �k)�t − 4
3
ϒ(tk−1, �k−1)�t + 5

12
ϒ(tk−2, �k−2)�t

}
, t ∈ [0,T�].

�κ(T1) + β

ABC(β)
ϒ(tn1

, �n1) + β(�t)β−1

ABC(β)�(β + 1)

r∑
k=2

ϒ(tk−2, �k−2)�1

+ β(�t)β−1

ABC(β)�(β + 2)

r∑
k=2

{
ϒ(tk−1, �k−1) − ϒ(tk−2, �k−2)

}
�2

+ β(�t)β−1

2ABC(β)�(β + 3)

r∑
k=2

{
ϒ(tk, �k) − 2ϒ(tk−1, �k−1) + ϒ(tk−2, �k−2)

}
�3, t ∈ [T1,T2],

�κ(T2) +
n1∑

k=r+3

{
5
12

ϒ(tk−2, �k−2)�t − 4
3
ϒ(tk−1, �k−1)�t + 23

12
ϒ(tk, �k)�t

}

+
n1∑

k=r+3

{
5
12

(
B(tk−1) − B(tk−2)

)
℘�k−2 − 4

3

(
B(tk) − B(tk−1)

)
℘�k−1

+23
12

(
B(tk+1) − B(tk)

)
℘�k

}
, t ∈ [T2,T],

where �1, �2 and �3 are stated before in (44)–(46).

5 Results and Discussion

In this section, we will first discuss the numerical approach for the fractional model in the context
of the piecewise derivatives, which is provided in [44].

As of now, the COVID-19 coronavirus infection remains among the world’s deadliest and most
dangerous. There is currently no therapeutic option. In addition, because of the virus’s aggressive
propagation and the presence of numerous unpredictable components (people’s interests, mammal
activities, transportation, etc.), it includes a significant amount of unpredictability. We constructed
a simulation for the new 2019 coronavirus infection using stochastic concepts, and we explored
the disease’s propagation features and comprehended its emergence and spread in the context of
community and environmental transformation via the piecewise fractional derivative operators (e.g.,
Caputo, Caputo-Fabrizio and Atangana-Baleanu-Caputo context). Following the implementation of
the numerical approach, we will examine the physical characteristics listed in Table 1 using fractional-
order β values and demonstrate the findings are mentioned below.

Table 1: List of parameters

Symbols Explanation Values Sources

� Recruitment rate 8972.105 Estimated
χ Natural death rate 407300.0000 Estimated
ψ Interaction rate 8526331000 [45]
η1 Rate of pathogen awareness 14.11084740 [45]

(Continued)
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Table 1 (continued)

Symbols Explanation Values Sources

η2 Quarantine rate 219.7398720 [45]
ϕ1 Isolation rate 10.71592360 [45]
ϕ2 Occurrence of clinical

manifestations while quarantine
1.915503760 [45]

ζ1 Restoration rate in affected people 1.141303480 [45]
ζ2 Restoration rate in isolated people 27.09393550 [45]
ξ After-treatment susceptibility rate 120.3252870 [45]
ϑ Proportion of the confined

community was isolated.
0.68 Assumed

The numerical scheme for the Caputo fractional direction indicated by (41)–(43) is studied, and
the findings are schematically represented in Figs. 2–4 with lowest random intensities. Furthermore,
on 7 October 2021, we might use the corresponding accurate statistics S = 220, 033, 703, E(0) =
196304, Q(0) = 32917, I(0) = 18114, J(0) = 0, R(0) = 1446 in Pakistan [45]. Then, RS

0 >, 1
which is described in Section 3. Theorem 3.4 research shows that mechanism (41)–(43) will exist for
a long period due to a distribution π(.) This is supported by numerical simulations (Figs. 2–4). In
particular, considering Pakistani statistical information from October to December 2021, the estimate
(Figs. 2–4) shows that controlling the isolation level will influence the perturbation of the prevalence
of disease and regulate the growth in the infected population. Simultaneously, when the transmission
incidence is disrupted by several other variables, including vaccine administration, the death toll
reduces along with the amount of infections. This is essentially in accordance with the system’s (41)–
(43) study findings in this work.
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Figure 2: Numerical representations for the model (41)–(43) for the susceptible S(t) and exposed E(t)
individuals when random densities ℘1 = 0.05, ℘2 = 0.06, ℘3 = 0.07, ℘4 = 0.08, ℘5 = 0.09 and ℘1 =
0.09 via the Caputo derivative operator with fractional-order assumed to be 0.95
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Figure 3: Numerical representations for the model (41)–(43) for the quarantined Q(t) and infected
I(t) individuals when random densities ℘1 = 0.05, ℘2 = 0.06, ℘3 = 0.07, ℘4 = 0.08, ℘5 = 0.09 and
℘1 = 0.09 via the Caputo derivative operator with fractional-order assumed to be 0.95
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Figure 4: Numerical representations for the model (41)–(43) for the isolated J(t) and recovered R(t)
individuals when random densities ℘1 = 0.05, ℘2 = 0.06, ℘3 = 0.07, ℘4 = 0.08, ℘5 = 0.09 and ℘1 =
0.09 via the Caputo derivative operator with fractional-order assumed to be 0.95

Figs. 5–7 illustrates numerical findings for the Caputo-Fabrizio sense for (47)–(49) by utilizing
environmental noise values. Furthermore, the performance parameters state the biological suitability
of the finding. Following that, we shall concentrate on the stochastic simulation analysis (47)–(49).
Figs. 5–7 depicts the trajectories of I(t) and R(t) in various scenarios. We can observe that the
stochastic model’s solution varies within underlying deterministic model, demonstrating how noise
can influence the quantity of individuals afflicted and eliminated. To clearly demonstrate the impact
of noise, we present in Fig. 5b the path of I(t) for the stochastic process (47)–(49) having various noise
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concentrations as well as its associated deterministic structure. Furthermore, in Fig. 7b, we depict
the variation of the mean value of each time in the 5000 pathways of the stochastic process (47)–
(49) plus or minus the standard deviation in Fig. 7b. It has been discovered that the greater the noise
concentration ℘6 = 0.09, the deeper the volatility of I(t). It can also be shown that as the noise levels
increase, the standard deviation of I(t) grows and its average value decreases ℘6 = 0.09, indicating that
the disturbance has crossover deterministic-stochastic patterns and can prevent illness transmission.
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Figure 5: Numerical representations for the model (47)–(49) for the susceptible S(t) and exposed E(t)
individuals when random densities ℘1 = 0.05, ℘2 = 0.06, ℘3 = 0.07, ℘4 = 0.08, ℘5 = 0.09 and ℘1 =
0.09 via the Caputo-Fabrizio derivative operator with fractional-order assumed to be 0.95
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Figure 6: Numerical representations for the model (47)–(49) for the quarantined Q(t) and infected
I(t) individuals when random densities ℘1 = 0.05, ℘2 = 0.06, ℘3 = 0.07, ℘4 = 0.08, ℘5 = 0.09 and
℘1 = 0.09 via the Caputo-Fabrizio derivative operator with fractional-order assumed to be 0.95
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Figure 7: Numerical representations for the model (47)–(49) for the isolated J(t) and recovered R(t)
individuals when random densities ℘1 = 0.05, ℘2 = 0.06, ℘3 = 0.07, ℘4 = 0.08, ℘5 = 0.09 and ℘1 =
0.09 via the Caputo-Fabrizio derivative operator with fractional-order assumed to be 0.95

Analogously, Figs. 8–10 illustrate numerical findings for the Atangana-Baleanu-Caputo sense for
(52)–(54) by utilizing environmental noise values. In particular, it may be stated that increased noise
℘3 will be useful in reducing the number of contaminated people I(t) on average. As a result, we can
suitably raise the volume of noise to prevent the transmission of the disease. The preceding scenario
indicates that randomized disruptions may minimize the incidence of viruses. One will immediately
recognise that several of them display crossover tendencies, such as a crossover from deterministic to
stochastic processes.
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Figure 8: Numerical representations for the model (52)–(54) for the susceptible S(t) and exposed E(t)
individuals when random densities ℘1 = 0.05, ℘2 = 0.06, ℘3 = 0.07, ℘4 = 0.08, ℘5 = 0.09 and ℘1 =
0.09 via the Atangana-Baleanu-Caputo derivative operator with fractional-order assumed to be 0.95
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Figure 9: Numerical representations for the model (52)–(54) for the quarantined Q(t) and infected
I(t) individuals when random densities ℘1 = 0.05, ℘2 = 0.06, ℘3 = 0.07, ℘4 = 0.08, ℘5 = 0.09 and
℘1 = 0.09 via the Atangana-Baleanu-Caputo derivative operator with fractional-order assumed to be
0.95
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Figure 10: Numerical representations for the model (52)–(54) for the isolated J(t) and recovered R(t)
individuals when random densities ℘1 = 0.05, ℘2 = 0.06, ℘3 = 0.07, ℘4 = 0.08, ℘5 = 0.09 and ℘1 =
0.09 via the Atangana-Baleanu-Caputo derivative operator with fractional-order assumed to be 0.95

Figs. 11–13 show the chaotic behaviour of the model (52)–(54) with varying random intensities
and fixed fractional-order β = 0.95. According to the aforementioned evaluation, boosting isolation
and quarantine and raising the efficacy of the treatment can significantly decrease the population of
affected patients; consequently, rigorous prevention and confinement techniques are required. The
number of affected people diminishes to a certain level as η2 climbs and declines ψ . This signifies
that adopting proper utilization press attention raises people’s awareness of the importance of taking
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proper precautions, which can improve the lowered interaction rate as a consequence of press attention,
thereby assisting to reduce the severity of transmission by indicating that the disturbance has crossover
deterministic-stochastic patterns.

(a) (b)

(c) (d)

(e)

Figure 11: The dynamical behaviour of the model (52)–(54) for various cohorts when random densities
℘1 = 0.05, ℘2 = 0.06, ℘3 = 0.07, ℘4 = 0.08, ℘5 = 0.09 and ℘1 = 0.09 via the Atangana-Baleanu-
Caputo derivative operator with fractional-order assumed to be 0.95
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Figure 12: The dynamical behaviour of the model (52)–(54) for various cohorts when random densities
℘1 = 0.05, ℘2 = 0.06, ℘3 = 0.07, ℘4 = 0.08, ℘5 = 0.09 and ℘1 = 0.09 via the Atangana-Baleanu-
Caputo derivative operator with fractional-order assumed to be 0.95
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Figure 13: The dynamical behaviour of the model (52)–(54) for various cohorts when random densities
℘1 = 0.05, ℘2 = 0.06, ℘3 = 0.07, ℘4 = 0.08, ℘5 = 0.09 and ℘1 = 0.09 via the Atangana-Baleanu-
Caputo derivative operator with fractional-order assumed to be 0.95

6 Conclusion

Contemporary research proposes a comprehensive framework for the existing coronavirus epi-
demic, including a particular emphasis on the interactions of quarantined, infected, and isolated
groups via crossover behaviours. For the deterministic system, we establish the strength number. In the
associated stochastic process, we first determine the extinction and permanence thresholds, followed
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by the ergodic stationary distribution. Even though considerable and extremely interesting outcomes
have been proposed, when glancing at the transmission of COVID-19, particularly documentation
from a country, someone could immediately discover that several of them exemplify crossover
behaviours, such as a transition from configurations to deterministic functionalities to structures
to stochastic capabilities. Employing the approach of piecewise modelling, we aimed to offer a
novel aperture for modelling analogous issues. We include several illustrations to demonstrate our
point. The concordance between the piecewise estimates and experimental evidence demonstrates
without a dispute that this technique will aid humans in accurately predicting crossover behaviours
in evolutionary biology.

Acknowledgement: The researchers would like to acknowledge Deanship of Scientific Research, Taif
University for funding this work.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. World Health Organization (2020). Who.int/csr/don/12-january-2020-novelcoronavirus-china
2. Kouidere, A., Youssoufi, L. E., Ferjouchia, H., Balatif, O., Rachik, M. (2021). Optimal control of

mathematical modeling of the spread of the COVID-19 pandemic with highlighting the negative impact
of quarantine on diabetics people with cost-effectiveness. Chaos, Solitons and Fractals, 145(3), 110777.

3. Das, M., Samanta, G. (2021). Stability analysis of a fractional ordered COVID-19 model. Computational
and Mathematical Biophysics, 9(1), 22–45.

4. Pacurar, C. M., Necula, B. R. (2020). An analysis of COVID-19 spread based on fractal interpolation and
fractal dimension. Chaos, Solitons and Fractals, 139(3), 8.

5. Zhang, Z. (2020). Corrigendum to a novel COVID-19 mathematical model with fractional derivatives:
Singular and nonsingular kernels. Chaos, Solitons and Fractals, 139(2), 110128.

6. Begum, R., Tunc, O., Khan, H., Gulzar, H., Khan, A. (2021). A fractional order Zika virus model with
Mittag-Leffler kernel. Chaos, Solitons and Fractals, 146(2), 11.

7. He, Z. Y., Abbes, A., Jahanshahi, H., Alotaibi, N. D., Wang, Y. (2022). Fractional-order discrete-time SIR
epidemic model with vaccination: Chaos and complexity. Mathematics, 10(2), 165. https://doi.org/10.3390/
math10020165

8. Jin, F., Qian, Z. S., Chu, Y. M., Rahman, M. (2022). On nonlinear evolution model for drinking behavior
under Caputo-Fabrizio derivative. Journal of Applied Analysis & Computation, 12(2), 790–806.

9. Wang, F. Z., Khan, M. N., Ahmad, I., Ahmad, H., Abu-Zinadah, H. et al. (2022). Numerical solution
of traveling waves in chemical kinetics: Time-fractional Fishers equations. Fractals, 30(2), 22400051.
https://doi.org/10.1142/S0218348X22400515

10. Dehingia, K., Yao, S. W., Sadri, K., Das, A., Kumar, H. S. et al. (2022). A study on cancer-obesity-treatment
model with quadratic optimal control approach for better outcomes. Results in Physics, 42(1), 105963.

11. Partohaghighi, M., Veeresha, P., Akgül, A., Inc, M., Riaz, M. B. (2022). Fractional study of a novel hyper-
chaotic model involving single non-linearity. Results in Physics, 42(1), 105965.

12. Zafar, Z. A., Hussain, M. T., Inc, M., Baleanu, D., Almohsenh, B. et al. (2022). Fractional-order dynamics
of human papillomavirus. Results in Physics, 34(3), 105281.

13. Acay, B., Inc, M., Mustapha, U. T., Yusuf, A. (2021). Fractional dynamics and analysis for a lana fever
infectious ailment with Caputo operator. Chaos, Soliton and Fractals, 153(3), 111605.

https://Who.int/csr/don/12-january-2020-novelcoronavirus-china
https://doi.org/10.3390/math10020165
https://doi.org/10.1142/S0218348X22400515


2462 CMES, 2023, vol.137, no.3

14. Rihan, F. A., Alsakaji, H. J. (2021). Dynamics of a stochastic delay differential model for COVID-19
infection with asymptomatic infected and interacting peoples: A case study in the UAE. Results in Physics,
28(5), 104658. https://doi.org/10.1016/j.rinp.2021.104658

15. Tang, B., Wang, X., Li, Q., Bragazzi, N. L., Tang, S. et al. (2020). Estimation of the transmission risk of the
2019-nCoVand its implication for public health interventions. Journal of Clinical Medicine, 9(2), 462–474.
https://doi.org/10.3390/jcm9020462

16. Tang, B., Bragazzi, N. L., Li, Q., Tang, S., Xiao, Y. et al. (2020). An updated estimation of the risk
of transmission of the novel coronavirus (2019-nCoV). Infectious Diseases Modelling, 5(7), 248–255.
https://doi.org/10.1016/j.idm.2020.02.001

17. Li, Y., Wang, B., Peng, R., Zhou, C., Zhan, Y. et al. (2020). Mathematical modeling and epidemic prediction
of COVID-19 and its significance to epidemic prevention and control measures. Journal of Current Scientific
Research, 1(1), 19–36.

18. Qianying, L., Zhao, S., Gao, D., Lou, Y., Yang, S. et al. (2020). A conceptual model for the coronavirus
disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action.
International Journal of Infectious Diseases, 93(1766), 211–216. https://doi.org/10.1016/j.ijid.2020.02.058

19. Khan, M. A., Atangana, A. (2020). Modeling the dynamics of novel coronavirus (2019-nCoV) with
fractional derivative. Alexandria Engineering Journal, 59(4), 2379–2389.

20. Ivorra, B., Ferrández, M. R., Vela-Pérez, M., Ramos, A. M. (2020). Mathematical modeling of the spread
of the coronavirus disease 2019 (COVID-19) considering its particular characteristics. The case of China.
Communications in Nonlinear Science and Numerical Simulation, 88(1), 105303. https://doi.org/10.1016/
j.cnsns.2020.105303

21. Alsakaji, H. J., Rihan, F. A., Hashish, A. (2022). Dynamics of a stochastic epidemic model with vaccination
and multiple time-delays for COVID-19 in the UAE. Complexity, 2022, 1–15.

22. Zhao, T. H., Castillo, O., Jahanshahi, H., Yusuf, A., Alassafi, M. O. et al. (2021). A fuzzy-based strategy to
suppress the novel coronavirus (2019-nCoV) massive outbreak. Applied and Computational Mathematics,
20, 160–176.

23. Baba, I. A., Rihan, F. A. (2022). A fractional-order model with different strains of COVID-19. Physica A,
603, 127813.

24. Fadaei, Y., Rihan, F. A., Rajivganthi, C. (2022). Immunokinetic model for COVID-19 patients. Complexity,
2022(1), 8321848. https://doi.org/10.1155/2022/8321848

25. Nazeer, M., Hussain, F., Ijaz, K. M., Rehman, A., El-Zahar, E. R. et al. (2021). Theoretical study of MHD
electro-osmotically flow of third-grade fluid in micro channel. Applied and Computational Mathematics,
420(2), 126868. https://doi.org/10.1016/j.amc.2021.126868

26. Chu, Y. M., Shankaralingappa, B. M., Gireesha, B. J., Alzahrani, F., Khan, M. I. et al. (2021). Combined
impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell
liquid configured by a stretched nano-material surface. Applied and Computational Mathematics, 419(1),
126883. https://doi.org/10.1016/j.amc.2021.126883

27. Zhao, T. H., Khan, M. I., Chu, Y. M. (2021). Artificial neural networking (ANN) analysis for heat and
entropy generation in flow of non-Newtonian fluid between two rotating disks. Mathematical Methods in
Applied Sciences, 46(3), 3012–3030. https://doi.org/10.1002/mma.7310

28. Caputo, M. (1967). Linear model of dissipation whose Q is almost frequency independent II. Geophysical
Journal International, 13(5), 529–539.

29. Rashid, S., Abouelmagd, E. I., Sultana, S., Chu, Y. M. (2022). New developments in weighted n-fold
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