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ABSTRACT

Monocular depth estimation is the basic task in computer vision. Its accuracy has tremendous improvement in
the decade with the development of deep learning. However, the blurry boundary in the depth map is a serious
problem. Researchers find that the blurry boundary is mainly caused by two factors. First, the low-level features,
containing boundary and structure information, may be lost in deep networks during the convolution process.
Second, the model ignores the errors introduced by the boundary area due to the few portions of the boundary area
in the whole area, during the backpropagation. Focusing on the factors mentioned above. Two countermeasures
are proposed to mitigate the boundary blur problem. Firstly, we design a scene understanding module and scale
transform module to build a lightweight fuse feature pyramid, which can deal with low-level feature loss effectively.
Secondly, we propose a boundary-aware depth loss function to pay attention to the effects of the boundary’s depth
value. Extensive experiments show that our method can predict the depth maps with clearer boundaries, and the
performance of the depth accuracy based on NYU-Depth V2, SUN RGB-D, and iBims-1 are competitive.
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1 Introduction

Monocular depth estimation is a base vision task in computer vision. It is widely used in
autonomous driving, height measurement, SLAM (Simultaneous Localization and Mapping), AR
(Augmented Reality), etc. Monocular depth estimation is denser and more low-cost than traditional
cost sensors to obtain depth directly. Furthermore, it has the advantages of low price, rich information
acquisition content, and small size compared with the binocular image which is limited by the baseline
length resulting in a poor match between the volume of the equipment and the vehicle platform. So,
estimating depth information based on monocular cameras has become one of the research hotspots
in computer vision. Monocular depth estimation refers to transforming a 2D RGB image into a 2.5D
depth map, which relies on the “Shape From X” methods to obtain the scene depth information from
an RGB image. Monocular depth estimation is an ill-posed problem because a single image lacks the
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geometrical information required to infer the depth from the image. Compared with the traditional
methods [1,2], etc., that use the cues designed artificially, learning-based monocular depth estimation
methods use Convolutional Neural Networks (CNNs) to extract features from images instead of the
artificial cues and build the mapping between features and depth. Eigen et al. [3] proposed the first
monocular depth estimation method based on deep learning, which showed a surprising performance
than pre-works [1,2]. Then, a lot of excellent works based on deep learning were proposed such as
[4-14]. However, monocular depth estimation methods have still suffered from the boundary blur
challenge, especially in indoor scenes which have complex scene structures and many objects. Fig. |
shows the estimation depth results from existing works in indoor scenes. From the red box in Fig. I,
we can see that Hu et al. [15] have a significant improvement in depth accuracy compared with
Eigen et al. [3], furthermore, the object structure in the depth maps is more clear. But there is still
an obvious boundary blur phenomenon, especially in the complex object structure and some objects
are given a wrong depth value that is close to the background. The blurry boundary not only increases
predicting errors in the depth estimation but also causes the “flying pixels” [16]. Some cases of “flying
pixels” in the point cloud can be seen in Fig. 2. Looking the Fig. 2, the first group shows that the point
clouds from Hu et al. [15], and Chen et al. [17] have serious “flying pixels” in the human head, the
point clouds are discontinuous. In the second group, the screens are wrapped. The projected point
clouds from depth maps are discontinuous, especially in the object boundary. The blurry boundary
leads the depth values of pixels from boundary and non-boundary are different and the pixels with
different depth values will be projected to different planes, which lead the boundary and non-boundary
area in the same object to be separated like Fig. 2. Studies find that the boundary blur problem is
mainly brought about by two factors in the CNNs frameworks. Firstly, the loss of low-level features
in the encoding phase, the low-level feature includes scene structure and object information, which
lead the depth maps to unclear and blurry object boundary. But the deep network is needed to improve
the spatial expression ability and receptive field of the features due to the deeper network can extract
the high-level and abstract information of images such as depth information. Secondly, the “boundary
smoothing” during model training (Boundary smoothing: the loss caused by boundary area is ignored
during model training, due to the boundary area occupying a little proportion. Although the gradient
of boundary is larger, it causes little loss in training. The model processing the boundary as the non-
boundary with a small gradient leads to the boundary not sharp and clear enough, like the methods
[15,17] in Fig. 1) In this paper, we propose two solutions for these two impact factors, respectively.
Firstly, to mitigate the low-level information loss, we propose a Scene Understanding module (SU)
and a Scale Transform module (ST). Secondly, to solve the problem caused by “boundary smoothing”,
we pay attention to the loss introduced by the boundary area and design a novel depth loss function
Boundary Aware Depth loss (BAD).

SU and ST. The multi-scale feature fusion is an effective method to deal with low-level feature
loss. The Fuse Feature Pyramid (FFP) is a usual method to aggregate different scales feature, such as
Chen et al. [17], and Yang et al. [18], but these models have a lot of parameters due to sampling the
features too many times during building the FFP. To reduce the parameters, SU and ST are designed
in this work. SU is used to aggregate all scales feature, extracted from all encode phases, and learn the
global scene information which includes rich scene structure and boundary information. Then, ST is
used to transform the global scene information to different scales to build the lightweight FFP. The
feature in FFP will be connected with each corresponding scale in the decoder.

BAD. BAD will guide the model to focus on the boundary area during model training. BAD
introduces boundary weights based on the depth loss function, the weight composed of multi-items to
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ensure it is useable in most cases. The BAD Will enforce the model to pay attention to the loss caused

by the boundary area.
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Figure 1: Predicted depth map from other methods. From left to right are the input image, Ground
truth, and the predicted from Eigen et al. [3] and Hu et al. [15]

Figure 2: The flying pixels phenomenon in the projected cloud from depth maps. From left to right
are input RGB images, ground-truth depth maps, and results of Hu et al. [15], and Chen et al. [17],
respectively

Contributions:

1. We propose a Scene Understanding module (SU) to aggregate the multi-scale features of the
encoder and learn the global scene information. Furthermore, we design a Scale Transform
module (ST) to transform global information to different scales to build a lightweight FFP
that deals with the low-level feature effectively.

2. We propose a novel Boundary Aware Depth loss (BAD). BAD introduces a boundary aware
weight to the depth loss and guides the model to be aware of these pixels which have high edge
gradients.
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3. Extensive experimental results show that our model can predict depth maps with clearer
boundaries, which can effectively alleviate “flying pixels” and show competitive depth accuracy
in the NYU-Depth V2 [19], SUN RGB-D [20], and iBims-1 datasets [21].

2 Related Work

Monocular depth estimation is an important task in computer vision. The beginning of the
learning-based monocular depth estimation is Eigen et al. [3], which predicted the depth from a single
RGB image with CNNs. Eigen et al. [3] showed a great performance over the previous works [1,2].
Based on this work, Eigen et al. [4] proposed a universal multi-task framework to predict depth,
surface normal, and segments from a single image. After that, the monocular depth estimation made
great progress. Some researchers proposed to the fusion of the CRF (Conditional Random Field)
and deep learning [22-25]. Combining CRF and CNNs makes up for the problems of CNNs and
improves the accuracy of the depth estimation models. In addition, Fu et al. [26-28] proposed the
use of classification to deal with monocular depth estimation. They divide the depth interval of the
image and solve the pixel interval corresponding to each pixel and use the depth value corresponding
to the depth interval to express the depth of each pixel. These works show a great performance in the
depth predict, but ignore the structure information in the depth map, which will impact the effects of
reconstruction or obstacle detection with point clouds projected from a depth map without or with less
structure information. This flaw is fatal, especially in complex scenes such as indoor scenes, which have
complicated structures and a mass of objects. Clear object boundary not only improves the accuracy of
depth estimation but also keeps the point cloud in great shape, which is conducive to upper-level work
such as scene reconstruction and object detection. To deal with the blurry boundary, Hu et al. [15]
proposed a fusion model to fuse multi-scale features and proposed a compound loss function to make
the boundary clearer. Based on this excellent work, Chen et al. [1 7] proposed a Fused Feature Pyramid
(FFP) and a residual pyramid to predict depth maps. Yang et al. [18] built an FFP and used an ASFF
(Adaptively Spatial Feature Fusion) structure [29] to fuse the different scale depth maps to keep the
structure information. Although Chen et al. [1 7] and Yang et al. [1 8] showed a great performance, their
model has a lot of parameters for building the FFP. Based on this work, we propose a SU module to
fuse the multi-scale feature, which learns the global scene information. And then use ST module to
transform the global scene information to build a more lightweight FFP than pre-works. Furthermore,
to predict the depth including clearer object boundary, we propose a novel depth loss BAD to enforce
the network to punish the depth error in the boundary field.

3 Methods

In this section, we first introduce the overall framework, and then we describe the Scene
Understanding module (SU), the Scale Transform module (ST), and Boundary Aware Depth loss
(BAD) in detail successively.

3.1 Overall Framework

A blurry boundary not only introduces errors in depth maps but also causes “flying pixels” in point
clouds, to alleviate the boundary blur problem, we design a framework, which is shown in Fig. 3, and
the detail on the structure is shown in Table 1 (H is height, W is width C is the number of channels),
to predict the depth maps with a clear boundary. This framework uses the encoder-decoder as the
based architecture and selects the SeNet154 [30] as the backbone. Besides the base encoder-decoder
architecture, we designed the SU module to aggregate all extracted features to learn the scene global
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information and ST module to transform the global information to different scales. The different scale
global information will be sent to each step of the decoder. In the decoder, we use the u-net architecture.
The features of the backbone will be compressed to half of the original and participate in the decoding
as a skip connection. In the decoder, the decoding results of each layer will be compressed and use
bilinear interpolation to the corresponding resolution and participate in the next layer decoding. As
shown in Fig. 3 and Table 3. In the model training, we propose a novel loss function Boundary Aware
Depth loss (BAD) to enforce the model to focus on the object boundary in the training process but
not ignore it directly.
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Figure 3: The architecture of our framework. SU is the Scene Understanding module and the ST is the
Scale Transform module

Table 1: Sizes of output features, and input/output channels of each layer when using a SeNet154 as
the encoder

Module Layers Input Output
Layerl 228 % 304 % 3 114 % 152 % 128
Layer2 114 % 152 % 128 57 %76 % 256
Encoder Layer3 57 % 76 % 256 29 % 38 * 512
Layer4 29 % 38 % 512 15 %19 % 1024
Layer5 15%19 %1024 8 x 10 % 2048
Layerl HxWx%xC Hx W % C/2
Sample Layer2 Hx W % C/2 H W x 64
bilinear interpolation H W x 64 57 %76 % 64
Fusion Layerl 57 %76 % 320 57 %76 % 320
Layer?2 57 % 76 % 320 57 %76 * 128
bilinear interpolation 57 %76 x 128 H % W % 128
Layerl H % W % 128 H W x 64
ST Pooling H W x 64 Ix1x%64
Layer2 I%1x%x64 I%1x%32
Layer3 I%1x%32 Ix1x%64

(Continued)
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Table 1 (continued)

Module Layers Input Output
Layer4 H W x 64 H W % 128

34+ B/R Layerl H+«WxC H W % C/2
Layerl 8101152 8% 10 %« 512
bilinear interpolation 8% 10 % 512 15 %19 % 512
Concatenate 15 %19 % 512 15%19 %1152
Layer2 15%19 %1152 15 %19 % 256
bilinear interpolation 15 %19 % 256 29 % 38 x 256
concatenate 29 x 38 % 256 29 % 38 x 640

Decoder Layer3 29 % 38 % 640 29 % 38 % 128
bilinear interpolation 29 % 38 % 128 58 % 76 * 128
Concatenate 58 % 76 x 128 58 * 76 * 384
Layer4 58 % 76 x 384 58 % 76 % 64
bilinear interpolation 58 % 76 * 64 114 % 152 x 64
Concatenate 114 % 152 * 64 114 % 152 % 256
Layer5 114 % 152 % 256 114 % 152 % 1

3.2 Scene Understanding Module(SU) and Scale Transform Module(ST)

Scene Understanding module (SU). In the deep network, the low-level features are always lost which
lead to the blurry boundary. Monocular depth estimation is a dense prediction vision task that needs
to use deep CNNs to extract high-level features to establish the mapping between the RGB field and
depth field. To deal with this problem, we propose that the SU aggregate and learn the global scene
information containing the low- and high-level features. The architecture of SU is illustrated in Fig. 4.
Firstly, to reduce the model parameter we use two convolution layers with convolution, the kernel
size is 3 * 3 to compress these feature maps which are extracted from the backbone to 64 channels.
Secondly, we use bilinear interpolation to sample these feature maps to the second scale resolution (57
% 76). Finally, we concatenate the feature maps and use a fusion layer to fuse these feature maps and
compress them to 128 channels, the fusion layer includes two convolution layers with 5 x 5 and 3 % 3
kernel sizes separately. The SU output a feature map with global scene information, which only has
128 channels. The global scene information can provide the additional feature containing the detail
feature in the decoder to enrich the detail in the depth maps. To meet the decoding needs of each stage,
we need global scene information on a multi-scale. But frequent feature fusion will increase a large
number of parameters. The ST is therefore proposed to deal with this hardpoint.

Scale Transform module (ST). To obtain the multi-scale global scene information with fewer
parameters, we designed the ST to transform the global scene information to different scales instead of
fuse feature again. The architecture of the ST is shown in Fig. 5. In this module, we mainly use channel
attention to set different weights to feature channels to adaptively change the feature to different scales.
Firstly, we use bilinear interpolation to sample the feature map, including the global scene information,
to a different scale. Then, we compress the feature to 64 channels and use the average pooling layer to
deal with the feature to 1 * 1 % 64. Thirdly, we use the convolution layer to compress the pooled feature
to 32 channels and use the relu function to activate it. After that, we use the convolution to recover
the feature from 32 to 64 channels and use the sigmoid as the activate function. Finally, we produce
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a recovered feature with the feature before pooling, and then use a convolution layer to recover the
feature to 128 channels. The processed feature maps will be transformed to the scale according to
every phase of the decoder and sent to the corresponding decoding step as a skip connection. The
SU can learn the global information of the scene and the ST will transform the global information
to each scale. The ST not only changes the resolution of global information but also adaptively learn
what features are needed in different decode scale and change the feature. With ST building a pyramid
reduces a lot of model parameters than pre-works, such as Chen et al. [17] and Yang et al. [18]. The
comparison results of the parameters of several models can be seen in the experiment section.
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Figure 4: The architecture of the Scene Understanding module. The sample module uses to sample
each scale feature to the same scale and the fusion module is used to adaptive fuse multi-scale features
for learning the whole scene feature
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3.3 Boundary Aware Depth Loss (BAD)

In this section, we propose a novel depth loss function Boundary Aware Depth loss (BAD) to
pay attention to the loss, caused by the boundary, which is usually ignored in training. Generally, the
depth value at the plane is continuous with a smoother gradient, while the depth at the boundary is
discontinuous with a large gradient. The boundary area always occupies a little proportion through the
gradient of the boundary is larger, which causes little loss in training. So, it is easily ignored, especially
in indoor scenes, there are more planes than other scenes, due to the existence of walls, ceilings, tables,
beds, etc. Therefore, the models tend to predict the depth of the entire scene with the same smooth
depth when training the depth estimation model, which aggravates the boundary blur problem. To deal
with the ignored loss caused by the boundary, Hu et al. [15] proposed the gradients of depth term in
the total loss function to guide the model to predict the depth maps with accurate boundary gradients.
However, the gradient loss term will not play an ideal role when the background and boundary, depth
predicted by the model, is too large or too small at the same time. In this paper, based on Hu et al. [15],
we propose a novel depth loss function BAD to pay attention to the boundary depth for improving
the depth accuracy of the object boundary. BAD guides the training process by setting a boundary
aware Weight for each pixel. The BAD is defined as:

Lo = (1 + aw) (1n (‘d—gl‘ +0.5)) 1)

Lg,, contains two items, the boundary aware weight and depth predict item. Where the w
boundary aware weight, d is the true depth, d is predicted depths. The « is an aware factor, we set
a = 0.3 in this paper. These pixels will be focused if the boundary aware weight is big. Boundary
aware weight w is defined as:

,_n (Ig. + |g | +0.5) (
B

where the g, is the gradient of x scale and the g, is the gradient of y scale in the ground truth. The
g. 1s the gradient of x scale and the g, is the gradient of y scale in predicted depth maps. The N is
the total number of pixels. We use the Sobel operator [31] to extract the gradient in this paper. The
w includes the true and error items, w will enforce the model to focus on boundary area by setting
different weights to these pixels. The true item will become big when these pixels have a big gradient
in the ground truth. The error items will show their role if there is a large gradient prediction error.
When the background and boundary depth are too large or too small at the same time, our true items
and the depth error item in (1) will become big, which guides the model to focus these pixels together
even though the gradient error is small. The error item is used to guide the model to focus on these
boundary fields where the gradient error is big. The depth loss will be huge when the true item and
the error item are big at the same time. To ensure our model can take a bigger awareness of the object
boundary and point cloud quality, we retain the edge loss item and normal loss item proposed by [15].
The total loss is defined as:

L = LBAD + Lgmd + Lnal‘mal (3)

_|_

gx - gx g}’ - g}‘) (2)

Extensive experiments show that BAD can improve the accuracy of the boundary and depth.
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4 Experiments

In this section, we will introduce the evaluation indicators in our experiment firstly. Then we
introduce the datasets used in our experiment, and finally, we conduct various experiments on the
datasets to prove the effectiveness of the novel modules and functions.

4.1 Quantitative Evaluation Indexes
This paper follows [3] using the metrics to evaluate our proposed model’s performance. These
metrics define as:

Root mean squared error (RMSE):

g — giH2 4)

1
RMSE = il Z

yeT

Absolute relative difference (AbsRel):

AbsRel = % le-slse 5)
ve
logl10:
log10 = % ZT |log,, &, — log,, | (6)
Thresholcf(S)
% of y; s.t max (%,?) = §<thr (7)

where thr = 1.25,1.25,1.25° the g, is the ground truth, g, is the predict depth value, and 7T is the
available pixels in the ground truth.

4.2 Datasets and Experimental Setting

This paper focuses on indoor scenes which have a complex scene structure with a large number of
objects. So we mainly trained and evaluated our model in NYU-Depth V2 [19]. The NYU-Depth
V2 [19] dataset is the most popular indoor dataset in monocular depth estimation and semantic
segmentation. It uses a Kinect depth camera [32] to capture images, mainly for scene understanding.
It contains 1449 pairs of RBGD image pairs with a resolution of 640 * 480 from 464 different indoor
scenes from 3 cities. These image pairs are divided into two parts. 795 image pairs captured in 249
scenes are used as the training set, and 654 image pairs from 215 scenes are used as the test set. In
addition, the data set also contains the corresponding semantic segmentation label information. In
our experiment, we use the training dataset that contains 50K RGB-D images that were preprocessed
by Hu et al. [15].

In this paper, we use the Pytorch [33] to implement our model, and then in the encoder state,
we use the SENet-154 [30] as our backbone to initialize the pre-trained model by ImageNet [34]. We
set the LR = 0.0001 and use the learning Adam optimizer. Furthermore, we set a rate decay policy
to the learning rate by reducing it to 10% every 5 epochs, we set 1 = 0.9, 82 = 0.999, epochs =
10, and weight decay as 10—5. Our model was trained and evaluated on a two-piece Tesla V 100
(32 GB version) with a patch size is 16.
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4.3 Performance Comparisons

In this section, we evaluate our model from both qualitative and quantitative points of view on
the NYU-Depth V2 dataset [19]. Firstly, we compare the different state-of-the-art models with our
model tested on the NYU-Depth V2 dataset [19] by the common indicators and the results are shown
in Table 2. From Table 2 we can see that our model shows state-of-the-art in 8, and §;. Additionally,
we also get the second state in §; Rel. Although our accuracy is next, Reynolds et al. [16] built an
FFP to get a fusion of features in each scale to improve the predicting accuracy, which leads to the
model becoming big. In contrast, we only fuse features once and use the ST to transform the fusion
feature to different scales. Furthermore, the output of SU only has 128 channels, which also reduces
the parameters. Moreover, our main purpose of this paper is not to improve the accuracy of depth but
to get clear boundaries in the depth maps. To prove our contribution to predicting clearer boundaries,
we provide the qualitative results of our model, which is shown in Fig. 6, which includes five group
results. From Fig. 6, we can see our model predicts the clearer structure than other models, even better
than the ground truth, like the black boxes in the first group. The ground truth is captured by the
Kinect [32] using an infrared ray, but the glass will reflect the ray which leads to depth loss in the glass.
But the monocular depth estimation can predict the depth of glass.

Table 2: Evaluation results of depth estimation on the NYU-Depth V2 test set. The best results are
boldfaced, and the second-best ones are underlined. The shown values of the evaluated methods are
those reported by the authors in their paper

Method 5 1 81 8 1 rel | rmse |, log10 |
Eigen et al. [3] 0.611 0.887 0.971 0.215 0.907 —
Liu et al. [5] 0.614 0.883 0.971 0.230 0.824 0.095
Cao et al. [0] 0.646 0.892 0.968 0.232 0.819 0.063
Liet al. [7] 0.788 0.958 0.991 0.143 0.635 0.063
Laina et al. [] 0.811 0.953 0.988 0.127 0.573 0.055
Xu et al. [9] 0.811 0.956 0.987 0.121 0.586 0.052
Ma et al. [10] 0.810 0959 0.989 0.143 — —
Leeetal. [11] 0.815 0.963 0.991 0.139 0.572 -
Hao et al. [35] 0.828 0.965 0.992 0.127 0.555 0.053
Fu et al. [26] 0.828 0.965 0.992 0.115 0.509 0.051
Qietal. [36] 0.834 0.960 0.990 0.128 0.569 0.057
Hu et al. [15] 0.866 0.975 0.993 0.115 0.530 0.050
Yang et al. [18] 0.864 0.972 0.993 0.115 0.525 0.050
Chenetal. [17] 0.878 0.977 0.994 0.111 0.514 0.048
Our baseline 0.856 0.972 0.992 0.120 0.541 0.056
Ours 0.869 0.977 0.994 0.115 0.519 0.049

In the second group, our model predicts the clearest structure of the bed with a sharp boundary.
Although Chen et al. [17] and Hu et al. [15] keep the whole structure of the bed, they suffer from serious
boundary smoothness leading to some structures being indistinguishable from the background. The
same situation also appeared in the third group. In the third group, Chen et al. [17] and Hu et al. [15]
cannot predict the toy with a clear boundary that causes the toy and the sofa to be mixed, and the toy
is completely invisible from the depth map. By contrast, our model predicts the toy with an obvious
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boundary, the toy, and the sofa can be distinguished. In the fourth group, we can see that other
methods predict fuzzy table boundaries, especially in the area selected by the black box. Although
Chen et al. [17] and Hu et al. [15] also predicted the overall structure of the chair, the predicted edges
of the backrest were very blurry and there was a serious smoothing phenomenon. Additionally, in
the black box on the wall, we can see a chair placed on the wall from the ground truth. Our method
not only successfully predicts chairs with sharp edges, but also suppresses the boundary smoothing
phenomenon, so the chair and the wall are distinguished. But other algorithms did not deal with the
boundary smoothing phenomenon, resulting in the wall and the chair being indistinguishable. The
same situation also occurs in the fifth group, in which the other algorithms did not predict the clear
boundaries between the cabinet and the table. Because the cabinet is back against the wall, the predicted
depth of the display is very close to the depth of the wall. As a comparison, our model not only predicts
clear boundaries but also is more discriminatory than others in the depth prediction of the display. In
general, our algorithm can preserve the overall structure of the scene better than other algorithms, and
can effectively distinguish objects and background thanks to our depth maps with clear boundaries.
In addition, the clear boundary information also helps us to get more accurate depth predictions when
the background and object depths are similar. To prove that our method estimates more accurate the
depth in the edge, we evaluate the accuracy of depth in the edge region and compare it with others.
The result is shown in Table 3 (edge thredhold = 0.5, boundary gradient threshold that was proposed
in Hu et al. [15]. We will regard the pixel as the boundary if its gradient is bigger than the threshold).

Ours shows the best performance in 6,, 3;.
q - . o
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Figure 6: Qualitative results on the NYU-Depth V2 test set. From left to right: input RGB images,
ground-truth depth maps, results of Eigen et al. [3], Laina et al. [§], Hu et al. [15], Chen et al. [1 7], and
our method, respectively

4.4 Models Test in Other Dataset

To evaluate our model more thoroughly, we test our pre-trained model in the SUN RGB-D [20]
directly. SUN RGB-D [20] is a scene understanding benchmark, which includes three datasets NYU-
Depth V2 [19], B3DO [37], SUN3D [38]. To ensure the effectiveness of the comparison, we choose
Huet al. [15], Chen et al. [17], and Yang et al. [18] as the comparison models. We use the same dataset
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[19] to train the model. The comparison results are shown in Fig. 7. We select five sets of depth maps
predicted from different scenes as a comparison. In the first group, we can see the comparison models
have s. In the second group, from the black boxes, we can see that our model predicts a desktop with a
clear preserved object structure of the scene, and our model’s object boundaries are the clearest (tables
and chairs in the black box). The lack of depth in ground truth is due to specular reflections of the
scene, which is difficult to obtain the depth in the corresponding area. This is the disable in RGB-D
camera and LIDAR. This phenomenon also can be found in the second and third group boundary.
What’s more, we also predict the outline of the faucet but the other algorithms do not get a clear
outline, and they are very hard to distinguish the faucet from the background. In the third group,
we can also see that a clearer object structure is preserved by ours than in others. From the fourth
group, we can see that our model shows an obvious advantage over other algorithms in structural
preservation, it retains the complete object structure while also getting sharp boundaries. This makes
the object can be perfectly distinguished from the background. In other algorithms, it is sometimes
difficult to distinguish the object from the background due to the blurry structure and smooth edges.
Moreover, the object is easily mistaken as the background when the edges are blurry.

Table 3: Evaluation results of edge depth estimation on the NYU-Depth V2 test set. The best results
are boldfaced, and the second-best ones are underlined

Method 8 1 8 1 8 1 rmse |,
Huetal. [15] 0.801 0.953 0.986 0.712
Yang et al. [18] 0.795 0.948 0.985 0.725
Chen et al. [17] 0.775 0.940 0.984 0.785
Ours 0.798 0.954 0.988 0.715

As can be seen in the last group, our model predicts sharper table legs compared to other models.
This experiment is used to prove that our model can predict the depth map with a clear boundary.

Furthermore, it will have a depth value similar to the background, resulting in huge errors. To
explore the performance of our model, we test our pre-trained model on iBims-1 dataset [21] and
compare it with others. The result is shown in Table 4. We can see that our model shows the state-
of-art in §,, 8,, &, rel, and log 10. The result shows that the model proposed in this paper has great
generalization.

We show the visual result in Fig. 8§ which includes four comparison groups. In the first group, we
can see that our methods save the clearest outline of the lamp than others. Ours maintain the structure
of windows that others without in the second group. In the third group, ours saves more detail in the
plant and the boundaries are clearer than other methods. In the last group, our predicted saves the
structure of windows and shelves that others cannot keep. As mentioned above, our methods show
excellent performance in saving the detail of the object and predicting clearer boundaries.
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Figure 7: Qualitative results of the test on the SUN RGB-D. From left to right: input RGB images,
ground-truth depth maps, results of Hu et al. [15], Chen et al. [17], Yang et al. [18], and our

method, respectively

Table 4: Evaluation results of depth estimation on the iBims-1 dataset [21]. The best results are

boldfaced, and the second-best ones are underlined

Method 8 1 8 1 8 1 rel |, rmse | log10 |
Eigen et al. [3] 0.36 0.65 0.84 0.32 1.55 0.17
Liu et al. [5] 0.48 0.78 0.91 0.30 1.26 0.13
Lietal. [7] 0.58 0.85 0.94 0.22 1.09 0.11
Laina et al. [8] 0.50 0.78 0.91 0.26 1.20 0.13
Dharmasiri et al. [39] 0.22 0.55 0.78 0.35 1.61 0.19
Liu et al. [40] 0.41 0.70 0.86 0.29 1.45 0.17
Yin et al. [41] 0.54 0.84 0.93 0.24 1.06 0.11
Fu et al. [26] 0.55 0.81 0.92 0.24 1.13 0.12
Huet al. [15] 0.52 0.84 0.95 0.23 1.13 0.12
Yang et al. [18] 0.53 0.83 0.93 0.22 1.10 0.11
Chen et al. [17] 056 0.86 0.94 0.22 1.07 0.11
Ours 0.57 0.86 0.95 0.21 1.07 0.10
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Input

Figure 8: Qualitative results of the test on the iBims-1 dataset. From left to right: input RGB images,
ground-truth depth maps, results of Hu et al. [15], Chen et al. [17], Yang et al. [18], and our method,
respectively

4.5 Boundary Accuracy Comparisons

To prove that our model can predict more accurate boundaries than others more effectively, we
compare them to specific evaluation indicators. We follow Hu et al. [15] using the Precision, Recall,
and F1 scores to evaluate the method performance, the results show in Table 5. There is the boundary
gradient threshold that was proposed in Hu et al. [15]. We will regard the pixel as the boundary if its
gradient is bigger than the threshold. We can see that our model has achieved 3 SOTA and 5 sub-SOTA
in 3 indicators with 3 different thresholds. The results prove that our model performs SOTA in edge
accuracy.

Table 5: Accuracy of recovered edge pixels in-depth maps under different thresholds based on
NYU-D V2 test set. The best results are boldfaced, and the second-best ones are underlined (Thres is
the boundary gradient threshold that was proposed in Hu et al. [15])

Thres Method Prec Recall F1
Laina et al. [8] 0.489 0.435 0.454
Xu et al. [24] 0.516 0.400 0.436
Fu et al. [26] 0.320 0.583 0.402

0.25 Hu et al. [15] 0.644 0.508 0.562
Yang et al. [18] 0.652 0.518 0.570
Chen et al. [17] 0.645 0.520 0.570
Our 0.651 0.524 0.574
Laina et al. [8] 0.536 0.422 0.463
Xu et al. [24] 0.600 0.366 0.439
Fu et al. [26] 0.316 0.473 0.412

0.5 Huetal. [15] 0.668 0.505 0.568
Yang et al. [18] 0.685 0.510 0.576

(Continued)
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Table 5 (continued)

Thres Method Prec Recall F1
Chenetal. [17] 0.663 0.523 0.578
Our 0.680 0.520 0.582
Laina et al. [§] 0.670 0.479 0.548
Xu et al. [24] 0.794 0.407 0.525
Fu et al. [26] 0.483 0.512 0.485

1 Huet al. [15] 0.759 0.540 0.623
Yang et al. [18] 0.774 0.544 0.631
Chenet al. [17] 0.749 0.554 0.630
Our 0.770 0.553 0.635

4.6 Generating Point Cloud from Depth Maps

As mentioned in the pre-chapters, the sharp boundary can suppress “flying pixels” effectively in
the point clouds projected by depth maps. To prove this conclusion, we projected the predicted depth
maps as 3D point clouds and rendered them in novel views using OpenCV. The results are presented
in Fig. 9. From the first group, other algorithms have serious pixel drift in the head of the man in the
red block. Our algorithm suppresses this phenomenon well and the point cloud in the head of man is
continued. The same situation also appeared in the second set. The projection effect of Hu et al. [15] is
relatively good, but it still appears seriously distortions at the upper boundary of the screen. Compared
with others, our model also has distortions at the bottom edge of the screen, but the overall structure
is better than others. In the third group, we can see that all methods have better preserved the overall
structure of the scene. However, by changing the perspective, we found that the TV screen predicted by
other methods has serious “flying pixels” and the screen is distorted which surface is curving. Although
ours suffers a slight of flying pixels at the top of the screen, the overall screen is not distorted. Through
point clouds comparison experiments, we proved that our algorithm can suppress the phenomenon of
“flying pixels” effectively, and also proved the opinion that accurate edge information can help to
improve the quality of the point clouds project from depth maps.

4.7 The Comparison of Model’s Params

To prove that the ST can show a great performance in reducing the number of params, we make
the comparison between ours and others and the comparison results can be seen in Fig. 10. From
Fig. 10, we find that our model’s parameters are slightly more than Hu et al. [15]. That is because [15]
just fused the multi-scale feature one time on a single scale and did not change the fusion feature to
different scales. But our model not only fuses the all-scale feature in every training process but also
transforms the fusion feature into 5 different scales. What’s more, Compared with Chen et al. [17] and
Yang et al. [18] who built the FFP, our model only contains two-thirds of the parameters of these FFP
models.
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Figure 9: The result of comparing the projected point cloud from ours and other methods. From
left to right: input RGB images, ground-truth depth maps, results of Hu et al. [15], Chen et al. [17],
Yang et al. [18], and our method, respectively
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Figure 10: Compare the number of model’s params. From left to right: results of Hu et al. [15],
Chen et al. [17], Yang et al. [18], and our method, respectively

4.8 Ablation Studies

To explore our model in detail, we designed corresponding ablation experiments for the proposed
method. The results are shown in Tables 6 and 7 based on thresholds = 0.5. The first group experiment
is mainly to show the performance of the baseline as the benchmark for subsequent comparisons. For
the baseline, we use SeNetl154 [30] as the backbone and use the composite loss function proposed
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by Hu et al. [15] to supervise the model training. From the results of the second group, it can be
known that directly adding BAD to supervision model training can improve the prediction accuracy
of the model effectively. Comparing the third group and the baseline, we can see that the SU+ST
can show a great enhancement in the model performance. To confirm the effectiveness of ST, we use
bilinear interpolation to sample the output of the SU to different scales directly in the fourth group.
Comparing the fourth group with the fifth group we can find that the fifth group which uses the ST
shows more accurate performance than the fourth group which uses bilinear interpolation directly. The
comparison between the second group and the fourth group proves that SU can effectively improve
the functioning of the model. In particular, there is a major improvement in edge accuracy. Comparing
the third group with the fifth group we can see that the BAD shows a great promotion of the model’s
performance.

Table 6: The depth accuracy comparison. With our module or without. The best results are boldfaced,
and the second-best ones are underlined

Method 5 1 8 1 5 1 rel | rmse | log10 |
Baseline 0.856 0.972 0.993 0.120 0.541 0.051
Baseline + BAD 0.870 0.974 0.993 0.115 0.525 0.049
Baseline 4+ SU + ST 0.863 0.975 0.993 0.119 0.524 0.050
Baseline + SU + bilinear 0.867 0.974 0.994 0.116 0.524 0.049

interpolation + BAD
Baseline + SU + ST + BAD 0.869 0.977 0.994 0.115 0.519 0.049

Table 7: The edge accuracy comparison, with our module or without. The best results are boldfaced,
and the second-best ones are underlined

Method Prec Recall Fl1

Baseline 0.670 0.503 0.569
Baseline + BAD 0.672 0.508 0.571
Baseline 4+ SU + ST 0.671 0.515 0.575
Baseline + SU + bilinear interpolation + BAD 0.677 0.518  0.580
Baseline + SU + ST + BAD 0.680 0.520 0.582

5 Conclusion

To deal with the blurry boundary caused by low-level information loss in the process of feature
extraction and boundary smoothness in the boundary area during the training process, a Scene
Understanding module, a Scale Transform module, and a Boundary Aware Depth loss function were
proposed. In the Scene understanding module and Scale Transform module, we focus on taking care
of information loss. The Scene understanding module can learn the global information about the
scene and the Scale Transform module will transform the global scene information to multi-scale for
building a feature pyramid with a few additional parameters. The Boundary Aware Depth loss was
designed to enforce the model to focus on the depth in the boundary field during the model training.
Extensive experiments show our modules and the novel loss functions ensure our model can predict
depth maps with clearer object boundaries than others. The most important thing is the object will be
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predicted with the depth value the same as the background without a clear boundary. It means that the
boundary information can influence the depth prediction. But some problems still exist, for example,
although our model can recover the boundary very well, the point clouds are not always nice enough.
Such as some plants are not smooth. The other problem is the complex time of our model is high. In
future work, we will concentrate on how to improve the accuracy of depth prediction and reduce the
time complexity. Also, we will further explore the influence of object boundaries in depth prediction.
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