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ABSTRACT

Major chronic diseases such as Cardiovascular Disease (CVD), diabetes, and cancer impose a significant burden
on people and healthcare systems around the globe. Recently, Deep Learning (DL) has shown great potential for
the development of intelligent mobile Health (mHealth) interventions for chronic diseases that could revolutionize
the delivery of health care anytime, anywhere. The aim of this study is to present a systematic review of studies that
have used DL based on mHealth data for the diagnosis, prognosis, management, and treatment of major chronic
diseases and advance our understanding of the progress made in this rapidly developing field. Type 2 Diabetes
Mellitus (T2DMs) is a regular chronic disorder that is caused by the secretion of insulin, which leads to serious
death-related issues and the most complicated ones. Coronary Heart Disease (CHD) is the most frequent issue
related to T2DM patients. The major concern is recognizing the high possibility of CHD complications, yet the
model is not available to identify it. This work introduces a deep learning technique that can predict heart disease
effectively using a hybrid model, which integrates DNNs (Deep Neural Networks) with a Multi-Head Attention
Model called MADNN. The scheme can be designed to automatically learn the best-quality features from Electronic
Health Records (EHRs), and effectively combine heterogeneous and time-sequenced medical data for predicting the
risk of CVD. The analysis is done using the Kaggle dataset. The outcomes prove that the MADNN has improved
accuracy by about 95% and indicates the precise accuracy is higher for the disease compared with SVM, CNN
and ANN.

KEYWORDS
Diabetes mellitus; cardiovascular diseases; deep learning; coronary heart disease; deep neural network with a multi-
head attention model

1 Introduction

Diabetes is one of the primary causes of mortality in developing nations. Nearly 1.3 billion
people live in India, approximately four times the population of the United States [1,2]. 72.9 million
individuals in India had DMs since 2017, up from 40.9 million in 2007. The government and the general
public are investing in research to discover a cure for this viral disease. DMs are disorders where blood
sugar levels consistently rise due to insulin deficiencies, which alter the blood sugar metabolism of
humans. Carbohydrates that generate energy for everyday activities do not get converted into glucose
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sugar in diabetes in increased glucose levels and stopping bloodstreams from reaching body cells each
in body cells [3].

Diabetes is a disease where blood sugar levels or blood glucose are high. It has three types: Type
1, Type 2 and Gestational diabetes. Type 1 diabetes, where the human body cannot produce enough
insulin. Type 2 diabetes is a common type where the human body cannot create or utilize insulin
well. Gestational diabetes will occur during pregnancy. Diabetes is the foremost cause of dangerous
health problems like heart strokes, eye problems, nervous system disturbance, and kidney problems.
According to survey reports in 2019, by International Diabetes Federation (IDF), the number of
people who have diabetes is near to 463 million. Researchers predicted that the number of diabetes
patients may increase to 642 million, i.e., one in ten adults [4]. In this circumvention, the early
prediction of diabetes mellitus is important with efficient techniques to reduce the death rate. Among
the diabetes cases, more people belong to Type 2 diabetes [5].

Funds have been devoted to primary research in this area, which is complex for better analysis and
motivated by an emotional desire to find solutions quickly [6,7]. DMs contribute to the development
of ailments including heart disease, several studies have designed predictive models for CVDs in which
T2DMs were considered risk factors in the models [8]. Recently, the management dataset has found
extensive application in healthcare analysis and clinical decision-making [9]. It makes longitudinal
data available to understand the disease advancement and predict future effects on a particular patient
[10]. Management and survey data were evaluated using risk prediction tools in 2018 trained in the
detection of six chronic illnesses: congestive heart failure, DMs, obstructive pulmonary disease, lung
cancer, myocardial infarction, and stroke. The potential of advanced machine learning approaches like
Support Vector Machine (SVM) [11]. Random Forest (RF), and Decision Tree (DT) were examined for
risk prediction and these techniques were found to be highly efficient when compared to traditional
detection mechanisms [12]. The approaches showed the ability to extract meaningful patterns from
considerable datasets for solving corresponding problems.

Risk predictions of CVDs in patients with T2DMs using GAs (Genetic Algorithm) and machine
learning approaches [13], were introduced, and several research studies are available that exhibit
differences in terms of features that are extracted, and then the classifiers were used. Due to the
high data dimensionality in the data pattern, the convolutional machine learning algorithms [14]
were used, but did not perform well in critical problems, for example, the detection of CVDs. The
pitfalls of machine learning have inspired research in Deep Learning (DL). DL also plays a vital
role in the healthcare domain. In contrast to machine learning, feature extraction, and classification
are inherently carried out in deep learning networks. The hidden layers of the deep learning network
perform with no external researcher being involved. Fig. 1 depicts the key contribution of the proposed
model. From the research gap, this work proposes a hybrid model, which integrates DNNs with a
multi-head attention model called MADNN. Initially, upgraded DNNs are built into this model for
the extraction of local features related to positional invariants and by merging recurrent Bi-LSTMs
(bidirectional long short-term memory) with CNNs (convolution neural networks). Subsequently, a
multi-head attention model is introduced for acquiring data found in EHRs with pivotal associations,
long spaces, and encoding dependencies resulting in unique highlights getting added to the outputs
from Bi-LSTMs hidden layers. The scheme also avoids overfitting by using global average pooling,
which converts vectors into high-level sentiment representations, and sigmoid classifiers detect CVDs.
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Figure 1: General framework of proposed CVD detection using MADNN

Section 1 describes the overall introduction to diabetics. Section 2 gives the analysis of various
models in the literature review. Section 3 gives an overview of the proposed model. Section 4 dis-
cusses the various Experiments and results obtained. At last, Section 5 discusses the conclusion and
future work.

2 Literature Review

Only a few studies that included T2DMs as risk factors have been effective in establishing
prediction models for CVDs. Studied the occurrence of glucose abnormality in a sick person who
contains sensitive cardiovascular syndrome and evaluated the robustness of logical and objective
criteria for forecasting the pathologic results of OGTTs (oral glucose tolerance test), 3 months after
the patient’s discharge. The potential study of 102 coronary care unit patients was classified using the
criteria established by the American Diabetes Association. OGTTs were performed on non-diabetic
individuals three months after their discharge from the unit.

In [15], the researchers used of FFRs (flow reserve fractions) to rely on deep learning for detecting
the added complication of DMs. Considering the difficulties of studies on CHD with DMs and
FFRs, this research concluded that contemporary coronary angiographies, which were still evolving,
had promising influences on therapies offered for CHD and DMs. Based on this, the therapeutic
impact of combining with FFRs could prove to be advantageous. Their study also included techniques
for establishing appropriate comparison tests. In this experiment, the actual CHD along with the
complications of DMs, using random classifications of every group of 41 people, was carried out,
in which one group belonged to the FFRCT group, and another was from the FFRQCA group,
guaranteeing the experimental impact, global evaluation indices were derived.
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In [16], the researchers explored the various models which contain the SVM-based approaches
to identify the sick person containing the sickness. The various types and features of the data from
numerous machine learning frameworks have been figured out based on classification accuracy and
efficiency. The framework was then integrated to generate a new ensemble technique by improving
the efficiency and effectiveness and accuracy of the framework. The key variables have been identified
from the patient data using tree-based models. The learned model helps to identify patients of different
disease classes.

In [17], the authors proposed deep learning method for predicting MACE (major adverse
cardiovascular events) was evaluated using data from North East Italy, 214,676 veneto patients
suffering from DMs. The data included pharmacy and hospitalization claims of one year along with
the patient’s basic information. This data was used to estimate 4P-MACE composite endpoints, based
on cardiac-related issues which have indication horizons between 1 to 5 years. Based on the job’s time-
to-event actions, the problem was cast as a multi-result.

In [18], the authors explored the relationship between HR monitors and CGMs devices for low-
cost alternatives to measure glucose dysregulation. A total of 550 participants were accepted, with
healthy T2DMs, pre-diabetics, and pregnant diabetic cohorts wearing CGMs and HR monitors for
10 days. Although the underlying glucose regulation and heart rates have many similarities, removing
usually utilized characteristics in time series analyses provided weaker correlations among CGMs and
HR data. On the other hand, by learning combined representations of CGMs and HR using CCAs
(Canonical Association Analysis), CGMs and HR characteristics could be learned in CCAs space,
appropriately, exhibiting statistically significant correlations. Extraction of the HR characteristics
involved in the maximum of CCAs aims, in conjunction with CGMs, allows learning about patients
glucose regulating systems using HR monitors, thus discarding complex CGMs.

In [19], the experts discussed two significant illnesses, diabetes, and cardiac-related approaches
to anticipate hospital admissions due to these criticalities are studied. The study predicted, based on
patient’s medical histories, both recent and prior times as recorded in their EHRs. Several machine
learning techniques like kernelized. and sparse SVMs, sparse LRs, and RFs were used to solve it.
The introduction of two innovative techniques helped in the identification of hidden patient clusters
and made classifiers suitable for every cluster, balance between accuracy and comprehensibility of
predictions significant to healthcare.

In [20], the authors proposed DL-based diabetes detection. In this system, Convolution Neural
Network (CNN), Long Short Term Memory (LSTM), and the combined CNN-LSTM were used for
detecting diabetes. Heart Rate was taken from the collected ECG signal and this model shows that
diabetes can be detected through ECG signals. The maximum accuracy of 92% was achieved using
CNN-LSTM with Support Vector Machine.

In [21], the researchers developed a web-based strategy to forecast diabetes using machine learning
techniques on the PIMA Indian dataset. On the other hand, no single study has examined all the
well-known supervised learning methods in a comprehensive manner. Srivastava et al. [22] used an
ANN approach to predict diabetes using the PIMA Indian dataset. In [23], Saji et al. developed a
multilayer perceptron that was used to predict diabetes. Using an auto-tuned multilayer perceptron,
in [24], Jahangir et al. suggested an expert system to predict diabetes.
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In [25], the experts proposed a DNN for the classification of Type 2 diabetes using stacked
encoders for feature engineering, a softmax function for classification, and a backpropagation method
for fine-tuning the network. Training of the model was performed with PIDD along with 786 patient
records and eight features and achieved an accuracy of 86.26%.

In [26], the researchers used the decision tree technique to predict Type 2 diabetes using the PID
dataset [27]. A comparison of performance using an SVM classifier showed that the decision tree
successfully predicted Type 2 diabetes. In summary, the above-discussed techniques have some pros
and cons, which are as follows: For example, ML algorithms such as RF, decision trees, and SVM
are helpful if we use them for classification problems, except for regression, where they may not be
suitable for predicting training data beyond the range. Similarly, within the decision tree, if there is a
little change in data, it may affect the entire structure of the model [25].

Furthermore, SVM faces minor issues with noisy data [26]. Therefore, these ML algorithms
are suitable for classification problems. However, ANN and CNN are good at making predictions
because, in backpropagation, these methods obtain good results when they use gradients to update
the weights. However, they have some problems, such as vanishing gradient problems or exploding
gradient problems, where the value of gradients (a value used to update the weights) decreases with
backpropagation, so the value becomes small and does not help much with learning. However, it is
possible to overcome these limitations by applying an LSTM and GRU by using ReLU, which allows
capturing the impact of the earliest given data. Moreover, by tuning the burden value during the
training process, the vanishing gradient issue is usually avoided [28].

Although considerable work has been discussed regarding heart disease prediction using diabetes
data, more work must be focused on. This work proposes various disease identification frameworks
for CVDs in T2DMs sick people using deep learning methodologies. Its two basic goals were to (1)
examine the subject’s comorbidity patterns (illness progression) from disease networks, and (2) develop
prediction models to estimate the risk of CVD in patients with T2DMs based on the prior medical
history of patients [29].

3 Proposed Methodology

Initially, the proposed model initiates with CVD data as input to the CNN from the depository,
then CNN generates its output to the Bi-LSTMs, after processed, its outcome was fed into a multi-
head attention model and subsequently, global average pooling was utilized to get the completed
representation by Soft-Max classifier, here diabetes, and mental health can be predicted using Bi-
LSTMs and multi-head attention. Diabetes results in the form of high blood glucose level or low
blood glucose level which is mostly considered to predict heart disease. It is achieved by one of the
layers called the SoftMax layer. Fig. 2 shows the flowchart of the MADNN-based CVD detection.

3.1 Input Dataset Description
The cardiovascular disease dataset is an open-source dataset found on Kaggle (https://www.

kaggle.com/datasets/sulianova/cardiovascular-disease-dataset). The data consists of 70,000 patient
records (34,979 presenting with cardiovascular disease and 35,021 not presenting with cardiovascular
disease) and contains 12 features as input. Some features are numerical, others are assigned categorical
codes, and others are binary values. The classes are balanced, but there were more female patients
observed than male patients. Furthermore, the continuous-valued features are almost normally
distributed; however, most categorical-valued features are skewed towards “normal” as opposed to
“high” levels of potentially pathological features. Here, the objective is not only to design a classifier

https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset
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to identify the presence of cardiovascular disease but also to determine which features and types
of data (demographic, examination, and social history) are most useful for predicting disease. With
the information gained from this study, physicians could potentially alter their current case history
methods to obtain more useful data from their patients. The results from this paper could also aid in
streamlining the diagnostic process and improving diagnostic accuracy.

Figure 2: General framework of proposed CVD detection using MADNN

3.2 MADNN Based CVD Detection Model
The general structure of the MADNN framework is depicted in this section, which consists of

six fundamental modules known as the input layer, CNNs [30], Bi-LSTMs [31], multi-head attention
model, global average pooling layer, and SoftMax layer. The MADNN model complete block diagram
is seen in Fig. 2.

The MADNN models primary goal is to determine the polarity of CVDs for the given texts.
The CNNs have three basic layers: convolution, pooling, and fully linked layers. Convolution layers
extract the best characteristics of CVD detection. Convolution kernels are responsible for extracting
certain features. The maximum counts of convolution kernels were set at 150. Convolution kernels are
responsible for extracting certain features. Convolution procedures for Input Matrices IM of CNNs
outputs can be written as

FM = (IM ∗ WM + bias) (1)
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In Eq. (1), FM indicates the feature matrix extracted after convolution is done, and the weight
matrix WM refers to the network learning parameters. To simplify the calculations, it is important to
nonlinearly map the convolution output of every convolution kernel.

AF = max(0, o) (2)

Eq. (2) mentioned the relu function is one among the activation functions AF that CNN models
typically use. For the extensive extraction of features, in this study, convolution windows sized 2 and
3 are used for extracting the binary and ternary features belonging to the disease data. Once the
convolution operation was completed, the retrieved features were sent to the pooling layer, which
aggregated these features once again to simplify their expression. N-Max pooling was employed in this
study as it picks the best-N maxima of the filters to reflect the information that the filters describe.
The expression of the N-value is given by

N = l − AFs + 1
2

(3)

In Eq. (3), where l refers to the length of input vectors [AFs] refers to the scale of the convolution
window. Once the pooling function calculation is completed, the feature vector extracted by every
convolution kernel is considerably reduced, and the data information associated with the core of the
disease dataset is preserved because the amount of convolution kernels is fixed to 150, and the data
representation matrix derived after pooling is obtained Ãc/ R(mÃ 150). CNNs convolution and pool-
ing layers aid in the extraction of local characteristics from illness data using convolutions and pooling,
yielding generalized binary and ternary eigenvectors. The two types of eigenvectors are concatenated
mutually in the form of Bi-LSTMs input matrices next to fusion layers. CNNs convolution and pooling
layers aid in the extraction of local characteristics from illness data using convolution pooling, yielding
generalized binary and ternary eigenvectors. The two types of eigenvectors are concatenated mutually
in the form of Bi-LSTMs input matrices next to the fusion layer.

3.3 Bidirectional LSTMs (BiLSTM)
It is the extended form of conventional LSTMs, which can help in improving the model perfor-

mance on sequential classification problems. The bidirectional LSTMs perform the training of two
LSTMs on the input set as illustrated in Fig. 3. Due to this bidirectional behaviour, the flexibility of
the input data is improved for the redundant model. Moreover, the recurrent bidirectional network
improves the approachability of the various state inputs and it does not need static input data before
the training process. Here, the Long Short-Term Memory (LSTMs) is used in the form of the repetitive
model of the bidirectional recurrent model since it gets over the problem of vanishing/exploding
gradient in the CNN. The LSTMs neural network is utilized for processing input data set with a length
and attributes sequenced as [x1, x2, . . ., xn].

3.4 Recurrent Neural Network (RNN)
RNNs can learn sophisticated temporal dynamics through the mapping of the input set onto a

set of hidden layers and their outcomes. But the diminishing and fulminate slope problem that occurs
during the long-term kinetics is learned by vanilla RNNs. LSTMs resolve this by adding memory
modules, letting the network go through learning to remove the earlier hidden positions, and updating
them whenever there is fresh information available. The LSTMs exhibits a modern RNN framework,
which can learn long distances depending upon the memory size. This framework can manage the
level of information flowing from a cell. In the LSTMs model, three gates are available for the control
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and updating of the cell state, which is (1) Enter Data (ED inputs); (2) missed; and (3) outcome. Once
the convolution operation is finished, Bi-LSTMs is used for the extraction of the features hidden in
the disease data and the target too, and it is also capable of getting the long-dependent sequential
information of disease data. The key concept here is to use memory cells to keep long-term past
information in memory and control it using a door model. The entire process is represented in Fig. 4.
There is no information provided by the door model, but it can control the amount of information.
Perhaps, the addition of a gate control model is a multilevel feature selection technique. The expressions
of gates and memory cells in the gate model are as follows.

Figure 3: General framework of proposed CVD detection using MADNN

[(Igi = (WMIg[oi, h(i − 1)] + biasIg)

(cs) Ìi = tanhid(WMcs[oi, h(i − 1)] + biascs

(cs)i = fgi ∗ cs(i − 1) + Igi ∗ (cs)i

(Og)i = (WMOg[oi, h(i − 1)] + biasOg)

hidi = Ogi ∗ tanh(csi)

(4)

In the given Eq. (4), where fgi, Igi and Ogi indicate the missed gate, ED gate, and outcome gate,
correspondingly. WMf g, WMIg, WMOg and WMcs are the weight matrix and biaf g, biaIg, biasOg and
biascs bias for each gate, Î denotes the logical regression function Sigmoid, csi stands for the cell state,
and hi refers to the hidden output. A single LSTM generally performs the opinion encoding from
only one dimension. But, two LSTMs can be utilized in the form of a bidirectional encoder, known as
bidirectional LSTM (BiLSTMs). In the case of disease dataset, bidirectional LSTM generates a set of
hidden states

−→
ho ∈ R(md)

h using the CNN feature representation vectors, and another backward LSTM
generates another state

←−
ho ∈ R(nd)

h . In the Bi-LSTMs network, the concluding output hidden states
ho ∈ R(n2d)

h are generated by concatenating
−→
ho and

←−
ho .



CMES, 2023, vol.137, no.3 2521

Figure 4: The architecture of three-time steps unfolding based Bi-LSTM

3.5 Multi-Head Attention Model (MA)
The observation is a primary element of the MADNN, however, a basic change exists, which

involves the model capable of carrying out several distributed computations dealing with sophisticated
information. A set of key pairs which are given as outcome and query mapping is what scaled dot-
product attention is. To calculate the attention, four stages are used [32]. The similarity is used to
calculate each key K and query weight QW. The proposed model is utilized in the event of the dot
product for similarity determination. The next step to compute the attention is the scaling operation,
where the factor

√
(dk) is utilized in the shape of a moderator so that dot-products do not become very

large. Softmax function (sf) is utilized to normalize acquire weights, and weighted sums are sums of
respective main values PV and similarities. The procedures can be depicted mathematically represented
in Eq. (5).

Attention (QW , K, PV) = sf
(

(QW ∗ KT)√
(dk)

)
∗ PV (5)

Fig. 5 shows the MA model block diagram. At first, QW, K, and PV are transformed linearly to
produce the ED from the dot-product observation. As a result, the procedure executes computations
per head at a time. As a result, it must be conducted as h, also known as multihead. For every linear
transformation, Eq. (5) consists of QW, K, and PV and has various parameters. Every m-time scaled
dot-product attention result is joined, and the output from the linear variation is given as the MAs
outcome [33]. The formula can be expressed as shown below in Eqs. (6) and (7).

headi = attention
(
QWwQW

i , KwK
i , PVwPV

i

)
(6)

multihead (QW , K, PV) = concat(headi, head1, . . . , headm)w0 (7)

3.6 Self-Attention
In this technique, self-attention is used to extract the inherent associations between sentences in

(K = PV = QW) [25]. For example, all data, which has been submitted must compute the attention
of one word of the sentence. Fig. 5 shows the MA approach, which generates a mass array α and an
attribute description v, as available in the Eqs. (8) and (9). Characteristics are included in the averaging
[34]. In spite of applying the MA model to the disease data, the global average pooling of the input
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disease data is shown below in Eq. (10), where the attribute array of the particular output is v, and the
attribute direction of all data in the disease dataset is [v1, v2, . . . , vn].

ut = tanh(WMsaht + biassa) (8)

v = multihead (WM, WM, WM) (9)

Figure 5: The block diagram of MA model

3.7 Global Average Pooling Layer
The completely linked system is the fundamental component of the classification system, and

it includes a classification activation function and SoftMax. The overall connection of the network
system stands for direction multiplication, which projects the attribute map onto a direction and then
reduces its size. Entering this vector into a SoftMax layer yields the results for each stage of illness. The
fully connected network is hampered by two significant disadvantages: (i) the unusually large amount
of parameters reduces training duration; and, (ii) overfitting is relatively easy to achieve. Depending
on the major concerns described above, global average pooling can avoid the downsides of having a
similar impact, and the same order of input characteristics are included in the averaging [35–38]. In
spite of giving the MA model to the disease data, The global average pooling of the input disease data
is shown below in Eq. (10), here attribute array of the particular output is v, and the attribute direction
of all data in the disease dataset is v1, v2, v3 . . . , vn.

vgap = Global (v1, v2, . . . , vn) (10)
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Softmax Layer: For the CVD analysis prediction, the output of vector vgap is given instantly to the
SoftMax phase, as given in the below Eq. (11).

ŷ = soft max (WVgap + bias) (11)

For the assessment of the present framework, the objective of cross-entropy was introduced to
show the differences between the estimated nostalgic group ŷ and the actual nostalgic group y.

Loss = −
∑

i

yi log ŷi (12)

Eq. (12) indicates the disease detection results. Bi-LSTMs layers can verify the context in order
to prepare sequence information. MA is capable of learning details from the illustration of various
directions and sizes, as well as completely extracted features, which is essential in improving the
efficient enhancement of the models’ disease analysis strength directly.

4 Experimental Results and Discussion

The present work MADNN performs the classification of the gathered information into three
class labels, referred to as negative or positive, and null. After the initialization of the dataset, the values
will be sent through a representation function in which the data are transformed to numerical values,
which uses the matrix form to be the first stage in the analysis, and next, it will be given input to the
proposed model MADNN for classification of the CVD. The confusion matrix helps to determine the
performance of the classifier on the basics of the test dataset. It is often used to compute performance
measures such as accuracy, recall, precision, and F1-scores. The suggested techniques’ performance is
compared to current approaches such as SVM [26], and CNNs [20]. In terms of the metrics obtained
using the confusion matrix consisting of the corresponding equations in the above Table 1, where TP
indicates True Positive yielding the overall number of disease data, which are presently CVD positive
and categorized to be CVD positive. FN implies False Negative providing the overall number of
disease data, which are presently CVD positive and categorized to be CVD negative. TN indicates
True Negative yielding the overall number of disease data, which are presently CVD negative and
categorized to be CVD negative. FP implies False Positive providing the overall number of disease
data, which are presently CVD negative and categorized to be CVD positive. In the Table 1, where TP
indicates True Positive yielding the overall number of disease data, which are presently CVD positive
and categorized to be CVD positive. FN implies False Negative providing the overall number of disease
data, which are presently CVD positive and categorized to be CVD negative.

Table 1: Confusion matrix

n = Total predictions Actual: No Actual: Yes

Prediction: No True: Negative False: Positive
Prediction: Yes False: Negative True: Positive

4.1 Confusion Matrix
In research, the confusion matrix can be used to estimate the performance of the proposed model.

It depends on the test data’s true values. The size of the matrix varies if classes vary. The matrix
structure is a combination of rows and columns consist predicted values and actual values, respectively.
The following Table 1 represents the sample confusion matrix where TP indicates True Positive yielding
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the overall number of disease data, which are presently CVD positive and categorized to be CVD
positive. FN implies False Negative providing the overall number of disease data, which are presently
CVD positive and categorized to be CVD negative. TN indicates True Negative yielding the overall
number of disease data, which are presently CVD negative and categorized to be CVD negative.
FP implies False Positive providing the overall number of disease data, which are presently CVD
negative and categorized to be CVD positive. confusion matrix supports various calculations for the
performance of the model such as accuracy, precision, recall, F1-score, etc.

Accuracy: It is a ratio of the total samples that were correctly classified to total number of samples
as in Eq. (13).

Accuracy = (TP + TN)

(TP + TN + FP + FN)
∗ 100 (13)

Precision: calculates the percentage of positive class predictions that are truly positive as in
Eq. (14).

Precision = TP
(TP + FP)

∗ 100 (14)

Recall: calculates a single score that accounts both for precision and recall issues as in Eq. (15).

Recall = TP
(TP + FN)

∗ 100 (15)

F1-score: calculates the amount of useful class predictions based on positive examples in the
database as in Eq. (16).

F1 − score = (2 ∗ Precision ∗ Recall)
(Precision + Recall)

(16)

Fig. 6 represents the result of precision. It is used to represent the quality of positive predictions. It
is the combination of true and false positives in the confusion matrix. Here the percent of SVM, CNN,
ANN and MADNN, and the values are 82, 85, 64 and 91, respectively. In comparison, the precision
value of the proposed model gives a high rate. It also derived the factor calculation time, supporting
the simple tuning of MADNN. The recall is used to identify the model based on true positive criteria.
The above equations show its calculations (14), (15). Fig. 6 shows that the MADNN got a 96 percent
high rate compared to other models such as SVM, CNN, and ANN, which had percentages of 90%,
93%, and 73% respectively. Increasing the number of features can maximize recall.

From Fig. 7, it is especially used when unseen occurred. It is an average of precision and recall,
when the class of features is high, the f1-measure is also maximized. The F1-score of SVN, CNN,
ANN, and MADNN are 90, 93, 73, and 96 percent, respectively. These enhancements were mostly
due to the management of lengthy dependencies in the text utilizing bidirectional LSTMs, resulting in
high F1-scores. Eqs. (13), (16) represent its calculation.

From Fig. 7, in ML/DL, the quality of the models is estimated by their accuracy. It is calculated
by considering the correct prediction over the test data. Fig. 7 shows the high accuracy compared to
existing models. The accuracy percent of SVM, CNN, ANN, and MADNN are 86, 89, 73, and 95,
respectively. Thus, the suggested approach outcomes the current technique in finding the predicted
CVD in terms of good validation.
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Figure 6: Comparing various models with respect to precision and recall

Figure 7: Comparing various models with respect to F1-score and accuracy
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5 Conclusion and Future Work

In this paper, we proposed a novel hybrid deep neural network technique to improve the accuracy
of CVD prediction with the EHR. Data pre-processing for the CVD is done with the help of a python
tool. The outcomes of the proposed model are compared with the machine learning methods, where
the deep learning technique obtained a higher accuracy value in predicting the risk of the disease.
The MADNN gives better results compared to SVM, ANN, and CNN. The MADNN achieved
an accuracy rate of 95%. This model also identifies the T2DM cohorts and assists the healthcare
management to provide better services. However, the MADNN cannot give efficient results for fewer
datasets, which can be resolved in the future. The work can be extended and improved for automated
diabetes analysis by including some other deep-learning algorithms and techniques. The amount of
data that the model can handle is high. In the hyperparameter tuning method, because training too
many parameters can easily result in overfitting, the algorithm can also simply modify the last output
layer. If the data are too different from the original dataset, the model can tune half of the layer after
fine-tuning the output of the top layer.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Ranasinghe, P., Jayawardena, R., Gamage, N., Sivanandam, N., Misra, A. (2021). Prevalence and trends of

the diabetes epidemic in urban and rural India: A pooled systematic review and meta-analysis of 1.7 million
adults. Annals of Epidemiology, 58(6), 128–148. https://doi.org/10.1016/j.annepidem.2021.02.016

2. Sukkarieh-Haraty, O., Egede, L. E., Khazen, G., Abi Kharma, J., Farran, N. et al. (2022). Results
from the first culturally tailored, multidisciplinary diabetes education in Lebanese adults with Type 2
diabetes: Effects on self-care and metabolic outcomes. BMC Research Notes, 15(1), 39. https://doi.org/
10.1186/s13104-022-05937-0

3. Yazdani, N. M., Moghaddam, R. K. (2021). Blood glucose regulation in patients with Type 1 diabetes
by robust optimal safety critical control. Frontiers in Health Informatics, 10(1), 80. https://doi.org/
10.30699/fhi.v10i1.286

4. Singh, A., Halgamuge, M. N., Lakshmiganthan, R. (2017). Impact of different data types on classifier
performance of random forest, naive bayes, and k-Nearest Neighbors algorithms. International Journal of
Advanced Computer Science and Applications, 8(12).

5. Varma, R., Bressler, N. M., Doan, Q. V., Gleeson, M., Danese, M. et al. (2014). Prevalence of and risk
factors for diabetic macular edema in the United States. JAMA Ophthalmology, 132(11), 1334–1340.
https://doi.org/10.1001/jamaophthalmol.2014.2854

6. Sneha, N., Gangil, T. (2019). Analysis of diabetes mellitus for early prediction using optimal features
selection. Journal of Big Data, 6(1), 1–19. https://doi.org/10.1186/s40537-019-0175-6

7. Rajbhandari, J., Fernandez, C. J., Agarwal, M., Yeap, B. X. Y., Pappachan, J. M. (2021). Diabetic heart
disease: A clinical update. World Journal of Diabetes, 12(4), 383–406. https://doi.org/10.4239/wjd.v12.i4.383

8. Nathanson, D., Sabale, U., Eriksson, J. W., Nyström, T., Norhammar, A. et al. (2018). Healthcare cost
development in a Type 2 diabetes patient population on glucose-lowering drug treatment: A nation-
wide observational study 2006–2014. PharmacoEconomics-Open, 2(4), 393–402. https://doi.org/10.1007/
s41669-017-0063-y

https://doi.org/10.1016/j.annepidem.2021.02.016
https://doi.org/10.1186/s13104-022-05937-0
https://doi.org/10.30699/fhi.v10i1.286
https://doi.org/10.1001/jamaophthalmol.2014.2854
https://doi.org/10.1186/s40537-019-0175-6
https://doi.org/10.4239/wjd.v12.i4.383
https://doi.org/10.1007/s41669-017-0063-y


CMES, 2023, vol.137, no.3 2527

9. Tokajian, S., Merhi, G., Al Khoury, C., Nemer, G. (2022). Interleukin-37: A link between COVID-
19, diabetes, and the black fungus. Frontiers in Microbiology, 12, 788741. https://doi.org/10.3389/
fmicb.2021.788741

10. Reddy, G. T., Reddy, M. P. K., Lakshmanna, K., Rajput, D. S., Kaluri, R. et al. (2020). Hybrid genetic
algorithm and a fuzzy logic classifier for heart disease diagnosis. Evolutionary Intelligence, 13(2), 185–196.
https://doi.org/10.1007/s12065-019-00327-1

11. Ng, R., Sutradhar, R., Wodchis, W. P., Rosella, L. C. (2018). Chronic disease population risk tool (CDPoRT):
A study protocol for a prediction model that assesses population-based chronic disease incidence. Diagnostic
and Prognostic Research, 2(1), 1–11. https://doi.org/10.1186/s41512-018-0042-5

12. Preethi, I., Dharmarajan, K. (2020). Diagnosis of chronic disease in a predictive model using machine
learning algorithm. 2020 International Conference on Smart Technologies in Computing, Electrical and
Electronics (ICSTCEE), pp. 191–196. IEEE.

13. Patil, P. B., Shastry, P. M., Ashokumar, P. (2020). Machine learning based algorithm for risk prediction of
cardio vascular disease (CVD). Journal of Critical Reviews, 7(9), 836–844.

14. Wang, Z., Yin, H., Jing, W., Sun, H., Ru, M. et al. (2022). Application of CT coronary flow reserve fraction
based on deep learning in coronary artery diagnosis of coronary heart disease complicated with diabetes mel-
litus. Neural Computing and Applications, 34(9), 6763–6772. https://doi.org/10.1007/s00521-021-06070-y

15. Dinh, A., Miertschin, S., Young, A., Mohanty, S. D. (2019). A data-driven approach to predicting diabetes
and cardiovascular disease with machine learning. BMC Medical Informatics and Decision Making, 19(1),
1–15. https://doi.org/10.1186/s12911-019-0918-5

16. Gundluru, N., Rajput, D. S., Lakshmanna, K., Kaluri, R., Shorfuzzaman, M. et al. (2022). Enhancement of
detection of diabetic retinopathy using harris hawks optimization with deep learning model. Computational
Intelligence and Neuroscience, 2022(24), 1–13. https://doi.org/10.1155/2022/8512469

17. Rashtian, H., Torbaghan, S. S., Rahili, S., Snyder, M., Aghaeepour, N. (2021). Heart rate and cgm
feature representation diabetes detection from heart rate: Learning joint features of heart rate and
continuous glucose monitors yields better representations. IEEE Access, 9, 83234–83240. https://doi.org/
10.1109/ACCESS.2021.3085544

18. Brisimi, T. S., Xu, T., Wang, T., Dai, W., Adams, W. G. et al. (2018). Predicting chronic disease hospital-
izations from electronic health records: An interpretable classification approach. Proceedings of the IEEE,
106(4), 690–707. https://doi.org/10.1109/JPROC.2017.2789319

19. Shetty, B., Fernandes, R., Rodrigues, A. P., Chengoden, R., Bhattacharya, S. et al. (2022). Skin lesion
classification of dermoscopic images using machine learning and convolutional neural network. Scientific
Reports, 12(1), 18134. https://doi.org/10.1038/s41598-022-22644-9

20. Swapna, G., Kp, S., Vinayakumar, R. (2018). Automated detection of diabetes using cnn and CNN-LSTM
network and heart rate signals. Procedia Computer Science, 132(4), 1253–1262. https://doi.org/10.1016/
j.procs.2018.05.041

21. Zou, Q., Qu, K., Luo, Y., Yin, D., Ju, Y. et al. (2018). Predicting diabetes mellitus with machine learning
techniques. Frontiers in Genetics, 9, 515. https://doi.org/10.3389/fgene.2018.00515

22. Srivastava, S., Sharma, L., Sharma, V., Kumar, A., Darbari, H. (2019). Prediction of diabetes using artificial
neural network approach. In: Engineering vibration, communication and information processing, pp. 679–687.
India, Springer.

23. Saji, S. A., Balachandran, K. (2015). Performance analysis of training algorithms of multilayer perceptrons
in diabetes prediction. 2015 International Conference on Advances in Computer Engineering and Applications,
pp. 201–206. IEEE.

24. Jahangir, M., Afzal, H., Ahmed, M., Khurshid, K., Nawaz, R. (2017). An expert system for diabetes
prediction using auto tuned multi-layer perceptron. 2017 Intelligent Systems Conference (IntelliSys),
pp. 722–728. IEEE.

https://doi.org/10.3389/fmicb.2021.788741
https://doi.org/10.1007/s12065-019-00327-1
https://doi.org/10.1186/s41512-018-0042-5
https://doi.org/10.1007/s00521-021-06070-y
https://doi.org/10.1186/s12911-019-0918-5
https://doi.org/10.1155/2022/8512469
https://doi.org/10.1109/ACCESS.2021.3085544
https://doi.org/10.1109/JPROC.2017.2789319
https://doi.org/10.1038/s41598-022-22644-9
https://doi.org/10.1016/j.procs.2018.05.041
https://doi.org/10.3389/fgene.2018.00515


2528 CMES, 2023, vol.137, no.3

25. Kannadasan, K., Edla, D. R., Kuppili, V. (2019). Type 2 diabetes data classification using stacked autoen-
coders in deep neural networks. Clinical Epidemiology and Global Health, 7(4), 530–535. https://doi.org/
10.1016/j.cegh.2018.12.004

26. Apoorva, S., Aditya, S. K., Snigdha, P., Darshini, P., Sanjay, H. (2020). Prediction of diabetes mellitus
Type 2 using machine learning. In: Computational vision and bio-inspired computing: ICCVBIC 2019, pp.
364–370. Springer.

27. Kamble, A. K., Manza, R. R., Rajput, Y. M. (2016). Review on diagnosis of diabetes in Pima Indians.
International Journal of Computers and Applications, 975, 8887.

28. Yamashita, R., Nishio, M., Do, R. K. G., Togashi, K. (2018). Convolutional neural networks: An
overview and application in radiology. Insights into Imaging, 9(4), 611–629. https://doi.org/10.1007/
s13244-018-0639-9

29. Enrico, L., Fadini, G. P., Sparacino, G., Avogaro, A., Tramontan, L. et al. (2021). A deep learning approach
to predict diabetes’ cardiovascular complications from administrative claims. IEEE Journal of Biomedical
and Health Informatics, 25(9), 3608–3617. https://doi.org/10.1109/JBHI.2021.3065756

30. Kingma, F., Abbeel, P., Ho, J. (2019). Bit-Swap: Recursive bits-back coding for lossless compression with
hierarchical latent variables. International Conference on Machine Learning, pp. 3408–3417. PMLR.

31. Graves, A., Jaitly, N., Mohamed, A. R (2013). Hybrid speech recognition with deep bidirectional LSTM.
2013 IEEE Workshop on Automatic Speech Recognition and Understanding, pp. 273–278. IEEE.

32. Manjulatha, B., Pabboju, S. (2021). An ensemble model for predicting chronic diseases using machine
learning algorithms. In: Smart computing techniques and applications, vol. 2, pp. 337–345. Springer.

33. Wan, X. (2009). Co-training for cross-lingual sentiment classification. Proceedings of the Joint Conference
of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language
Processing of the AFNLP, pp. 235–243.

34. Sutskever, I., Vinyals, O., Le, Q. V. (2014). Sequence to sequence learning with neural networks. In: Advances
in neural information processing systems, vol. 27.

35. Longato, E., di Camillo, B., Sparacino, G., Saccavini, C., Avogaro, A. et al. (2020). Diabetes diagnosis from
administrative claims and estimation of the true prevalence of diabetes among 4.2 million individuals of
the Veneto region (North East Italy). Nutrition, Metabolism and Cardiovascular Diseases, 30(1), 84–91.
https://doi.org/10.1016/j.numecd.2019.08.017

36. Lefebvre, P. (2005). Diabetes yesterday, today and tomorrow. the action of the international diabetes
federation. Revue Medicale de Liege, 60(5–6), 273–277.

37. Hossain, M. E., Uddin, S., Khan, A., Moni, M. A. (2020). A framework to understand the progression of
cardiovascular disease for Type 2 diabetes mellitus patients using a network approach. International Journal
of Environmental Research and Public Health, 17(2), 596. https://doi.org/10.3390/ijerph17020596

38. Rajput, D. S., Basha, S. M., Xin, Q., Gadekallu, T. R., Kaluri, R. et al. (2022). Providing diagnosis on
diabetes using cloud computing environment to the people living in rural areas of India. Journal of Ambient
Intelligence and Humanized Computing, 13, 2829–2840. https://doi.org/10.1007/s12652-021-03154-4

https://doi.org/10.1016/j.cegh.2018.12.004
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1109/JBHI.2021.3065756
https://doi.org/10.1016/j.numecd.2019.08.017
https://doi.org/10.3390/ijerph17020596
https://doi.org/10.1007/s12652-021-03154-4

	Multi Head Deep Neural Network Prediction Methodology for High-Risk Cardiovascular Disease on Diabetes Mellitus
	1 Introduction
	2 Literature Review
	3 Proposed Methodology
	4 Experimental Results and Discussion
	5 Conclusion and Future Work
	References


