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ABSTRACT

Four numerical schemes are introduced for the analysis of photocurrent transients in organic photovoltaic devices.
The mathematical model for organic polymer solar cells contains a nonlinear diffusion–reaction partial differential
equation system with electrostatic convection attached to a kinetic ordinary differential equation. To solve the
problem, Polynomial-based differential quadrature, Sinc, and Discrete singular convolution are combined with
block marching techniques. These schemes are employed to reduce the problem to a nonlinear algebraic system.
The iterative quadrature technique is used to solve the reduced problem. The obtained results agreed with the
previous exact one and the finite element method. Further, the effects of different times, different mobilities,
different densities, different geminate pair distances, different geminate recombination rate constants, different
generation efficiencies, and supporting conditions on photocurrent have been analyzed. The novelty of this paper
is that these schemes for photocurrent transients in organic polymer solar cells have never been presented before,
so the results may be useful for improving the performance of solar cells.
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Nomenclature

Jn Flux density of electron
Jp Flux density of proton
J Total current density
μh, μp Carrier mobilities for electron and hole
Gn, Gp Carrier generation rates for electron and hole
Rnn, Rpp Recombination rates for electron and hole
Dn, Dp Charge carrier diffusion coefficients for electron and hole
q Elementary charge (q > 0)

t Time
kdiss Dissociation of charge pairs rate
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G Charge pairs generation rate
EB Electron–hole pair binding energy
a Pair distance
εr Relative permittivity of polymer
ε0 Permittivity of free space
KB Boltzmann’s constant
T Absolute temperature (300 k)
γ Bimolecular recombination rate
krec Monomolecular recombination rate
NC, Nv State effective density
Bn, Bp Electron and hole energy barriers
λ Wave length
Egap Band gap
Va Applied voltage

1 Introduction

Energy disasters, the release of greenhouse gases, and global warming are known to be some of the
most extreme threats to life in the future. Therefore, renewable energy has found great attention from
consumer countries to reduce carbon-based energy supplies [1]. One of the renewable energy sources
that has attracted great attention from research communities is organic solar cells (OSCs) [2–4].

Third-generation photovoltaic devices [5] divide into two branches: organic polymer cells
[6–8] and electrochemical cells [9–11]. We will concern with organic polymer cells in this paper. This
type of renewable energy source has numerous advantages, such as low cost of manufacturing [12,13]
and easy processing on flexible substrates [14–16]. Bulk-heterojunction (BHJ) structure improves
the performance of organic polymer cells where electron donor and acceptor materials are mixed
in a solution and cast into a thin film sandwiched between two electrodes [7,8], as shown in Fig. 1.
The dynamics of charge behaviors in photovoltaic cells are displayed by measurements of transient
photocurrent [17]. The classic time-of-flight technique measures the behavior of charge carriers
generated according to a light, short pulse. Carriers are generated beside the electrode to allow
extracting mobility and transit time [18,19].

Figure 1: Schematic of a heterojunction organic solar cell with its energy band diagram

Many researchers have examined the design of solar cells experimentally [20], but only a limited
number of cases have been solved analytically and numerically. de Falco et al. [21] numerically studied
photocurrent transients in organic polymer solar cells using the finite element and Newton-Raphson
techniques, and they also produced an analytical solution for the problem. Buxton et al. [22] used the
finite difference method to present computer simulations of polymer solar cells. Hwang et al. [23]
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investigated the photocurrent transients of organic solar cells using numerical simulations of the
drift-diffusion formulas. van Mensfoort et al. [24] described two alternative iterative methods for
obtaining solutions to the drift-diffusion equation. Koster et al. [25] presented the theory of Braun for
showing the temperature and field dependence of the photocurrent in PPV: PCBM blends. However,
for such problems, computational ill-conditioning is to be expected [26,27]. El Karkri et al. [28] used
one dimension program [AMPS-1D] to optimize the performance of organic solar cells based on
(carbazole-methylthiophene), benzothiadiazole and thiophene [(Cbz-Mth)-B-T]2 as electron donors,
and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as an electron acceptor. Yousuf et al. [29]
analyzed the p-type Cu2O layer as a hole transport layer on Cu (In, GA) Se2 (CIGS) absorber layer.
The analysis was performed by utilizing the solar cell capacitance simulator, SCAPS-1D. Overall, the
solar cell conversion efficiency improved from 18.72% to 26.62% by adding a Cu2O hole transport
layer and substituting CdS with ZnSe. Islam [30] investigated the thin-film organic solar cell (OSC)
performances in detail by improved analytical computation in this work. The generation of excitons
inside OSC has been estimated by using the optical transfer matrix method (OTMM) to include
the optical phenomena of the incident light. The effect of mobility and active layer thickness on
the properties of bulk heterojunction solar cells was investigated using the drift-diffusion model by
Sadoogi et al. [31].

The differential quadrature method (DQM) is able to achieve accurate results without exerting
high effort [28]. DQM comes in a variety of versions, each with its own shape function and influence
domain for each point. The most used versions are Polynomial (PDQM) [32–34], Sinc (SDQM) [35],
and Discrete singular convolution (DSCDQM) [36–44]. Ragb et al. [45–46] studied the performance of
composite solar cell model consisting of perovskite absorber layer (CH3NH3PbI3), electron transport
layer (TiO2 or PCBM), and hole transport layer (Spiro-OMeTAD or CuI) via sinc and discrete
singular convolution quadrature techniques. Also, they presented different numerical methods that
are used for the first time in solving Perovskite solar cells (PSCs). Ragb et al. [47] offered Improved
electromagnetism-like algorithm and Differential quadrature technique to estimate of photovoltaic
system and tracking power peaks of PV array under partial shading for three tests such as Schutten
STP6-120/36 (Polycrystalline), Shell SM-55 (Monocrystalline) and PVM 752 GaAs (Thin film).
Further, Ragb et al. [48] demonstrated improved electromagnetism-like algorithm and differential
quadrature approach to evaluate the parameters of photovoltaic single, double- and three-diode model
such as Kyocera polycrystalline (KC200GT), polycrystalline (Solarex MSX-60) and monocrystalline
(R.T.C France).

According to the knowledge of the authors, the previous methods are not presented for photocur-
rent transients in organic polymer solar cells. A numerical scheme based on these methods is introduced
to solve systems of nonlinear differential equations. A block marching technique is presented to
approximate the time derivative. These methods are used to reduce the problem to a nonlinear
algebraic system, which is then solved iteratively [32]. For each scheme, a MATLAB program is used
to solve the problem, followed by a comparison of previous exact and finite element method results.
The efficiency and convergence have been verified for each scheme (Polynomial-based differential
quadrature, Sinc, and Discrete singular convolution) via presented results. Furthermore, the effects
of different times, different mobilities, different densities, different geminate pair distances, different
geminate recombination rate constants, different generation efficiencies, and different supporting
conditions on photocurrent are investigated in detail.
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2 Formulation of the Problem

Consider that bulk heterojunction solar cells [20,21,23,49] have been modeled using one-
dimensional drift-diffusion equations. These equations involve the solution of the continuity equations
for hole (p), electron (n), and charge pair (X) densities.

Based on equation of Poisson the electrostatic potential (φ) can be written as [20,21,23,49]:

− div (ε∇φ) = q (p − n) , (1)

The continuity equations that are governing the charge transport in the device [20,21,23,49]:
∂n
∂t

= divJn + Gn − Rnn, (2)

∂p
∂t

= divJp + Gp − Rpp, (3)

where Gn = Gp = kdissX, Rnn = Rpp = γpn

The volume density of geminate pairs is [20,21,23,49]:
∂X
∂t

= G (x, t) + γpn − (kdiss + krec) X, (4)

The relation between electron (hole) flux densities and electrostatic terms (drift and diffusion)
[20,21,23,49]:

Jn = Dn∇n − μhn∇φ, (5)

Jp = Dp∇p + μpp∇φ, Dn = μhkBT
q

, Dp = μpkBT
q

(6)

J = q
(
Jp − Jn

)
, q > 0 (7)

We consider the coefficient krec as a given constant, but kdiss related to the electric field magnitude
according to the following equations [6]:

E = −∂φ

∂x
, (8)

kdiss = 3kR

4πa3
e−EB/kBT

(
1 + b + b2

3
+ b3

18
+ b4

180
+ · · ·

)
, EB = q2

4πεrε0a
, KR = q

(
μh + μp

)
εrε0

(9)

where all parameters used in the simulation of a polymer solar cells are defined in Table 1 [20,21,23,49].

Table 1: Variation of the free electron density at
(
G = 4.3 × 1026 m−3s−1

)
, according to PDQM, mesh

points, earlier analytic and finite element technique, for different times (t): krec = 107 s−1, μh = μp =
2 × 10−4 cm2V−1s−1 and distance from cathode = 50 nm

Grid size (N) Electron density (n) × 1017

t1 = 0.0 μs t2 = 0.12 μs t3 = 0.9 μs t4 = 1.5 μs t5 = 11.96 μs

3 1.7523 49.555 405.369 504.230 560.23
5 1.3568 48.0013 402.124 502.101 555.55
7 1.2103 47.025 400.425 500.925 551.58

(Continued)
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Table 1 (continued)

Grid size (N) Electron density (n) × 1017

t1 = 0.0 μs t2 = 0.12 μs t3 = 0.9 μs t4 = 1.5 μs t5 = 11.96 μs

9 1.10954 46.4442 399.433 499.291 549.22
11 1.10954 46.4442 399.433 499.291 549.22
Exact results [23] 1.109539 46.4442 399.434 499.291 549.22
Finite element [21] 1.10954 46.4442 399.433 499.291 549.22
Execution time 6.35 (s)–non-uniform mesh size ≥ 9

According to Braun’s theory [25], the charge transfer state with binding energy EB is considered
an intermediate state, leading to modification of the free charge carrier generation G (x, t) = I0G,

where G is the exciton generation rate and I0 = kdiss

kdiss + krec

is the probability of the dissociation of the

charge transfer (charge generation efficiency). The effect of a charge transfer state can be observed in
experiments with a strongly pronounced electric field and a temperature-dependent photocurrent [50].

Substituting from Eqs. (5) and (6) into (1)–(4), the governing equations can be written as:
∂n
∂t

= ∂

∂x

[
μhkBT

q
∂n
∂x

− μhn
∂φ

∂x

]
+ kdissX − γnp, (10)

∂p
∂t

= ∂

∂x

[
μpkBT

q
∂p
∂x

+ μpp
∂φ

∂x

]
+ kdissX − γnp, (11)

∂X
∂t

= I0G + γnp − (kdiss + krec) X, (12)

− ε
∂2φ

∂x2
= q (p − n) , (13)

To get the initial conditions, we will solve the system of equations at steady state by setting
∂X
∂t

=
∂n
∂t

= ∂p
∂t

= 0 in Eqs. (10)–(12), and then the governing equations can be written as:

∂

∂x

[
μhkBT

q
∂n
∂x

− μhn
∂φ

∂x

]
+ kdissX − γnp = 0, (14)

∂

∂x

[
μpkBT

q
∂p
∂x

+ μpp
∂φ

∂x

]
+ kdissX − γnp = 0, (15)

(kdiss + krec) X − γnp = I0G, (16)
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The boundary conditions can be described as [20,21,23,49]:⎡
⎢⎢⎢⎢⎢⎢⎢⎣

n (0)

p (0)

n (L)

p (L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Nce(−Bn/kBT)

Nve−(Egap−Bn/kBT)

Nce−(Egap−Bp/kBT)

Nve(−Bp/kBT)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (17)

The energy barrier for carriers is zero when the contact for carrier was ohmic. The potential
boundary condition is:

φ (L) − φ (0) = Egap − Bn − Bp

q
− Va, (18)

3 Method of Solution
3.1 Polynomial Based Differential Quadrature Method (PDQM)

The shape function is used in this method is Lagrange interpolation polynomial such that the
unknown u and its nth derivatives can be approached as a weighted linear sum of nodal values, ui, as
follows [32–34]:

u (xi) =
N∑

j=1

N∏
k=1

(xi − xk)

(
xi − xj

) N∏
j=1,j �=k

(
xj − xk

)u
(
xj

)
, (i = 1: N) , (19)

∂nu
∂xn

∣∣∣∣x = xi
=

N∑
j=1

C(n)

ij u
(
xj

)
(i = 1: N) (20)

where u expresses to (n, p, X and φ). N is mesh size numbers. C(1)

ij is the 1st derivative weighting
coefficient, which can be calculated as [34]:

C(1)

ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1(
xi − xj

) N∏
k = 1,
k �= i, j

(xi − xk)(
xj − xk

) i �= j

−
N∑

j = 1,
j �= i

C(1)

ij i = j

(21)

Higher order derivatives weighting coefficients, can be determined as:[
C(n)

ij

] = [
C(1)

ij

] [
C(n−1)

ij

]
, (n = 2, 3, . . .) (22)
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3.2 Sinc Differential Quadrature Method (SDQM)
The shape function in this method is cardinal sine function. The unknown u and its nth derivatives

can be approached as a weighted linear sum of nodal values, ui as follows [35]:

Sj (xi, hx) = sin
[
π(xi − xj)/hx

]
π(xi − xj)/hx

, where hx > 0 is the step size (23)

u (xi) =
N∑

j=−N

sin
[
π(xi − xj)/hx

]
π(xi − xj)/hx

u
(
xj

)
, (i = −N: N) , (24)

∂u
∂x

∣∣∣∣x = xi
=

N∑
j=−N

C(1)

ij u
(
xj

)
,
∂2u
∂x2

∣∣∣∣x = xi
=

N∑
j=−N

C(2)

ij u
(
xj

)
, (i = −N: N) , (25)

where u expresses to (n, p, X and φ). N is mesh size numbers. hx is grid size. C(1)

ij and C(2)

ij can be
calculated by differentiating Eqs. (23) and (24) as:

C(1)

ij =

⎧⎪⎨
⎪⎩

(−1)
i−j

hx (i − j)
i �= j

0 i = j

, C(2)

ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)
i−j+1 2

[hx (i − j)]2 i �= j

−1
3

[
π

hx

]2

i = j

(26)

3.3 Discrete Singular Convolution Differential Quadrature Method (DSCDQM)
Based on singular convolution defined as:

F (t) = (T ∗ η) (t) =
∫ ∞

−∞
T (t − x)η (x) dx (27)

where T (t − x)and η (t) are the singular kernel and the test function’s space element, respectively.

The discrete singular convolution (DSC) technique depends on several kernels. The shape func-
tions used in this method depend on these kernels so that the unknown u and its derivatives are
approached as a weighted linear sum of ui [51–54]. Two types of kernels will be used as:

3.3.1 Delta Lagrange Kernel (DLK)

To approximate the derivative of a given function with respect to a space variable at a discrete
point, the DSC is usually using a weighted linear combination of the function values at 2M+1 points
in the direction of the space variable [32,33,53]. Delta Lagrange Kernel (DLK) can be used as a shape
function such that the unknown (u) and its derivatives can be approximated as follows:

u (xi) =
M∑

j=−M

M∏
k=−M

(xi − xk)

(
xi − xj

) M∏
j = −M,
j1k

(
xj − xk

)u
(
xj

)
, (i = −N: N) , M ≥ 1 (28)

∂u
∂x

∣∣∣∣x = xi
=

M∑
j=−M

C(1)

ij u
(
xj

)
,
∂2u
∂x2

∣∣∣∣x = xi
=

M∑
j=−M

C(2)

ij u
(
xj

)
, (29)
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where 2M + 1 is the effective computational band width which is centered around x and is usually
smaller than the whole computational domain.

C(1)

ij and C(2)

ij are defined as [32,33,53]:

C(1)

ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1(
xi − xj

) ∏
M

(xi − xk)(
xj − xk

)k = −M,
k �= i, j i �= j

−
M∑

j = −M,
j �= i

C(1)

ij i = j , C(2)

ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

(
C(1)

ij C(1)

ii − C(1)

ij(
xi − xj

)
)

i �= j

−
M∑

j = −M,
j �= i

C(2)

ij i = j
, (30)

3.3.2 Regularized Shannon Kernel (RSK) [53]

To comparisons and illustrations, the regularized Shannon’s kernel, is used to solve this problem.
DSCDQM-RSK is assumed that the unknown u with its derivatives is the approximation weighted
linear sum of nodal values. Hence, the regularized Shannon’s delta kernel is discretized by [53]:

u (xi) =
M∑

j=−M

〈
sin

[
π(xi − xj)/hx

]
π(xi − xj)/hx

e
−
⎛
⎝(xi−xj)

2

2σ2

⎞
⎠〉

u
(
xj

)
, (i = −N: N) , σ = (r ∗ hx) > 0 (31)

∂u
∂x

∣∣∣∣x = xi
=

M∑
j=−M

C(1)

ij u
(
xj

)
,
∂2u
∂x2

∣∣∣∣x = xi
=

M∑
j=−M

C(2)

ij u
(
xj

)
, (32)

where σ is regularization parameter and (r) is a computational parameter. It is also known that the
truncation error is very small due to the use of the Gaussian regularizer, the above formulation given
by Eq. (31) is practical and has an essentially compact support for numerical interpolation.

C(1)

ij and C(2)

ij can be defined as [32,33]:

C(1)

ij =

⎧⎪⎨
⎪⎩

(−1)
i−j

hx (i − j)
e

−hx2
(

(i−j)2

2σ2

)
, i �= j

0 i = j

, C(2)

ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
2 (−1)

i−j+1

hx
2
(i − j)2 + 1

σ2

)
e

−h2
x

(
(i−j)2

2σ2

)
, i �= j

− 1
σ2

− π2

3hx
2 i = j

(33)

Discrete form of Eqs. (13)–(16), can be write as below for each methods using the related weighting
coefficients defined by Eqs. (19)–(33):

μhkBT
q

N∑
j=1

C(2)

ij nj − μhni

N∑
j=1

C(2)

ij φj − μh

N∑
k=1

C(1)

ik φk

N∑
j=1

C(1)

ij nj + kdiss

N∑
j=1

δijXj

−γ

N∑
k=1

δiknk

N∑
j=1

δijpj = 0,

(34)
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μpkBT
q

N∑
j=1

C(2)

ij pj + μppi

N∑
j=1

C(2)

ij φj + μp

N∑
k=1

C(1)

ik φk

N∑
j=1

C(1)

ij pj + kdiss

N∑
j=1

δijXj

−γ

N∑
k=1

δiknk

N∑
j=1

δijpj = 0,

(35)

− ε

N∑
j=1

C(2)

ij φj = q

(
N∑

j=1

δijpj −
N∑

j=1

δijnj

)
, (36)

(kdiss + krec)

N∑
j=1

δijXj − γ

N∑
k=1

δiknk

N∑
j=1

δijpj = I0G, (37)

Therefore, we can get the initial values for (n, p, X, φ) at t = 0.

3.4 Block-Marching Technique with Differential Quadrature Discretization
Eqs. (10)–(12) are considered one-dimensional, time-dependent equations. To solve these equa-

tions, the block-marching technique is used [34]. In time direction, the block-marching method divides
the semi-infinite domain into many time intervals, δt1, δt2, δt3, .... Each block consists of one time
interval δt and x-direction domain between zero and Lx. At block 1, the initial condition is considered
the functional values at the bottom boundary (t = 0). The top boundary (t = δt1) functional values are
unknowns obtained by solving Eqs. (10)–(13). Block 2 considers the functional values at the bottom
boundary (t = δt1) to be the top boundary of block 1. The numerical solution at the top of block
2 is obtained by repeating the steps from block 1. To meet the deadline, we repeat the preceding
procedures several times. The differential quadrature (DQ) weighting coefficients are based on grid
point coordinates. The grid point distribution for all blocks is equal, and these weighting coefficients
can be used at all blocks by setting δt = δt1 = δt2 = δt3.... In the x and t-directions of Kth block, the
following grid sizes are presented [54]:

xi = Lx

2

[
1 − cos

(
i − 1

N − 1
π

)]
, (i = 1: N) (38)

tk = (K − 1) δt + δt
2

[
1 − cos

(
k − 1
L − 1

π

)]
, (k = 1: L) (39)

where N is the grid size number in x direction and L is the time level number in the block.

On suitable substitution from Eqs. (19)–(33) into (10)–(13), the problem can be reduced to the
following:

L∑
j=1

C
(1)

ij nj = μhkBT
q

N∑
j=1

C(2)

ij nj − μhni

N∑
j=1

C(2)

ij φj − μh

N∑
k=1

C(1)

ik φk

N∑
j=1

C(1)

ij nj

+ kdiss

N∑
j=1

δijXj − γ

N∑
k=1

δiknk

N∑
j=1

δijpj,

(40)
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L∑
j=1

C
(1)

ij pj = μpkBT
q

N∑
j=1

C(2)

ij pj + μppi

N∑
j=1

C(2)

ij φj + μp

N∑
k=1

C(1)

ik φk

N∑
j=1

C(1)

ij pj

+ kdiss

N∑
j=1

δijXj − γ

N∑
k=1

δiknk

N∑
j=1

δijpj,

(41)

− ε

N∑
j=1

C(2)

ij φj = q

(
N∑

j=1

δijpj −
N∑

j=1

δijnj

)
, (42)

L∑
j=1

C
(1)

ij Xj = I0G − (kdiss + krec)

N∑
j=1

δijXj − γ

N∑
k=1

δiknk

N∑
j=1

δijpj, (43)

where C
(1)

ij is the weighting coefficient of 1st derivative with respect to time. For all results, the boundary
conditions Eqs. (17) and (18) are augmented in the governing Eqs. (40)–(43). Then, using the iterative
quadrature technique [32,33] to obtain linear algebraic problem as:

Firstly, solving the Eqs. (40)–(43) as linear system:
L∑

j=1

C
(1)

ij nj = μhkBT
q

N∑
j=1

C(2)

ij nj + kdiss

N∑
j=1

δijXj, (44)

L∑
j=1

C
(1)

ij pj = μpkBT
q

N∑
j=1

C(2)

ij pj + kdiss

N∑
j=1

δijXj, (45)

− ε

N∑
j=1

C(2)

ij φj = q

(
N∑

j=1

δijpj −
N∑

j=1

δijnj

)
, (46)

L∑
j=1

C
(1)

ij Xj = I0G − (kdiss + krec)

N∑
j=1

δijXj, (47)

Then, the following iterative system is performed until reaching the required convergence [32,33]:∣∣∣∣ns+1

ns

∣∣∣∣ < 1

∣∣∣∣ps+1

ps

∣∣∣∣ < 1

where s = 0, 1, 2, ...

L∑
j=1

C
(1)

ij ns+1,j = μhkBT
q

N∑
j=1

C(2)

ij ns+1,j − μhns,i

N∑
j=1

C(2)

ij φj − μh

N∑
k=1

C(1)

ik φk

N∑
j=1

C(1)

ij ns,j

+ kdiss

N∑
j=1

δijXj − γ

N∑
k=1

δikns,k

N∑
j=1

δijps+1,j,

(48)
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L∑
j=1

C
(1)

ij ps+1,j = μpkBT
q

N∑
j=1

C(2)

ij ps+1,j + μpps,i

N∑
j=1

C(2)

ij φj + μp

N∑
k=1

C(1)

ik φk

N∑
j=1

C(1)

ij ps,j

+ kdiss

N∑
j=1

δijXj − γ

N∑
k=1

δikns+1,k

N∑
j=1

δijps,j,

(49)

− ε

N∑
j=1

C(2)

ij φj = q

(
N∑

j=1

δijps+1,j −
N∑

j=1

δijns+1,j

)
, (50)

L∑
j=1

C
(1)

ij Xj = I0G − (kdiss + krec)

N∑
j=1

δijXj − γ

N∑
k=1

δikns,k

N∑
j=1

δijps,j (51)

4 Numerical Results

The following numerical results of each scheme explain convergence and efficiency for the analysis
of transient photocurrent to improve power efficiency. The computational characteristics of each
scheme are modified to obtain accurate results with error of order ≤ 10−8. For the present results,
material parameters are taken from previous studies [21,23]. For the PDQ scheme [32–34], the non-
regular grid, with Gauss-Chebyshev-Lobatto discretization as Eq. (38) is used to solve this problem.
The grid sizes (N) are between 3 and 11. Table 1 shows that increasing the number of grid points leads
to a very good convergence rate for electron density (n). The obtained results agreed with the previous
exact one [23] and finite element method [21] over grid size ≥ 9 and execution time of 6.35 s, as shown
in Table 1. This table also demonstrates that the current method produces accurate results.

Table 2 for the SincDQ scheme shows convergence of the obtained results with uniform grid sizes
(N) ranging from 3 to 11. Furthermore, it demonstrates that the convergence percentage for electron
density (n) increases with the mesh size numbers. Over grid size ≥ 9 and execution time of 4.2 s,
these results agreed with the analytical one [23] and the finite element method [21]. We notice that the
SincDQ scheme takes less time to execute than the PDQ scheme. As a result, it is more efficient than
PDQM for analyzing organic polymer solar cells.

For DSCDQ scheme depended on kernel of delta Lagrange Table 3 demonstrates convergence
of the results, which have been obtained with uniform grids (N) between 3 and 11, and bandwidth
2M + 1 ranges between 3 and 9. These findings agreed with those of the analytical one [23] and finite
element approach [21] over N ≥ 7, time for performance 2.7 s, and 2M + 1 ≥ 3. We notice that
the DSCDQ-DLK scheme takes less time to execute than the SincDQ scheme. As a result, it is more
efficient than PDQM and SincDQM for analyzing organic polymer solar cells. The DSCDQ scheme
is based on the kernel of regularized Shannon (RSK) Tables 4 and 5, which explain convergence of
the obtained results with regular grids (N) ranging from 3 and 9. With regularization parameter
1.0hx ≤ σ ≤ 1.75hx the bandwidth is (3 ≤ 2M + 1 ≤ 7). Over mesh size ≥ 7, bandwidth ≥ 3, execution
time 2.1 s, and regularization parameter σ = 1.75hx, these results agreed with analytical one [23] and
finite element approach [21]. We notice that DSCDQM-RSK scheme takes less time to execute than
the DSCDQM-DLK, SincDQM and PDQM schemes. Therefore, DSCDQ-RSK scheme has the best
efficiency comparing the examined schemes for organic polymer solar cells analysis.



2204 CMES, 2023, vol.137, no.3

Table 2: Variation of the free electron density at
(
G = 4.3 × 1026 m−3s−1

)
, according to SincDQM,

mesh sizes, the earlier analytic, and finite element technique, for different times (t): krec = 107 s−1,
μh = μp = 2 × 10−4 cm2V−1s−1 and distance from cathode = 50 nm

Grid size (N) Electron density (n) × 1017

t1 = 0.0 μs t2 = 0.12 μs t3 = 0.9 μs t4 = 1.5 μs t5 = 11.96 μs

3 2.258 55.367 409.736 510.569 570.62
5 1.568 50.6013 405.444 506.451 562.55
7 1.1125 48.615 401.111 503.225 554.58
9 1.109538 46.4442 399.434 499.291 549.22
11 1.109538 46.4442 399.434 499.291 549.22
Exact results [23] 1.109539 46.4442 399.434 499.291 549.22
Finite element [21] 1.10954 46.4442 399.433 499.291 549.22
Execution time 4.2 (s)–uniform mesh size ≥ 9

Table 3: Variation in the free electron density at
(
G = 4.3 × 1026 m−3s−1

)
, due to DSCDQM-DLK,

mesh points, earlier analytic and finite element technique, for different times (t): krec = 107 s−1, μh =
μp = 2 × 10−4 cm2V−1s−1 and distance from cathode = 50 nm

Grid size (N) Electron density (n) × 1017

t1 = 0.0 μs t2 = 0.12 μs t3 = 0.9 μs t4 = 1.5 μs t5 = 11.96 μs

3 1.2365 47.478 400.258 500.457 550.57
5 1.1258 46.487 399.462 499.315 549.26
7 1.109538 46.4442 399.434 499.291 549.22
11 1.109538 46.4442 399.434 499.291 549.22
Exact results [23] 1.109539 46.4442 399.434 499.291 549.22
Finite element [21] 1.10954 46.4442 399.433 499.291 549.22
Execution time 2.7 (s)–uniform mesh size ≥ 7

Table 4: Variation of the free electron density at
(
G = 4.3 × 1026 m−3s−1

)
, by using DSCDQM-RSK

at different (2M + 1, σ and N) for krec = 107 s−1, μh = μp = 2 × 10−4 cm2V−1 s−1 and distance from
cathode = 50 nm, t = 11.96 μs

N Regularization
parameter

Electron density (n) × 1017

2M+1 σ = 1.0hx σ = 1.3hx σ = 1.5hx σ = 1.7hx σ = 1.75hx

5 3 618.23 600.02 570.29 552.78 549.99
5 618.23 600.02 570.29 552.78 549.99
7 618.23 600.02 570.29 552.78 549.99

7 3 617.00 598.13 572.87 553.92 549.22

(Continued)
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Table 4 (continued)

N Regularization
parameter

Electron density (n) × 1017

2M+1 σ = 1.0hx σ = 1.3hx σ = 1.5hx σ = 1.7hx σ = 1.75hx

5 617.00 598.13 572.87 553.92 549.22
7 617.00 598.13 572.87 553.92 549.22

9 3 617.00 598.13 572.87 553.92 549.22
5 617.00 598.13 572.87 553.92 549.22
7 617.00 598.13 572.87 553.92 549.22

Table 5: Variation of the free electron density at
(
G = 4.3 × 1026 m−3s−1

)
, due to DSCDQM-RSK,

mesh points and earlier analytic and finite element technique, for different times (t): σ = 1.75 hx,
krec = 107 s−1, μh = μp = 2 × 10−4 cm2V−1s−1 and distance from cathode = 50 nm

Grid size (N) Electron density (n) × 1017

t1 = 0.0 μs t2 = 0.12 μs t3 = 0.9 μs t4 = 1.5 μs t5 = 11.96 μs

3 1.2531 47.078 400.11 500.410 550.05
5 1.1145 46.457 399.450 499.305 549.25
9 1.109538 46.4442 399.434 499.291 549.22
11 1.109538 46.4442 399.434 499.291 549.22
Exact results [23] 1.109539 46.4442 399.434 499.291 549.22
Finite element [21] 1.10954 46.4442 399.433 499.291 549.22
Execution time 2.1 (s)–uniform mesh size ≥ 7

Each scheme combined with block marching technique to ensure the accuracy of the obtained
results. Table 6 demonstrates transient currents due to DSCDQM-RSK with block marching at
high and low intensities (G = 4.3 × 1026 m−3s−1, G = 4.3 × 1029 m−3s−1) with different times at
δt = 0.1 μs, number of timelevels (L = 4). The results agreed with analytical one [23] over number of
blocks ≥ 10 and execution time 3.63 s. Table 7 shows transient currents at low (G = 4.3 × 1026 m−3s−1)
and high (G = 4.3 × 1029 m−3s−1) intensities with different times at δt = 0.1 μs, L = 8. The results
agreed with analytical one [23] over number of blocks ≥ 6 and execution time 3.15 s. Therefore,
increasing number of time levels in the block (L) is more efficient for photocurrent transient analysis.
Table 8 shows transient currents at low (G = 4.3 × 1026 m−3s−1) and high (G = 4.3 × 1029 m−3s−1)
intensities with different times at δt = 0.05 μs, L = 12. The results agreed with analytical one [23]
over number of blocks ≥ 3 and execution time 2.93 s. Therefore, decreasing time interval (δt) is more
efficient for photocurrent transient analysis. Tables 6–8 show that the value of transient currents is
larger at high intensity. Further, the accuracy and efficiency of the result depend on choice of time
interval and number of blocks. From Tables 3–8, DSCDQM-RSK with block marching is best choice
for efficient for photocurrent transients analysis at (grid size ≥ 7, bandwidth ≥ 3, regularization
parameter σ = 1.75hx, δt = 0.05 μs, L = 12 and Execution time is 2.93 s). Then, effect of different
times, mobilities, densities, geminate pair distances, geminate recombination rate constants, generation
efficiency and supporting conditions on photocurrent are investigated in a detailed parametric study.
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Table 6: Transient currents at low (4.3 × 1026 m−3s−1) and high (4.3 × 1029 m−3s−1) intensities with time
and domain from 0 to 70 nm at (krec = 105 s−1, Bn = Bh = 0, μh = μp= 2 × 10−4 cm2s−1m, δt =
0.1 μs, L = 4)

Transient current Iph ×1020 Iph ×1023

Time (μs) G = 4.3 × 1026 m−3s−1 G = 4.3 × 1029 m−3s−1

K = 1 K = 5 K = 10 Exact K = 1 K = 5 K = 10 Exact

0 0 0 0 0 0 0 0 0
0.5 0.9525 0.9509 0.9506 0.9506 1.828 1.826 1.822 1.822
1 1.4500 1.4499 1.4493 1.4493 2.7788 2.782 2.7778 2.7778
1.5 1.7162 1.7121 1.7109 1.7109 3.2799 3.2795 3.2793 3.2793
2 1.8495 1.8488 1.8482 1.8482 3.5436 3.5428 3.5423 3.5423
2.5 1.9285 1.9208 1.9202 1.9202 3.6818 3.6808 3.6803 3.6803
3.5 1.9798 1.9785 1.9777 1.9777 3.7915 3.7912 3.7907 3.7907
4 1.9899 1.9886 1.9881 1.9881 3.8119 3.8112 3.8106 3.8106
Execution time (s) 3.63–over number of blocks K ≥ 10

Table 7: Transient currents at low (4.3 × 1026 m−3s−1) and high (4.3 × 1029 m−3s−1) intensities with time
and domain from 0 to 70 nm at (krec = 105 s−1, Bn = Bh = 0, μh = μp = 2 × 10−4 cm2s−1m, δt =
0.1 μs, L = 8)

Transient current Iph ×1020 Iph ×1023

Time (μs) G = 4.3 × 1026 m−3s−1 G = 4.3 × 1029 m−3s−1

K = 1 K = 4 K = 6 Exact K = 1 K = 4 K = 6 Exact

0 0 0 0 0 0 0 0 0
0.5 0.9515 0.9508 0.9506 0.9506 1.827 1.824 1.822 1.822
1 1.4500 1.4497 1.4493 1.4493 2.7785 2.780 2.7778 2.7778
2 1.9211 1.9205 1.9202 1.9202 3.6814 3.6806 3.6803 3.6803
2.5 1.9590 1.9582 1.9579 1.9579 3.7533 3.7528 3.7527 3.7527
3.5 1.9790 1.9780 1.9777 1.9777 3.7915 3.7910 3.7907 3.7907
4 1.9890 1.9883 1.9881 1.9881 3.8117 3.8110 3.8106 3.8106
Execution time (s) 3.15–over number of blocks K ≥ 6

Table 8: Transient currents at low 4.3×1026 m−3s−1 and high 4.3×1029 m−3s−1 intensities with time and
domain from 0 to 70 nm at (krec = 105 s−1, Bn = Bh = 0, μh = μp =2 × 10−4 cm2s−1m, δt = 0.05 μs,
L = 12)

Transient current Iph ×1020 Iph ×1023

Time (μs) G = 4.3 × 1026 m−3s−1 G = 4.3 × 1029 m−3s−1

K = 1 K = 4 K = 6 Exact K = 1 K = 4 K = 6 Exact

0 0 0 0 0 0 0 0 0

(Continued)
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Table 8 (continued)

Transient current Iph ×1020 Iph ×1023

Time (μs) G = 4.3 × 1026 m−3s−1 G = 4.3 × 1029 m−3s−1

K = 1 K = 4 K = 6 Exact K = 1 K = 4 K = 6 Exact

0.5 0.9508 0.9506 0.9506 0.9506 1.824 1.822 1.822 1.822
1 1.4495 1.4493 1.4493 1.4493 2.7781 2.7778 2.7778 2.7778
1.5 1.7111 1.7109 1.7109 1.7109 3.2796 3.2793 3.2793 3.2793
3.5 1.9780 1.9777 1.9777 1.9777 3.7911 3.7907 3.7907 3.7907
4 1.9885 1.9881 1.9881 1.9881 3.8110 3.8106 3.8106 3.8106
Execution time (s) 2.93–over number of blocks K ≥ 3

Firstly, Fig. 2 is introduced to show the best wavelength (λ) at different distances from the
cathode for photocurrent transients analysis. This figure shows that the electron density increased
with increasing distances from the cathode. Its mean that distances from cathode of 220 nm, the values
of active layer optical absorptivity is higher. This ensures that more photons are absorbed by thicker
layers than by thinner ones. Increasing wavelength (λ) makes the curves flatter. In addition, decreasing
distance from the cathode leads to faster stability for curves, which explains that the internal quantum
efficiency (IQE) is sensitive to the absorption layer thickness. Furthermore, IQE is simply the quotient
of absorptivity, and a thicker active layer means the photogenerated carrier must travel a longer average
distance out of the device. Therefore, the best value for wavelength is above (λ ≥ 600 nm) at a distance
from the cathode = (70 nm). As well as, we will introduce the parametric study based on these values
where high electron density is obtained at low and high intensity as shown in Fig. 2.

(b)(a)

Figure 2: Variation of the free electron density with wavelength (λ) at different distances from cathode
at (a) low intensity G = 4.3 × 1026 m−3s−1 (b) high intensity G = 4.3 × 1029 m−3s−1 with krec = 105 s−1

and μh = μp = 2 × 10−4 cm2V−1 s−1
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Fig. 3 explains the normalized photocurrent transients at low density G = 4.3 × 1026 m−3s−1 for
different monomolecular recombination rate (krec), different geminate pair distances (a) and times.
The normalized photocurrent transients increase with increasing monomolecular recombination rate
(krec), different geminate pair distances (a) and times. Further, curves achieve a faster stability with
increasing geminate pair distances. So, we will choose (a = 1.5 nm) in the parametric study. Figs. 4
and 5 demonstrate the normalized photocurrent transients at low and high intensities for different
monomolecular recombination rate (krec) and mobilities μh, μp. In Figs. 4 and 5, at high intensity,
we notice that the time increases. The increasing in monomolecular recombination rate (krec) and
mobilities μh, μp leads to increase in time because the high rate of monomolecular recombination
controls the dynamics of charge pair. From Fig. 5, at high intensities, we notice that bimolecular
recombination has a great effect by the difference between efficiency (I0) and net efficiency (Pnet) of
charge generation. According to the increasing in mobility, the normalized photocurrent transients
increase continuously because increasing mobility leads to increase recombination.

(a) (b)

Figure 3: Variation of transient currents at G = 4.3 × 1026 m−3s−1 (low) with time (μs), different
geminate pair distances (nm) and different monomolecular recombination rate constants (a) krec =
106 s−1 and (b) krec = 105 s−1. μh = μp = 2 × 10−4 cm2s−1

The velocity of infinite surface recombination causes more losses in surface recombination. This
shows that mobility increasing will not effect on power conversion efficiency (PCE). So, Figs. 3–5 show
the active-importance of mobility and layer thickness in calculating the PSC efficiency. Therefore,
we will choose the value of mobility is μh = μp = 2 × 10−4 cm2s−1 in the parametric study. Fig. 6
demonstrates the charge pair densities at high intensity (G = 4.3 × 1029 m−3s−1) and electric field with
different distances from cathode. The electric field has a maximum value in the middle. The rate of
charge pair dissociation depends on the electric field. Then, the charge pair increases in the middle.
Further, this figure shows that the value of the device electric field for high light intensity its deviation
around its mean value (E = −
V/distance from cathode). 
V is the total voltage drop through the
device.
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(a) (b)

Figure 4: Variation of transient currents with times, t, generation rates, G, and geminate recombination
rate constants, krec, and different mobilities (a) μh = μp = 2 ×10−4 cm2v−1s−1 (b) μh = 2 × 10−5, μp =
2 ×10−4 cm2v−1s−1

(a) (b)

Figure 5: Transient currents at low intensity (G = 4.3 × 1026 m−3s−1) and high intensity (G = 4.3 × 1029

m−3s−1) for (a) and (G = 4.3 × 1030 m−3s−1) for (b) with different parameters (μh, μp, krec, G, I0 and Pnet)
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(a) (b)

Figure 6: Variation of charge pair and electric field at high intensity (G = 4.3 × 1029 m−3s−1) with
distance from cathode. μh = μp = 2 × 10−4 cm2s−1

Fig. 7 depicts the effect of various gap energies (Egap) and the recombination prefactor (ξ) on free
electron density at low intensity and high charge generation efficiency (G = 4.3 × 1026 m−3s−1, krec =
105 s−1). The electron density increases at the lowest gap energy (Egap = 1) and the recombination
prefactor (ξ = 0). The effective band gap of the absorption layer plays a pivotal role in improving
PSC performance. Across a large band gap, the electrons are thermally excited, and therefore the
electron density in a higher band gap is less than that in a lower band gap. Otherwise, increasing the
temperature leads to the electron being excited into the conduction band, so the electron density will
increase. This leads to higher efficiency of the solar cell. Also, all of the parameters examined increase
as recombination strength decreases. Fig. 8 explains the variation of transient currents with times (t),
energy barriers (Bn, Bp), and different intensities. Increased energy barriers result in more normalized
photocurrent in less time. The normalized photocurrent at high intensity requires less time than at low
intensity. Figs. 2–8 demonstrate that the interface between the active region and the contact is critical
in determining PSC performance. Fig. 9 shows the variation of the electron density at high intensity
with distance from the cathode in case of krec = 105 s−1 and krec = 107 s−1. The electron density is
consistent at low times. As the density of electron approaches the steady state, the electron density is
peaked in the center at krec = 105 s−1 but more uniform at krec = 107 s−1. Electron density increases
with time in both cases, as shown in Fig. 9.

Fig. 10 explains the electron distribution with high and low charge generation efficiency at low
intensity, different distances from cathode and times. The shape of electron density at high charge
generation efficiency is similar to the shape at low efficiency.
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(a) (b)

Figure 7: Variation of the free electron density with distance from cathode at (a) different gap
energies (Egap) (b) different Recombination prefactor (ξ) with krec = 105 s−1 and μh = μp = 2 ×
10−4 cm2V−1s−1 at G = 4.3 × 1026 m−3s−1

(a) (b)

Figure 8: Variation of transient currents with times, t, energy barrier, (Bn, Bp), and different intensities
(a) Low intensity, G = 4.3 × 1026 (b) High intensity, G = 4.3 × 1029. μh = μp = 2×10−4 cm2v−1s−1, krec =
105 s−1, a = 1.5 nm
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(a) (b)

Figure 9: The electron distribution at high intensity with distance from cathode (a) krec = 105 s−1, and
(b) krec = 107 s−1, G = 4.3 × 1029 m−3s−1, μh = μp = 2 × 10−4 cm2V−1s−1

(a) (b)

Figure 10: Variation of the free electron density with distance from cathode, different times (t), at (a)
krec = 105 s−1 (b) krec = 107 s−1, μh = μp = 2 × 10−4 cm2V−1s−1, G = 4.3 × 1026 m−3s−1

To exit the device, all electrons move to the cathode. As a result, the electron has a high density
towards the cathode. It is worth noting that equal mobilities result in hole density figures that are an
exact mirror reflection of the electron density. The free electron generation rate kdissX with krec = 105 s−1

and krec = 107 s−1 charge generation efficiency at high intensity, different distances from cathode and
times are shown in Fig. 11. For high dissociation probabilities, the values are sickly-looking in the
midpoint of the device, but for low dissociation probabilities, the values are regular during the central
percentage of the device. At low and high charge generation efficiency, the free electron generation rate
increases with time. Fig. 12 shows the variation of the electron effective bimolecular recombination
(1/γ p) with time, distance from cathode and both of high and low efficiency of charge generation at
high intensity. As time increases, (1/γ p) decreases at low and high efficiency of charge generation.
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(a) (b)

Figure 11: The free electron generation rate, kdissX, at high intensity with distance from cathode (a)
krec = 105 s−1, and (b) krec = 107 s−1. μh = μp = 2 × 10−4 cm2V−1s−1, G = 4.3 × 1029 m−3s−1

(a) (b)

Figure 12: The variation of the electrons bimolecular recombination (1/γ p) with distance from cathode,
time at (G = 4.3 × 1029 m−3s−1) with (a) krec = 105 s−1 and (b) krec = 107s−1. μh = μp = 2×10−4 cm2V−1s−1

5 Conclusions

Polynomial-based differential quadrature, Sinc and Discrete Singular Convolution techniques
have been successfully employed for the analysis of photocurrent transients in organic photovoltaic
devices. To solve one-dimensional, time-dependent equations, the block-marching technique is used.
Further, the iterative quadrature technique is used to solve the reduced problem. A MATLAB program
is performed to get a solution for this problem at each scheme. Then, block marching technique
accuracy is validated by comparing the obtained results with an analytical one [23] over a number
of blocks ≥ 3 at δt = 0.05 μs, L = 12, and execution time 2.93 s. From computational analysis
it found that DSCDQM-RSK with (N ≥ 7, 2M + 1 ≥ 3 and σ = 1.75 ∗ hx) is the most accuracy and
efficiency values for solving this problem. The maximum error for these schemes is ≤10−8. Also, the
minimum execution time for DSCDQM-RSK is 2.1 s. Effect of different times, different mobilities,
different densities, different geminate pair distances, different geminate recombination rate constants,
different generation efficiency, and supporting conditions on photocurrent are investigated in a
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detailed parametric study by using the efficient technique DSCDQM-RSK. For all results, it is found
that:

• The best value for wave length is above (λ ≥ 600 nm) at distance from cathode = (70 nm).

• The normalized photocurrent transients increase with increasing monomolecular recombina-
tion rate (krec), different geminate pair distances (a) and times (t).

• In the central of the device, the electric field has a maximum value. The charge pair dissociation
rate depends on the electric field. Then, the charge pair population increases in the central of
the device. Across large band gap, the electrons are thermally excited, then the electron density
increases at the lowest gap energy (Egap = 1) and recombination prefactor (ξ = 0).

• The increasing in energy barrier leads to more normalized photocurrent at less time.

• On the way to the steady state, the electron density increases; at more efficiency of charge
generation, the electron density reaches its peak at the midpoint, whereas at less efficiency of
generation, the electron spreading becomes more regular.

• For high generation efficiency the values are peaked in the middle, but for low generation
efficiency the values are regular across the middle of the device.

• As time increases, the effective bimolecular recombination time for electrons decreases at low
and high charge generation efficiency.

• Equal mobilities make hole density figures being the exact mirror image of the electron density.
The active-layer thickness, mobility, energy barrier and band gap are vital components in
defining the significant efficiency and performance of the PSC device.

These techniques, which aided in the creation of diverse and novel parametric studies with less
effort and time, will be useful for improving the performance of solar cells. This type of renewable
electrical energy has numerous advantages for use in many fields of the industrial revolution.
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