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ABSTRACT

Emergency decision-making problems usually involve many experts with different professional backgrounds and
concerns, leading to non-cooperative behaviors during the consensus-reaching process. Many studies on non-
cooperative behavior management assumed that the maximum degree of cooperation of experts is to totally accept
the revisions suggested by the moderator, which restricted individuals with altruistic behaviors to make more
contributions in the agreement-reaching process. In addition, when grouping a large group into subgroups by
clustering methods, existing studies were based on the similarity of evaluation values or trust relationships among
experts separately but did not consider them simultaneously. In this study, we introduce a clustering method
considering the similarity of evaluation values and the trust relations of experts and then develop a consensus model
taking into account the altruistic behaviors of experts. First, we cluster experts into subgroups by a constrained K-
means clustering algorithm according to the opinion similarity and trust relationship of experts. Then, we calculate
the weights of experts and clusters based on the centrality degrees of experts. Next, to enhance the quality of
consensus reaching, we identify three kinds of non-cooperative behaviors and propose corresponding feedback
mechanisms relying on the altruistic behaviors of experts. A numerical example is given to show the effectiveness
and practicality of the proposed method in emergency decision-making. The study finds that integrating altruistic
behavior analysis in group decision-making can safeguard the interests of experts and ensure the integrity of
decision-making information.
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Large-scale group decision making; altruistic behavior; non-cooperative behaviors; consensus reaching; emergency
alternative selection

1 Introduction

Over the past decades, emergencies have frequently occurred in China, causing irreversible
damage. For example, the massive explosion in Tianjin, China, resulted in the death of 154 people1;
the liquefied gas tanker explosion in Jinyu Petrochemical, resulted in the death of 10 people2.
1https://new.qq.com/omn/20210620/20210620A06SFS00.html.
2https://www.sohu.com/a/211253384_770379.
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When such an emergency occurs, a high-quality emergency decision-making process can effectively
reduce potentially adverse impacts [1]. Usually, emergency decision-making problems have three
typical characteristics: time limitation, incomplete information, and decision pressure resulting from
potentially serious effects [2,3]. Thus, solving emergency decision-making problems efficiently is
definitely a great challenge for both the government and society. Because of the complexity and
uncertainty of emergency events, it is necessary to invite experts from different fields and specialties to
evaluate alternatives. When the number of experts exceeds 11, it can be regarded as a large-scale group
decision-making (LSGDM) problem [4].

Compared with conventional group decision-making problems, LSGDM problems are more
complicated, facing many challenges not only in the scale of experts but also in experts’ relationships
[5]. To cope with the scale of an LSGDM problem, the dimensionality reduction which divides a large-
scale expert team into several subgroups is deemed essential. Clustering analysis is known as one of the
most useful dimensionality reduction methods. In this regard, traditional clustering algorithms such
as the K-means clustering algorithm [6], fuzzy equivalence relation (FER) [7] and grey clustering [8]
have been widely used. However, these methods cluster experts into subgroups based on the opinion
similarity of experts but fail to consider the relationships among experts. With the advancement of
technology and society, people can communicate and transmit information conveniently, and experts
involved in decision-making problems are no more independent individuals. Social network analysis
(SNA) has become a common technique for LSGDM problems. To this point, Tian et al. [9] extended
the community detection method proposed by Newman et al. [10] to divide large-scale experts in a
social network into different communities. Using the trust values between experts, Xu et al. [4] applied
the Louvain method [11] based on the idea of modularity to classify experts into different communities
in a social network. The above SNA models clustered experts according to the relationships between
experts. However, the similarity of evaluation values of alternatives and the trust values between experts
both play important roles in grouping experts. Du et al. [12] proposed a trust-similarity analysis (TSA)-
based clustering method to manage the clustering operation in LSGDM events. Yu et al. [13] developed
a trust-constrained K-means clustering algorithm in a social network large-scale decision-making
model. However, in their studies, they only considered a single constraint to overcome the defect of
grouping low-trust experts into the same cluster caused by traditional clustering algorithms based on
preference similarity, but failed to overcome other problems, for example, high-trust experts may be
assigned to different clusters. In this sense, this paper proposes a pairwise trust constrained K-means
(PTC-Kmeans) clustering algorithm to cluster experts which considers the similarity of evaluation
information of alternatives and the trust values between experts, simultaneously.

Besides, due to different backgrounds and interests, experts in a group may show non-cooperative
behaviors in the decision-making process. How to effectively manage the non-cooperative behaviors of
experts is another challenge in LSGDM problems [5]. To date, many studies [14–18] have considered
the non-cooperative behaviors of experts based on the implicit assumption that the full degree of
cooperation of experts is to totally accept the revisions proposed by the moderator. However, in
actual situations, due to deep trust or close relationships, some individuals may incorporate the well-
being of others into their own decision even at their own expense. This behavior is named altruistic
behavior [19]. If an expert has a high degree of trust in another person, he/she may contribute more
than a recommendation to protect that person’s interest. In other words, the existence of altruistic
behavior may make up for the loss caused by the non-cooperative behaviors of experts [20]. Existing
literature on non-cooperative behavior management assumes that no one would make more change
than the suggested value, which essentially restricts experts with altruistic behaviors from making
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more contributions to the group consensus. Tang et al. [20] proposed a multi-attribute group decision-
making (MAGDM) model which utilized the altruistic behaviors of experts to compensate for the
adverse effects caused by the non-cooperative behaviors of other experts. However, they only focused
on one type of non-cooperative behaviors in their model and did not take the whole problem into
account, leading to a lack of integrity. How to incorporate altruistic behavior analysis into the process
of consensus reaching and compensate for different types of non-cooperative behaviors are challenges
for LSGDM.

Bear all the above analysis in mind, this paper introduces a clustering method considering
the similarity of attribute values and the trust relations of experts and then develops a consensus
model taking into account the altruistic behaviors of experts. A PTC-Kmeans clustering algorithm
is presented to cluster experts into subgroups. After reducing the group size to small communities,
we then identify three types of non-cooperative behaviors of experts: 1) experts refuse to adjust
their preferences or adjust them slightly, or even change their preferences in an opposite direction;
2) hesitant experts randomly provide their preferences to avoid revealing their true intentions; 3)
expert deliberately decrease/increase the evaluation value of alternatives. We propose three kinds of
feedback mechanisms with respect to three types of non-cooperative behaviors, which allow experts
to have altruistic behaviors to compensate for the loss caused by non-cooperative behaviors. The main
contributions can be summarized as follows:

(1) This study proposes a PTC-Kmeans clustering algorithm to cluster experts, which considers
the similarity of evaluation information given by experts and the trust values between experts,
simultaneously.

(2) This study fully considers three kinds of non-cooperative behaviors of experts and distinguishes
non-cooperative behaviors based on the differences between expert preferences and cluster
preferences.

(3) This paper proposes three kinds of feedback mechanisms with respect to the non-cooperative
behaviors of experts, which allows experts to have altruistic behaviors to compensate for the
loss caused by non-cooperative behaviors and applies weight penalty mechanisms to decrease
the weights of experts with non-cooperative behaviors and increases the consensus level.

The rest of this paper is organized as follows: Section 2 performs a literature review about emer-
gency decision-making and LSGDM methods. In Section 3, we introduce the PTC-Kmeans clustering
algorithm to classify a large group of experts into subgroups. Section 4 discusses the management of
non-cooperative and altruistic behaviors. We utilize an application example to illustrate the usefulness
of the proposed model in Section 5. Concluding remarks are given in Section 6. To better understand
this study, the mathematical symbols used in this study are presented in Table S1 in Appendix.

2 Literature Review

In this part, we present the literature review of LSGDM problems. In Section 2.1, we give a
snapshot of emergency LSGDM problems. In Section 2.2, we present a short review of clustering
algorithms. The review of the advance of SNA for LSGDM is shown in Section 2.3.

2.1 A Snapshot of Emergency LSGDM Problems
When emergencies occur, we often need to make effective decisions in a short period of time.

Because of the complexity of emergency problems, time limitations and potential risks, it is difficult
for a single expert to solve the emerging problems. Related studies have shown that in emergency
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decision-making, the decision made by concentrating the wisdom of a group is more reliable than that
made by an individual [21,22]. Thus, it is necessary to assemble experts with different backgrounds,
experiences and knowledge to make a decision with a high level of consensus. Li et al. [23] proposed
an LSGDM model, which adopted fuzzy cluster analysis to integrate heterogeneous information of
experts to select the best rescue plan in an emergency situation. Cao et al. [21] proposed a novel
opinion formation model that considered psychological factors and relevant opinions in the emergency
decision-making process. Liu et al. [24] proposed a method for GDM that introduced an expected
multiplicative consistency of incomplete probabilistic linguistic preference relations to avoid the loss
of evaluation information of experts and applied the method to address a forest fire rescue problem.
Xu et al. [4] proposed a consensus model that considered trust relations and preference risks to manage
non-cooperative behaviors in large-group emergency decision-making.

From the above analysis, we can see that current studies have considered different ways to deal
with emergency decision-making problems, but seldom considered the non-cooperative behaviors of
experts in emergency decision-making problems, and the existing models, which are used to manage
non-cooperative behaviors of experts, do not consider the altruistic behaviors of experts. In this study,
we shall introduce the altruistic behavior to compensate for the loss caused by the non-cooperative
behaviors of experts.

2.2 A Short Review on Clustering Algorithms to Reduce the Dimension of a Large-Scale Group
Clustering analysis has been commonly used to reduce the dimension of many experts in LSGDM

problems. A clustering process can divide a large group of experts into several subgroups so that the
data in the same cluster is more similar than that from other clusters [25].

As an unsupervised machine learning algorithm, the K-means clustering algorithm is one of the
most widely used clustering algorithms. It works by classifying all data objects into k clusters based
on k initial clustering centroids and then iteratively refining them. Wu et al. [26] adopted the K-means
clustering algorithm to classify experts with fuzzy preference relations based on the Euclidean distance.
Liu et al. [27] introduced the probability K-means clustering algorithm to overcome the weakness that
the K-means clustering algorithm is sensitive to the initially selected centroid points, and detected sub-
groups from the preferences of all experts. In the heterogeneous LSGDM environment, Tang et al. [28]
proposed the ordinal K-means clustering algorithm to classify experts into several subgroups. From
the above studies, we can see that the traditional K-means clustering algorithm classifies experts mainly
based on the similarity among data objects, but ignores the background knowledge from real decision
scenarios.

Some experiments have proved that the prior knowledge of objects is helpful for obtaining good
clustering results [29]. In this regard, Wagstaff et al. [30] proposed a semi-supervised clustering algo-
rithm, the constrained K-means clustering algorithm, which can integrate the background knowledge
into the framework of the K-means clustering algorithm. Compared with the traditional K-means
clustering algorithm, the constrained K-means clustering algorithm considers two types of constraints,
namely, must-link constraints and cannot-link constraints. The must-link constraints specify that
two instances must be assigned into the same cluster while the cannot-link constraints indicate that
two instances must be in different clusters. Considering the importance of the similarity of experts’
evaluation information and the trust values among experts in a clustering process, in this study, we
propose the PTC-Kmeans clustering algorithm to cluster the experts into subgroups, which utilizes
the trust relations of experts to form must-link and cannot-link constraints.
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2.3 Advances of SNA for LSGDM
With the advancement of technology and information, GDM is often conducted within the

context of a social network, in which individuals have trust relationships with each other. A social
network is composed of a set of nodes and a set of edges, where the nodes represent experts in
society and the edges represent the trust relationships among experts. In this study, the nodes are
set as E = {e1, e2, · · · , em} and the edge between eh and el is set as l (eh, el). A fuzzy social-matrix [8]
A = (ahl)m×m on E is a relation with a membership function us:E × E → [0, 1], and us (eh, el) = ahl,
where ahl ∈ [0, 1] denotes the trust degree that expert eh assigns to expert el.

In real LSGDM problems, it is probable that some experts are unable to accurately provide the
trust values for other experts. Thus, some studies [31] classify the trust relationships into three types
in SNA: direct, indirect and irrelevant trust. The types of trust relationships are shown in Fig. 1. In
this figure, ‘direct trust’ means expert eh has a direct trust relationship toward expert el; ‘indirect trust’
means although there is no direct trust relationship between expert eh and el, expert eh can still establish
an indirect trust relationship toward expert el through other experts; ‘irrelevant trust’ means that
there is no direct or indirect trust relationship between expert eh and el. The existence of indirect and
irrelevant trust may cause the incompletion of the sociometric. In this study, indirect trust is calculated
with reference to Eqs. (1)–(6) in the article written by Liao et al. [32]. Set the trust degree to 0.01 if
there is no direct or indirect relationship between two experts. The value of 0.01 indicates an irrelevant
relationship between the two experts.

eh

(1) Direct trust (2) Indirect trust
eh el

(3) Irrelevant trust
eh

el

el

Figure 1: The types of relationship

As a new type of decision-making problem, group decision-making with SNA integrates the
trust relations of experts in the process of clustering, consensus reaching and alternative selection
[12]. Due to the increasing number of experts in LSGDM, it is difficult to adjust the inconsistent
elements and reach a consensus. Experts who come from different fields and represent different
interests are likely to display non-cooperative behaviors. The existence of non-cooperative behaviors
of experts greatly affects the efficiency of decision-making. Thus, some studies proposed methods to
manage non-cooperative behaviors of experts based on the social network. Zhang et al. [18] defined
three types of non-cooperative behaviors: 1) dishonest behavior; 2) disobedient behavior; 3) divergent
behavior, and proposed an SNA-based consensus framework to manage non-cooperative behaviors.
Gao et al. [33] developed a consensus reaching algorithm with non-cooperative behavior management
for personalized individual semantics-based social network GDM problem. Li et al. [34] introduced
a novel framework based on the WeChat-like interaction social network to manage non-cooperative
behaviors of experts. Xu et al. [4] proposed a consensus model based on interval-valued intuitionistic
fuzzy numbers, which considered the trust relations of experts in a social network and the preference
risks of experts to manage non-cooperative behaviors of experts.
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From the above analysis we can see that: 1) the trust relationships of experts in a social network are
usually used in the clustering process to cluster experts but seldom used in the CRP, 2) few studies refine
the non-cooperative behaviors into different types, 3) most studies analyze non-cooperative behaviors
of experts based on the assumption that the greatest degree of cooperation of experts is to totally accept
the revisions proposed by the moderator. In this study, to improve the consensus level, we introduce
the altruistic behaviors which allow experts to make more contributions than the recommendation
proposed by the moderator to compensate for the loss caused by the experts’ different types of non-
cooperative behaviors. What’s more, the trust relationship of experts in a social network serves as a
condition to judge whether the experts have altruistic behaviors in the CRP.

3 Grouping Experts by a Semi-Supervised Clustering Processing

To solve an LSGDM problem, it is vital to divide the large group of experts into small com-
munities, so as to simplify the decision process. As justified in the introduction, it is essential to
consider the similarity of evaluation information of alternatives given by different experts and the trust
values between experts simultaneously when grouping experts. Thus, motivated by the constrained K-
means clustering algorithm [3], we introduce the PTC-Kmeans clustering algorithm to cluster experts
in Section 3.1. Then, the method to determine the weights of experts and clusters is presented in
Section 3.2.

3.1 Expert Clustering by the PTC-Kmeans Clustering Algorithm
In typical LSGDM problems, the degree of consistency of experts’ preferences is usually regarded

as a clustering criterion [35,36]. Such a type of clustering method performs clustering based on
group opinions but ignores the trust relationships between experts. In this study, we extend the trust-
constrained K-means clustering algorithm [13] and utilize the trust values of experts as constraints
to cluster experts. Assume that a set of experts, E = {e1, e2, · · · , em}, (m ≥ 11), are invited to conduct
evaluation information on a set of emergency alternatives, X = {x1, x2, x3 · · · , xn}, (n ≥ 2).

3.1.1 The Constraints

The PTC-Kmeans clustering algorithm is mainly a constraint-based K-means clustering algo-
rithm. So, we firstly consider two types of constraints, namely must-link constraint and cannot-link
constraint.

In this study, we set constraints based on the trust relationship between experts. Because the trust
value provided by an expert is directional, which means the trust value between two experts may be
unequal. In other words, expert eh has a high trust value to expert el, but expert el may trust expert eh

to a low degree. Therefore, we divert the directed trust degree into undirected trust degree between any
two experts.

Let λ = (λ1, λ2, · · · , λm)
T be a weight vector such that λi ∈ [0, 1] and

m∑
i=1

λi = 1. The average trust

degree between expert eh and expert el is calculated as:

mahl = WA (ahl, alh) = λh

λl + λh

ahl + λl

λl + λh

alh (1)

where 0 ≤ mahl ≤ 1, mahl = malh, and min {ahl, alh} ≤ mahl ≤ max {ahl, alh}.
To simplify, we denote the aggregated social-matrix as MA = (mahl)m×m.
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The trust constraints formulate that a pair of experts with a low average trust value cannot be
allocated in the same cluster and a pair of experts with a high average trust value must be allocated in
the same cluster.

Let the threshold of trust constraints be Con1, Con2, where Con1, Con2 ∈ [0, 1]. If the average trust
value mahl between expert eh and expert el is lower than Con1, it means that they are cannot-linked. If
the average trust value mahl between expert eh and expert el is higher than Con2, it means that they are
must-linked.

Let � = (�hl)m×m be a cannot-linked constraint matrix, such that

�hl =
{

×, mahl < Con1

−, otherwise
, ∀h, l = 1, 2, · · · m; h �= l (2)

If �hl = ×, it means that expert eh and expert el shouldn’t be classified into a same cluster.

Let � = (�hl)m×m be a must-linked constraint matrix, such that

�hl =
{√

, mahl > Con2

−, otherwise
, ∀h, l = 1, 2, · · · m; h �= l (3)

If �hl = √
, expert eh and expert el should be classified into a same cluster. In the cluster processing,

their preferences will be averaged to a new individual. For example, the preferences of eh, el are:[
0.5 0.8
0.2 0.5

]
,
[

0.5 0.6
0.4 0.5

]
, and �hl = √

between the two experts. In clustering process, the two experts

will be seen as an integrated one whose preference is
[

0.5 0.7
0.3 0.5

]
.

3.1.2 The PTC-Kmeans Clustering Algorithm

Once the constraints are defined, experts can be clustered into subgroups according to the
similarity degrees of experts’ evaluation information based on the constraints.

Definition 1 [13]: Measure the similarity degree of evaluation information between expert eh and
expert el. Let Peh = (peh

ij )n×n and Pel = (pel
ij )n×n be two FPRs of expert eh and expert el. Here, we use the

Euclidean distance to measure the similarity degree between two FPRs. Then, the similarity degree
sdhl between the two experts can be calculated as

sdhl = 1 − dis (Peh , Pel ) = 1 −
(

2
n × (n − 1)

n∑
i=1

n∑
j=i+1

∣∣peh
ij − pel

ij

∣∣2

)1/2

, for h, l = 1, 2, · · ·, m (4)

where sdhl = sdlh, 0 ≤ sdhl ≤ 1. Then, the similarity matrix SD = (sdhl)m×m involving all experts can be
established.

Determine the value of k according to the management experience. Denote the clustering centroid
of each cluster as Qk, Qk = (

qk
ij

)
n×n

. For each cluster Ck, its centroid can be calculated by averaging the
preference values of experts that has been assigned to it, such that

qk
ij = 1

#Ck

∑
eh∈Ck

peh
ij , ∀i, j = 1, 2 · · · , n (5)

where #Ck means the number of experts in cluster Ck.

The main steps of the PTC-Kmeans clustering algorithm are presented in Algorithm 1.
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Algorithm 1: The PTC-Kmeans clustering algorithm
Input: The number of clusters k, FPRs, the fuzzy social-matrix A, the cannot-link matrix � and the
must-link matrix �.
Output: The clusters C1, C2, · · · , Ck.
Step 1: Initialize k clusters C1,z, C2,z, · · · , Ck,z where z is the number of clustering iterations and set the

initialized value as 0, z = 0. Then, we determine the clusters C1,0, C2,0, · · · , Ck,0 with the
condition that �hl = − between any two experts in cluster Ck,0, and if � = √
between any two experts, we regard the two as an integrated one.

Step 2: Calculate the similarity degree between expert eh and cluster center Qk according to Eq. (4),
and assign expert eh to the closest cluster Ck,z satisfying that the constraint �(eh ,Ck,z) = 0.

Step 3: Update the cluster center Qk of cluster Ck,z. Iterate Step 2.
Step 4: Stop when Ck,z = Ck,z+1.

3.2 Weight Determination of Experts and Clusters
After the large-scale experts are divided into several clusters, the weights of experts and clusters

should be determined. Centrality is an essential indicator to judge the influence, status and importance
of an expert in a social network. We gain the weights of experts using the concept of centrality. The
degree of centrality of eh ∈ E can be computed by averaging the trust degrees obtained by eh as below:

cen (eh) = 1
m − 1

m∑
l=1,l �=h

alh (6)

The weight λh of expert eh is defined as:

λh = cen (eh)
m∑

t=1

cen (et)

(7)

Clearly, 0 < λh < 1, and
m∑

h=1

λh = 1.

The weight of a cluster is calculated based on the sum of the weights of the experts in the cluster.
The weight μk of cluster Ck can be calculated as:

μk =
∑
ei∈Ck

λi (8)

4 Feedback Mechanism Based on Non-Cooperative and Altruistic Behaviors

Section 4.1 presents the process of measuring the consensus degree of clusters and the whole
group. In Section 4.2, we discuss the methods to identify three types of non-cooperative behaviors
of experts, and altruistic behavior is introduced to reduce the degree of uncooperativeness of experts
in Section 4.3. Then, a feedback mechanism is shown in Section 4.4. A punishment mechanism is used
to decrease the influence of non-cooperative behaviors of experts in Section 4.5. Finally, we present
the algorithm of the proposed LSGDM model in Section 4.6.
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4.1 Consensus Measurement
Let PCk = (pCk

ij )n×n be an FPR of the cluster Ck, which can be obtained by aggregating the FPRs
of the experts in the cluster Ck,

pCk
ij = 1

#Ck

∑
eh∈Ck

peh
ij (9)

where #Ck denotes the number of the experts in the cluster Ck.

Similarly, let PC = (
pC

ij

)
n×n

be the FPR of the global network, which can be obtained by aggregating
the FPRs of the clusters,

pC
ij =

k∑
t=1

μtpCt
ij (10)

The distance between eh and Ck is calculated as:

dis
(
Peh , PCk

) =
(

2
n × (n − 1)

n∑
i=1

n∑
j=i+1

∣∣∣peh
ij − pCk

ij

∣∣∣2
)1/2

, eh ∈ Ck (11)

Then, the degree of consensus of the expert eh can be computed as:

cd(eh) = 1 − dis(Peh , PCk) (12)

The degree of consensus of the cluster Ck is:

cd (Ck) = 1
#Ck

∑
eh∈Ck

cd (eh) (13)

The degree of consensus of the whole group cg (C) has the same calculation process as the degree
of consensus of the cluster, which is shown as:

cg (C) = 1
k

∑
Ck∈C

(
1 − dis

(
PC, PCk

))
(14)

A threshold θ for cd(Ck), and a threshold δ for cg (C) should be set in advance. If cd(Ck) ≥
θ and cg (C) ≥ δ, the global group reaches the acceptable consensus level, then we can select the
optimal alternative of the LSGDM problem. Otherwise, a feedback mechanism is applied to improve
the consensus level. Here, we should note that a low consensus threshold may lead to controversial
decisions while a high consensus threshold may result in the increasing of decision-making cost and
the waste of time. The value of the threshold mainly depends on the specific problems. We should
set a large value of the threshold such as 0.9 when a decision-making problem is critical; due to the
time limitation, we should set a lower consensus threshold such as 0.8 in emergency decision-making
problems [9]. So, in this study, we set θ , δ as 0.8.

4.2 Non-Cooperative Behaviors Identification
4.2.1 Non-Cooperative Behavior Caused by Expert Who Refuse to Follow the Revision Proposals

In the CRP, in order to achieve the ideal consensus level among experts, experts need to modify
their individual preferences based on the suggestions received. However, some experts may refuse to
adjust their preference information or adjust them slightly, or even change their preference information
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in the opposite direction. In this study, this type of behavior can be defined as the first kind of non-
cooperative behavior (NCB-I).

Let P(eh ,z) =
(

p(eh ,z)
ij

)
n×n

be an FPR actually provided by the expert eh in consensus round z. Let

SP(eh ,z) =
(

sp(eh ,z)
ij

)
n×n

be the adjusted FPR of expert eh recommended by the moderator in round z,

sp(eh ,z)
ij represents the adjusted FPR of expert eh at position (i, j) recommended by the moderator in

round z, sp(eh ,z)
ij ∈

(
min

(
p(eh ,z−1)

ij , p(C,z−1)

ij

)
, max

(
p(eh ,z−1)

ij , p(C,z−1)

ij

)]
. Let the size step of modification be

0.01 and determine sp(eh ,z)
ij according to the principle that the deviation between expert suggested value

and actual value �
(eh,z)
ij ≥

∣∣∣∣p(C,z)
ij − p

(eh ,z−1)

ij

∣∣∣∣
2

.

�
(eh ,z)
ij =

∣∣∣sp(eh ,z)
ij − p(eh ,z−1)

ij

∣∣∣ , ∀i, j ∈ 1, 2, . . . , n (15)

SAE(eh ,z) =
n∑

i=1

n∑
j=i+1

�
(eh ,z)
ij (16)

where �
(eh ,z)
ij denotes the adjusted value of expert eh at position (i, j) recommended by the moderator,

and SAE(eh ,z) represents the sum of the adjusted values of expert eh recommended by the moderator.

�
(eh ,z)
ij =

{∣∣∣sp(eh,z)
ij − p(eh ,z)

ij

∣∣∣ , if �
(eh ,z)
ij ≥

∣∣∣p(eh ,z)
ij − p(eh ,z−1)

ij

∣∣∣
0, otherwise

(17)

DAR(eh ,z) =
n∑

i=1

n∑
j=i

�
eh ,z
ij (18)

where �
(h,z)
ij represents the deviation between the actually adjusted evaluation value in position (i, j)

made by expert eh and the adjusted evaluation value recommended by the moderator, and DAR(eh ,z)

denotes the sum of deviations between the actually adjusted evaluation value made by expert eh and
the adjusted evaluation value recommended by the moderator in round z.

The non-cooperative index ONIz
h of expert eh in round z can be defined as:

ONIz
h = 1 − DAR(eh ,z)

SAE(eh ,z)
(19)

Clearly, ONIz
h ∈ [−1, 1].

(1) −1 ≤ ONIz
h < 0 means expert eh adjusts his/her preference information in an opposite

direction.

(2) ONIz
h = 0 means that expert eh makes no modification in round z.

(3) 0 < ONIz
h < 1 means that expert eh changes his/her preference information by a small fraction.

(4) ONIz
h = 1 means that expert eh totally accepts all the suggestions.

Let S1 (S1 ∈ (0, 1]) be a threshold, which is utilized to judge whether an expert features the NCB-
I. If ONIz

h ≤ S1, expert eh in round z has non-cooperative behavior. Because ONIz
h ∈ [0, 1] means the

expert has accepted or partially accepted the revision opinion of the moderator, we use the central
value as the threshold and set S1 = 0.5.
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4.2.2 Non-Cooperative Behavior Caused by Experts Deliberately Concealing Their True Intentions

In the CRP, some hesitant experts may randomly provide their preferences to avoid revealing
their true intentions, which can make experts’ adjusted opinions further away from the opinion of the
subgroup. In this study, this type of behavior can be defined as the second kind of non-cooperative
behavior (NCB-II).

Let P(Ck ,z) =
(

p(Ck ,z)
ij

)
n×n

be the collective decision matrix of cluster Ck in round z, P(eh ,z) =
(

p(eh ,z)
ij

)
n×n

be the individual decision matrix of expert eh in round z. Then, the distance dis
(

P(eh ,z−1), P(Ck ,z−1)
)

of

FPRs between expert eh and cluster Ck in round z − 1 and the distance dis
(

P(eh ,z), P(Ck ,z)
)

of FPRs

between expert eh and cluster Ck in round z can be calculated using Eq. (11).

The non-cooperative index TNIz
h of expert eh in round z can be defined as:

TNIz
h = dis

(
P(eh ,z−1), P(Ck ,z−1)

)
− dis

(
P(eh ,z), P(Ck ,z)

)
(20)

Clearly, TNIz
h ∈ [−∞, +∞].

(1) TNIz
h > 0 means that after adjustment, the opinion of expert eh is closer to the opinion of

cluster Ck.

(2) TNIz
h < 0 means that after adjustment, the distance of opinions between expert eh and cluster

Ck is larger than before.

In this study, if TNIz
h ∈ [−∞, 0], the expert eh has NCB-II.

4.2.3 Non-Cooperative Behavior Caused by Experts Who Deliberately Lower the Ranking of the Optimal
Alternative Obtained in the Whole Group

In the CRP, some experts may be purposed to decrease the evaluation value of the most preferred
collective alternative in the whole group and lead to a drop in the ranking of the optimal alternative in
the whole group. In this study, this type of behavior can be defined as the third kind of non-cooperative
behavior (NCB-III).

Let x(C,z−1) be the collective most preferred alternative of the whole group in round z − 1. And let

R(eh ,z) =
(

r(
eh ,z)

x1 , r(
eh ,z)

x2 , r(
eh ,z)

x3 , r(
eh ,z)

x4

)T

be the ranking vector of alternatives corresponding to expert eh

in consensus round z. For example, if x1 
 x2 
 x3, then r(
eh ,z)

x1 = 1, r(
eh ,z)

x2 = 2, r(
eh ,z)

x3 = 3. Then we can
set the non-cooperative index FNIz

h to judge whether the expert has the non-cooperative behavior III.

FNIz
h = 1 − r(C, z−1)

n
(21)

Clearly, FNIz
h ∈ [0, 1]. The smaller the value of FNIz

h , the lower the ranking of alternative x(C,z−1).
Let S2 (S2 ∈ (0, 1]) be a parameter, which is utilized to judge whether an expert features the non-
cooperative behavior III. If FNIz

h < S2, we regard that expert eh exists the NCB-III. Because the
measurement of FNIz

h is based on the ranking of the alternatives, the determination of the threshold
S2 is related to the number of alternatives. In our study, for alternatives {x1, x2, x3}, suppose that the
ranking of the whole group is x1 
 x2 
 x3, x1 is the optimal alternative for the whole group. For
expert eα, if alternative x1 is ranked in the bottom half of the total number of alternatives, such that
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x3 
 x2 
 x1 or x2 
 x3 
 x1, the expert eα is judged to have NCB-III. Thus, the threshold S2 is set as
0.33.

4.3 Altruistic Behavior Analysis
Because of some intimate relationships, some individuals may consider the well-being of others

in the decision-making process even at their own expense [20]. In this study, we allow the expert to
have altruistic behavior, which means he/she can contribute more than the recommended modification
provided by the moderator. Because the consensus level of the cluster is obtained by aggregating the
consensus levels of all the experts in the cluster, the altruistic behaviors of some experts can compensate
for the loss caused by others’ non-cooperative behaviors in the same cluster. In other words, altruistic
behavior can reduce the adverse effect of the non-cooperative behaviors of experts on decision-making
results.

Suppose that expert eh in cluster Ck has non-cooperative behavior. When expert eh is judged to
have non-cooperative behavior, the moderator will ask other experts in the same cluster if they are
willing to show altruistic behavior towards expert eh. If expert er does, expert er intents to make more
contributions than the recommended modification value provided by the moderator to make up for
the loss caused by the non-cooperative behavior of expert eh. Let P

(er ,z) = (
p(er ,z)

ij

)
n×n

be an adjusted
FPR provided by the altruistic expert er in consensus round z. The evaluation value p(er ,z)

ij satisfies the

condition that
∣∣p(er ,z)

ij − p(er ,z)
ij

∣∣ ≤
∣∣∣p(Ck ,z−1)

ij − p(er ,z)
ij

∣∣∣.
4.4 Feedback Mechanism

If cd(Ck) ≥ θ , cg (C) ≥ δ, the consensus levels of the cluster and the whole group have reached
the threshold. Otherwise, the experts whose consensus levels do not reach consensus threshold in
the cluster require revising their opinions to increase the degree of consensus level of the cluster.
A feedback adjustment mechanism is used to help the experts update their preferences to increase
consensus level. If an expert has non-cooperative behaviors and other experts do not have altruistic
behavior toward him/her or to a small degree, the expert will be subject to a weight punishment to
reduce his/her negative influence on group decision-making.

4.5 The Punishment Mechanism for Non-Cooperative Behaviors
If no expert in cluster ck is willing to show altruistic behavior towards expert eh or to compensates

only part of the loss caused by the non-cooperative behavior of expert eh, then a punishment
mechanism will be introduced to adjust the weight of expert eh.

Let s(
eh ,z)

ij be the actual adjusted value of expert eh in position (i, j). It is calculated as:

s(
eh ,z)

ij =

⎧⎪⎨
⎪⎩

∣∣∣p(eh ,z)
ij − p(eh ,z−1)

ij

∣∣∣ , if
∣∣∣p(eh ,z)

ij − p(eh ,z−1)
ij

∣∣∣ ≤
∣∣∣sp(eh ,z)

ij − p(eh ,z−1)
ij

∣∣∣
−

∣∣∣p(eh ,z)
ij − p(eh ,z−1)

ij

∣∣∣ , otherwise
(22)

And let SEh be the actually total number of adjusted values of expert eh in the cluster Ck, it can be
calculated as:

SEh =
n∑

i=1

n∑
j=i+1

s(
eh ,z)

ij (23)
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Suppose that the experts in the cluster Ck who agree to make more contributions to make up for
the loss of eh constitute a set M, M ⊂ Ck. Let RAEh be the sum of adjusted values that other experts
contribute to expert eh. It can be computed as:

RAEh =
∑
er∈M

n∑
i=1

n∑
j=i+1

∣∣p(er ,z)
ij − p(er ,z)

ij

∣∣ (24)

The altruistic index is defined as:

AIh = RAEh

SAEh − SEh

(25)

We determine the coefficient of the weight penalty based on the non-cooperative index and the
altruistic index, with a step size of 0.2. Because AIh ∈ [0, 1] means other experts has totally or partially
compensated for the loss caused by expert eh, thus we use the central value AIh = 0.5 as a demarcation
value. The adjusted weight λh of expert eh is denoted as:

(1) if the expert eh has the NCB-I:

λ
1

h =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λeh
, if ONIh > S1 or AIh = 1

0.9 × λeh
, if AIh ∈ [0.5, 1)

0.7 × λeh
, if ONIh ∈

(
S1

2
, S1

]
, AIh ∈ [0, 0.5)

0.5 × λeh
, if ONIh ∈

(
0,

S1

2

]
, AIh ∈ [0, 0.5)

0.3 × λeh
, if ONIh ≤ 0, AIh ∈ [0, 0.5)

(26)

(2) if the expert eh has the NCB-II:

λ
2

h =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λeh
, if TNIh ≥ 0 or AIh = 1

0.9 × λeh
, if AIh ∈ [0.5, 1)

0.7 × λeh
, if TNIh ∈ [−0.2, 0) , AIh ∈ [0, 0.5)

0.5 × λeh
, if TNIh ∈ [−0.4, −0.2) , AIh ∈ [0, 0.5)

0.3 × λeh
, if TNIh < −0.4, AIh ∈ [0, 0.5)

(27)

(3) if the expert eh matches the NCB-III:

λ
3

h =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λeh
, if FNIh > S2 or AIh = 1

0.9 × λeh
, if AIh ∈ [0.5, 1)

0.7 × λeh
, if FNIh ∈

(
S2

2
, S2

]
, AIh ∈ [0, 0.5)

0.5 × λeh
, if FNIh ∈

(
0,

S2

2

]
, AIh ∈ [0, 0.5)

0.3 × λeh
, if FNIh = 0, AIh ∈ [0, 0.5)

(28)
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If expert eh has two or more non-cooperative behaviors, the adjusted weight is λh = min
(
λ

1

h, λ
2

h, λ
3

h

)
.

Normalize the weights. Then the normalized weight of the expert eh can be calculated as:

λ̂h = λh

m∑
t=1

λt

(29)

where λ̂h ∈ [0, 1].

4.6 Algorithm of the Proposed LSGDM Model
For better understanding, we provide the detailed steps of the proposed model as Algorithm 2.

Fig. 2 shows the flow chart of the proposed method.

Algorithm 2: An LSGDM model based on the social network
Input: The internal FPRs, the fuzzy social-matrix A, the number k of cluster, the threshold θ , δ and
the parameters S1 and S2.
Output: The ranking of alternatives.
Step 1: Obtain a complete social-matrix of experts.
Step 2: Cluster experts into clusters by the PTC-Kmeans clustering algorithm.
Step 3: Obtain the weights of experts and clusters by using Eqs. (7) and (8).
Step 4: Calculate the consensus levels of clusters and experts. If all the clusters’ consensus levels reach

the threshold cd (Ck) ≥ θ , then go to the Step 6; otherwise, go to the next step.
Step 5: Apply the punishment mechanisms for the experts with non-cooperative behaviors to improve

the consensus levels of clusters. Identify the types of the non-cooperative behaviors of experts
and analyze the altruistic behaviors of experts.

Step 6: Calculate the consensus level of the whole group. If cg (C) ≥ δ, then go to the next step;
otherwise, return to Step 5.

Step 7: The final group preference matrix PC is obtained using Eq. (10). The alternatives are then
ranked and the optimal one is selected.

experts

Problem

A set of 
alternatives

Social trust network 
among experts

Individual preference 
relations

Classify experts 
into clusters

Determine the weights 
of experts and clusters

Measure consensus

Reach consensus ?

Yes

Select the best alternativeMax round ?

No

YesNo

Suggestions to modify individual 
preferences

Identify non-cooperative 
behaviors

No non-cooperative 
behaviors

Have different types of 
non-cooperative 

behaviors

Measure 
altruistic index

Weight 
adjustment

Figure 2: The flow chart of the proposed model
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5 Case Study: Emergency Alternative Selection after the Flood

In this section, to demonstrate the usefulness of the proposed model, we apply the model into a
case study regarding the selection of emergency alternative after the flood in Henan, China in 2021.

5.1 Case Description
From July 16 to July 2021, heavy rainfall affected 287,713 people in 140 towns and villages in 31

counties and districts in Henan, China. It caused directed economic losses of RMB 104.6047 million,
resulted in 302 deaths and 50 missing3. In order to reduce the damage caused by the disaster, Henan
Province Flood Control and Drought Relief Headquarters reacted quickly, made saving people a
priority, and initiated the second-level response of flood control emergency plan. More than 28,000
rescue teams in Henan Province, 19 city-level commando teams for fire-fighting and flood rescue,
157 station-level attack teams which has a total of 3790 firefighters and 366 rescue boats assembled in
advance, and strived to rush to the scene as soon as the disaster occurred4. An emergency headquarters
composed of 15 experts was established. After analysis, three alternatives were initially identified:
X = {x1, x2, x3}.

x1: Set up Rescue Assault Squads to go deep into the disaster area to know about the situation
as soon as possible, and guide the people in the disaster area to rescue themselves. Simultaneously,
firefighters are dispatched to reinforce important locations such as major rivers, reservoirs and
dams, and rescue teams are dispatched to repair communication and power facilities. After receiving
information from the Rescue Assault Squads, further rescue work will be carried out.

x2: Quickly organize a certain number of firefighters and rescue boats to carry out rescue work
in the disaster area and organize the transfer of the affected people. Simultaneously, firefighters are
dispatched to reinforce important locations such as major rivers, reservoirs and dams, and rescue teams
are dispatched to repair communication and power facilities.

x3: Let the medical rescue teams to enter the disaster area with the Rescue Squads, so as to
rescue the injured person as soon as possible. Simultaneously, firefighters are dispatched to reinforce
important locations such as major rivers, reservoirs and dams, and rescue teams are dispatched to
repair communication and power facilities. After receiving information from the Rescue Assault
Squads, further rescue work will be carried out.

5.2 Resolving Process
Step 1: Obtain the experts’ evaluation information, trust relationship and establish a complete

social network.

The initial FPRs of the 15 experts are shown as follows:

P(1,0) =
⎡
⎣0.5 0.4 0.4

0.6 0.5 0.9
0.6 0.1 0.5

⎤
⎦ , P(2,0) =

⎡
⎣0.5 0.4 0.4

0.6 0.5 0.3
0.6 0.7 0.5

⎤
⎦ , P(3,0) =

⎡
⎣0.5 0.2 0.4

0.8 0.5 0.4
0.6 0.6 0.5

⎤
⎦ ,

P(4,0) =
⎡
⎣0.5 0.8 0.4

0.2 0.5 0.7
0.6 0.3 0.5

⎤
⎦ , P(5,0) =

⎡
⎣0.5 0.7 0.4

0.3 0.5 0.3
0.6 0.7 0.5

⎤
⎦

3http://henan.sina.com.cn/news/2021-08-02/detail-ikqciyzk9115688.shtml.
4https://www.163.com/dy/article/GFDNN7OC0514R9L4.html.

http://henan.sina.com.cn/news/2021-08-02/detail-ikqciyzk9115688.shtml
https://www.163.com/dy/article/GFDNN7OC0514R9L4.html
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P(6,0) =
⎡
⎣0.5 0.7 0.8

0.3 0.5 0.3
0.2 0.7 0.5

⎤
⎦ , P(7,0) =

⎡
⎣0.5 0.6 0.4

0.4 0.5 0.3
0.6 0.7 0.5

⎤
⎦ , P(8,0) =

⎡
⎣0.5 0.8 0.4

0.2 0.5 0.7
0.6 0.3 0.5

⎤
⎦ ,

P(9,0) =
⎡
⎣0.5 0.7 0.3

0.3 0.5 0.6
0.7 0.4 0.5

⎤
⎦ , P(10,0) =

⎡
⎣0.5 0.3 0.4

0.7 0.5 0.3
0.6 0.7 0.5

⎤
⎦

P(11,0) =
⎡
⎣0.5 0.4 0.2

0.6 0.5 0.4
0.8 0.6 0.5

⎤
⎦ , P(12,0) =

⎡
⎣0.5 0.4 0.9

0.6 0.5 0.4
0.1 0.6 0.5

⎤
⎦ , P(13,0) =

⎡
⎣0.5 0.9 0.4

0.1 0.5 0.3
0.6 0.7 0.5

⎤
⎦ ,

P(14,0) =
⎡
⎣0.5 0.2 0.9

0.8 0.5 0.3
0.1 0.7 0.5

⎤
⎦ , P(15,0) =

⎡
⎣0.5 0.4 0.2

0.6 0.5 0.4
0.8 0.6 0.5

⎤
⎦

The direct and indirect trust relationships of experts are presented in Fig. 3.

3

2

1

4

5

6

7 8 9 10

11

13

15

14

12

0.9

0.6

0.7

0.7

0.7

0.70.7

0.8

0.8

0.8

0.8
0.8

0.8

0.6

0.9

0.9

0.9
0.5

0.6

0.9

0.8

0.5
0.9

0.8

0.7

0.8

0.7

0.9

0.7

0.8

0.8

0.8

0.7

0.8

0.7

0.5

Figure 3: The social network of 15 experts

According to Eqs. (1)–(6) in the article by Liao et al. [32], we can struct a complete social network.
The social-matrix among 15 experts is:
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A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

— 0.90 0.01 0.18 0.11 0.11 0.50 0.39 0.61 0.21 0.26 0.22 0.16 0.40 0.60
0.80 — 0.41 0.36 0.21 0.15 0.30 0.41 0.90 0.20 0.60 0.31 0.18 0.40 0.50
0.57 0.80 — 0.29 0.17 0.60 0.23 0.19 0.37 0.23 0.11 0.19 0.15 0.26 0.41
0.18 0.26 0.90 — 0.70 0.56 0.13 0.07 0.39 0.23 0.22 0.90 0.51 0.55 0.70
0.28 0.46 0.61 0.32 — 0.80 0.11 0.17 0.41 0.24 0.23 0.27 0.44 0.90 0.35
0.33 0.46 0.80 0.28 0.16 — 0.18 0.15 0.46 0.25 0.22 0.24 0.80 0.36 0.41
0.29 0.40 0.55 0.17 0.10 0.90 — 0.70 0.35 0.20 0.20 0.14 0.33 0.25 0.20
0.39 0.53 0.01 0.52 0.32 0.31 0.15 — 0.31 0.18 0.22 0.45 0.28 0.47 0.70
0.80 0.80 0.34 0.44 0.35 0.28 0.37 0.90 — 0.70 0.48 0.13 0.29 0.34 0.51
0.18 0.22 0.24 0.53 0.32 0.19 0.06 0.05 0.21 — 0.80 0.45 0.22 0.53 0.70
0.13 0.19 0.16 0.32 0.19 0.13 0.05 0.17 0.30 0.70 — 0.27 0.20 0.80 0.45
0.18 0.31 0.41 0.80 0.30 0.25 0.12 0.11 0.19 0.22 0.70 — 0.80 0.34 0.24
0.14 0.10 0.10 0.02 0.01 0.03 0.05 0.08 0.20 0.11 0.08 0.06 — 0.50 0.11
0.36 0.27 0.26 0.27 0.04 0.07 0.14 0.22 0.50 0.18 0.23 0.18 0.60 — 0.25
0.31 0.37 0.39 0.80 0.53 0.34 0.10 0.17 0.36 0.14 0.13 0.71 0.42 0.80 —

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Step 2: Classify the large group of experts into subgroups.

According to Eq. (1), we calculated the aggregated social-matrix MA = (mahl)m×m. Since MA is a
symmetric matrix, we only show the upper triangular matrix.

MA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 0.85 0.30 0.18 0.18 0.22 0.43 0.39 0.71 0.16 0.20 0.20 0.15 0.37 0.47
− 0.59 0.31 0.30 0.29 0.33 0.46 0.83 0.21 0.42 0.31 0.14 0.33 0.43

− 0.60 0.35 0.70 0.33 0.11 0.35 0.23 0.13 0.29 0.12 0.26 0.40
− 0.55 0.43 0.14 0.26 0.42 0.36 0.27 0.84 0.26 0.39 0.75

− 0.43 0.11 0.25 0.37 0.49 0.21 0.29 0.18 0.32 0.47
− 0.43 0.22 0.36 0.22 0.18 0.24 0.39 0.18 0.37

− 0.37 0.36 0.11 0.10 0.13 0.14 0.17 0.13
− 0.66 0.11 0.19 0.26 0.16 0.30 0.37

− 0.49 0.40 0.16 0.25 0.63 0.43
− 0.75 0.33 0.16 0.31 0.36

− 0.49 0.13 0.45 0.26
− 0.40 0.24 0.52

− 0.56 0.28
− 0.51

−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The PTC-Kmeans algorithm is used to cluster the experts. In this case, we assign the cannot-link
constraint threshold Con1 = 0.15 and the must-link constraint threshold Con2 = 0.85. The number
of clusters k = 4. The clustering results are C1 = {e3, e14}, C2 = {e4, e5, e6, e13}, C3 = {e7, e8, e9} and
C4 = {e1, e2, e10, e11, e12, e15}.

Step 3: Calculate the weights of experts and clusters.

According to Eq. (7), we can obtain the weights of experts and the results are shown in Table 1.
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Table 1: The weights of experts

ek e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15

λk 0.07 0.08 0.07 0.07 0.06 0.06 0.03 0.05 0.08 0.06 0.06 0.06 0.07 0.10 0.08

According to Eq. (8), we can obtain the weights of the clusters: μ1 = 0.17, μ2 = 0.26, μ3 = 0.16
and μ4 = 0.41.

According to Eq. (9), we can obtain the FPRs of clusters:

PC1 =
⎡
⎣0.50 0.20 0.65

0.80 0.50 0.35
0.35 0.65 0.5

⎤
⎦ PC2 =

⎡
⎣0.50 0.78 0.50

0.22 0.50 0.40
0.50 0.60 0.50

⎤
⎦ PC3 =

⎡
⎣0.50 0.70 0.37

0.30 0.50 0.53
0.63 0.47 0.50

⎤
⎦

PC4 =
⎡
⎣0.50 0.45 0.42

0.55 0.50 0.45
0.58 0.55 0.50

⎤
⎦

According to Eq. (10), we can obtain the FPR of the whole group:

PC =
⎡
⎣0.50 0.53 0.47

0.47 0.50 0.43
0.53 0.57 0.50

⎤
⎦

Step 4: Consensus measurement. Eq. (13) are used to compute the degree of consensus of each
cluster. The initial consensus levels are shown in Table 2. We set the clusters’ consensus threshold as
θ = 0.80.

Table 2: Initial consensus levels of clusters and experts

Ck cd (Ck) eh cd (eh)

C1 0.83 {e3, e14} {0.83 0.83}
C2 0.78 {e4, e5, e6, e13} {0.75 0.84 0.73 0.81}
C3 0.85 {e7, e8, e9} {0.79 0.83 0.92 0.85}
C4 0.77 {e1, e2, e10, e11, e12, e15} {0.68 0.84 0.80 0.78 0.72 0.78}

From Table 2, we can see that the consensus levels of cluster C2 and C4 are lower than the
threshold θ = 0.80. Thus, for clusters whose consensus level is lower than the threshold, the preference
information of experts within the cluster should be modified.

Step 5: Apply the feedback mechanism.

The first consensus round

Since the consensus levels of experts e4, e6 in cluster C2 and experts e1, e11, e12, e15 in cluster C4 fail
to reach the threshold θ , these experts should adjust their own opinions according to the suggestions
recommended by the moderator. The actual adjustment preference matrix P1, and the preference
matrix SP recommended by the moderator are shown in Table 3.
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Table 3: The actual adjustment preference matrix and the preference matrix recommended by the
moderator

Expert P(eα ,1) SP(eα ,1) Expert P(eα ,1) SP(eα ,1)

e4

⎡
⎢⎣0.50 0.70 0.40

0.30 0.50 0.64
0.60 0.36 0.50

⎤
⎥⎦

⎡
⎢⎣0.50 0.65 0.40

0.35 0.50 0.60
0.60 0.40 0.50

⎤
⎥⎦ e11

⎡
⎢⎣0.50 0.52 0.25

0.48 0.50 0.40
0.75 0.60 0.50

⎤
⎥⎦

⎡
⎢⎣0.50 0.52 0.35

0.48 0.50 0.40
0.65 0.60 0.50

⎤
⎥⎦

e6

⎡
⎢⎣0.50 0.60 0.70

0.40 0.50 0.30
0.30 0.70 0.50

⎤
⎥⎦

⎡
⎢⎣0.50 0.60 0.65

0.40 0.50 0.35
0.35 0.25 0.50

⎤
⎥⎦ e12

⎡
⎢⎣0.50 0.42 0.90

0.58 0.50 0.40
0.10 0.60 0.50

⎤
⎥⎦

⎡
⎢⎣0.50 0.45 0.70

0.55 0.50 0.40
0.30 0.60 0.50

⎤
⎥⎦

e1

⎡
⎢⎣0.50 0.51 0.40

0.49 0.50 0.85
0.60 0.15 0.50

⎤
⎥⎦

⎡
⎢⎣0.50 0.51 0.40

0.49 0.50 0.75
0.60 0.25 0.50

⎤
⎥⎦ e15

⎡
⎢⎣0.50 0.43 0.28

0.57 0.50 0.40
0.72 0.60 0.50

⎤
⎥⎦

⎡
⎢⎣0.50 0.45 0.35

0.55 0.50 0.40
0.65 0.60 0.50

⎤
⎥⎦

Let the parameter S1 = 0.5 and S2 = 0.33, the non-cooperative indexes of the experts with non-
cooperative behaviors are calculated according to Eqs. (15)–(21). The results are shown in Table 4.

Table 4: Non-cooperative indexes

e1 e4 e6 e11 e12 e15

ONI 1
eα

0.62 0.64 0.67 0.63 0.08 0.55
TNI 1

eα
−0.03 0.04 0.02 0.01 0.02 0.05

FNI 1
eα

0.67 0.33 0.67 0.33 0.33 0

It can be seen from Table 4 that ONI 1
e12

≤ S1, expert e12 exists NCB-I. TNI 1
e1

< 0 implies expert e1

exists NCB-II. FNI 1
15 < 0.3 denotes expert e15 exists NCB-III.

After investigation by the moderator, expert e2 would like to make more contributions to make
up for the loss caused by the non-cooperative behaviors of expert e1, expert e10 would like to make
more contributions to make up for the loss caused by the non-cooperative behaviors of expert e15. The
adjusted preference matrices of experts e2, e10 with altruistic behaviors are:

P(e2,1) =
⎡
⎣0.50 0.47 0.40

0.53 0.50 0.30
0.60 0.70 0.50

⎤
⎦ P(e10,1) =

⎡
⎣0.50 0.34 0.40

0.66 0.50 0.30
0.60 0.70 0.50

⎤
⎦

According to Eq. (25), the altruistic index of experts e1, e15 is calculated as: AI 1
e1

= 0.7, AI 1
e15

=
0.44. Experts e1, e12, e15 suffer different weight punishment according to Eqs. (26)–(28). The weights of
experts are updated as:

λ1 = (0.067, 0.088, 0.078, 0.080, 0.053, 0.071, 0.037, 0.057, 0.084, 0.063, 0.067, 0.034, 0.081, 0.111, 0.029).

The consensus levels of clusters are: cd(C1) = 0.83, cd(C2) = 0.81, cd(C3) = 0.85, cd(C4) = 0.79.
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The second consensus round

From the first consensus round, we know that the consensus level of cluster C4 is lower than the
threshold θ = 0.80. Thus, the preference information in cluster C4 should continue to be modified.
Due to the consensus levels of expert e1, e12 in cluster C4 are lower than the threshold, the two experts
should continue to adjust their preference information according to the suggestions recommended by
the moderator.

The adjusted FPRs of experts e2 and e12 recommended by the moderator in round 2 are:

SP(e1,2) =
⎡
⎣0.50 0.51 0.4

0.55 0.50 0.75
0.60 0.25 0.50

⎤
⎦ SP(e12,2) =

⎡
⎣0.50 0.45 0.70

0.55 0.50 0.40
0.30 0.60 0.50

⎤
⎦

The actual adjusted FPRs of experts e2 and e12 are:

P(e1,2) =
⎡
⎣0.50 0.51 0.40

0.49 0.50 0.78
0.60 0.22 0.50

⎤
⎦ P(e12,2) =

⎡
⎣0.50 0.45 0.82

0.55 0.50 0.40
0.18 0.70 0.50

⎤
⎦

Then, the non-cooperative indexes are calculated. The non-cooperative indexes of the experts with
non-cooperative behaviors are calculated according to Eqs. (15)–(21). The results are shown in Table 5.

Table 5: Non-cooperative indexes

e1 e12

TNI 2
eα

0.70 0.48
FNI 2

eα
0.03 0.05

ONI 2
eα

0.67 0.33

Due to ONI 2
12 < S1 in Table 5, we infer that expert e12 exists NCB-I. And e15 would like to make

more contributions to make up for the loss caused by the non-cooperative behavior of expert e12. The
altruistic index of expert e12 is calculated as AI 2

12 = 0.42. Expert e12 suffers weight punishment according
to Eq. (26). The weights of experts are updated as:

λ2 = (0.067, 0.089, 0.079, 0.081, 0.053, 0.072, 0.038, 0.057, 0.085, 0.064, 0.068, 0.024, 0.082, 0.112, 0.029) .

The consensus levels of clusters are calculated as: cd(C1) = 0.83, cd(C2) = 0.81, cd(C3) = 0.85
and cd(C4) = 0.83. To show the CRP visually, we list the change of consensus level of clusters in the
iterative process in Fig. 4.

Step 6: Calculate the consensus level of the whole group.

Set the threshold δ = 0.80 in advance. Using Eq. (14), the consensus level of the whole group is
calculated as: cg(C) = 0.82.

Step 7: Selection of alternatives.
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From Step 5 and Step 6, we can see that cd (Ck) ≥ θ , cg (C) ≥ δ. The final collective decision
matrix is obtained according to Eq. (10):

PC =
⎡
⎣0.50 0.53 0.47

0.47 0.50 0.42
0.53 0.58 0.50

⎤
⎦

The alternatives are ranked as: x3 
 x1 
 x2, x3 is thus the optimal alternative.

Figure 4: Changes in the consensus levels of clusters

5.3 Comparisons and Discussions
To further reflect the advantages and features of our proposed model, we conduct comparative

analysis and discussion as follows:

5.3.1 Discussion on the PTC-Kmeans Clustering Algorithm

1) Determination of k

We use the sum of the squared errors (SSE) to determine the value of k. The core idea of SSE is:
as the number of clusters k increases, the division of the samples will be more refined, the aggregation
degree of each cluster will gradually increase, and the value of SSE will naturally become smaller. When
k is less than the optimal clustering number, since the increase of k will greatly increase the aggregation
of each cluster, the decline of the value of SSE will be very large. When k reaches the optimal clustering
number, the decline of the value of SSE will be slight with the increase of k. The SSE is shown as:

SSE =
k∑

i=1

∑
p∈Ci

|p − mi|2 (30)

where mi means the centroid of the cluster Ci.

Fig. 5 presents the relationship between SSE and the number of clusters. When the number of
clusters is more than 4, the SSE decreases slightly. Thus, we set k = 4 as the number of clusters.
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Figure 5: Relationship between SSE and the number of clusters

2) Determination of the trust constraints thresholds Con1, Con2

The trust constraints play crucial roles in the determination of the initial clusters and the final
cluster results. As shown in Fig. 6, the trust constraint threshold is positively correlated with the
number of cannot-links while the threshold is negatively correlated with the number of must-links.
The greater the number of cannot-links, the greater the minimum number of initial clusters, and the
smaller the number of must-links, the greater the maximum number of initial clusters. For example, if
there are 15 cannot-links, then it is possible that the minimum number of clusters required is 15; if there
are 15 must-links, then it is possible that the maximum number of clusters is 1. In order to ensure that
we can obtain 4 initial clusters, the cannot-link trust constraint link is set to con1 ∈ [0, 0.15] and the
cannot-link trust constraint link is set to con2 ∈ [0.8, 1]. Specifically, we set con1 = 0.15, con2 = 0.85.

Figure 6: The relationship between the trust constraint threshold with the number of constraint links
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3) Comparison with the traditional K-means algorithm

Where our algorithm differs from traditional algorithms is the addition of trust constraints. In
our algorithm, experts with low trust should not be allocated to the same cluster while those with high
trust must be in the same cluster. Through directly numerical comparison with the traditional K-means
clustering method, the advantages of our algorithm are highlighted. As shown in Table 6, the overall
trust degree and the consensus level of the initial clusters obtained by our proposed method are both
higher than the initial clusters obtained by the traditional K-means. A higher degree of consensus level
means a fewer number of positions to be adjusted. The decision cost of our proposed method is lower
than the traditional K-means.

Table 6: Comparison with the traditional K-means algorithm

Clustering
algorithm

Clusters Overall
trust
degree

Initial
consensus
level

Final
consensus
level

Final group
preference

Final
ranking

C1 = {e3, e14} 0.260 0.83 0.83
C2 = {e4, e5, e6, e13} 0.373 0.78 0.81PTC-

Kmeans

⎡
⎢⎣0.50 0.53 0.47

0.47 0.50 0.42
0.53 0.58 0.50

⎤
⎥⎦ x3 
 x1 


x2
C3 = {e7, e8, e9} 0.463 0.85 0.85
C4 = {e1, e2, e10, e12, e15} 0.381 0.77 0.83

C1 = {e10, e12, e14} 0.293 0.81 0.81
C2 = {e5, e6, e7, e13} 0.280 0.85 0.85Traditional

K-means

⎡
⎢⎣0.50 0.52 0.47

0.48 0.50 0.48
0.53 0.52 0.50

⎤
⎥⎦ x3 
 x1 


x2C3 = {e4, e8, e9} 0.446 0.82 0.82
C4 = {e1, e2, e3, e11, e15} 0.281 0.78 0.81

5.3.2 Discussion on the GDM Models

1) We use the data from the first consensus round in Section 5.2 to compare changes in the weight
of experts when considering altruistic behavior and not considering altruistic behavior. Fig. 7
shows the difference in the weights of experts with altruistic and non-altruistic behaviors.
We can see that when considering the altruistic behaviors of experts, the adjusted weight of
experts is closer to the initial weight of experts than without altruistic behavior. It indicates
that considering altruistic behavior not only can protect the interests of experts with non-
cooperative behavior but also ensures the integrity of group opinions.

2) The comparisons with the management of non-cooperative behaviors in GDM models are
demonstrated in Table 7. Compared with Tang et al. [20], Liao et al. [37], they only considered
one type of non-cooperative behaviors. It can lead to a lack of integrity as they did not
consider the whole problem. In our study, we define three types of non-cooperative behaviors.
Dong et al. [15] also focused on different types of non-cooperative behaviors. However, in
their models, they did not cluster the experts into subgroups and they assumed the maximum
degree of cooperation is to totally accept the modification suggestions. For the definition of
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non-cooperative behaviors, they did not consider such a behavior that hesitant experts are
purposed to provide their preference randomly to avoid revealing their true intentions. In this
paper, we used the PTC-Kmeans algorithm to cluster experts into different subgroups and
managed the non-cooperative behaviors based on different clusters. What’s more, we allowed
experts to make more contributions to make up for the loss caused by experts with the non-
cooperative behaviors, it protected the interests of experts with non-cooperative behaviors and
ensured the integrity of decision-making information. We set different weight punishment
according to the degree of non-cooperative and the degree of altruism.

Figure 7: Changes in the weight of experts when considering altruistic behavior and not considering
altruistic behavior

Table 7: Comparisons with the management of non-cooperative behaviors in GDM models

GDM
models

Dimension
reduction

Weight determination The types of non-cooperative behavior Maximum degree
of cooperation

Experts Subgroup Refuse to
follow the
revision
proposals

Mask true
intention
deliberately

Decrease the
rank of the
optimal
alternative
deliberately

Our
model

The PTC-
Kmeans

In-degree
centrality

Sum of
weights of
experts
in a
subgroup

√ √ √ More contribution
than the
modification
suggestions

(Continued)
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Table 7 (continued)

GDM
models

Dimension
reduction

Weight determination The types of non-cooperative behavior Maximum degree
of cooperation

Experts Subgroup Refuse to
follow the
revision
proposals

Mask true
intention
deliberately

Decrease the
rank of the
optimal
alternative
deliberately

Tang
et al. [20]

- In-degree
centrality

Sum of
number of
experts
in a
subgroup

√ More contribution
than the
modification
suggestions

Liao
et al. [37]

- Technique
for order
preference by
similarity to
an ideal
solution

- √ Totally accept the
modification
suggestions

Dong
et al. [15]

- Multi-
attribute
mutual
evaluation
matrices of
experts

- √ √ Totally accept the
modification
suggestions

6 Conclusion

In this study, we proposed a consensus reaching model based on the social network which took into
account different types of non-cooperative behaviors and altruistic behavior of experts in LSGDM
problems. The main contributions and improvements could be summarized as follow: 1) the PTC-
Kmeans algorithm was proposed to classify experts into several clusters based on the individual
FPRs and trust relationships of experts. The two attributes were all regarded as important basis
for classification and were seldom considered simultaneously in existing clustering methods. 2) A
consensus reaching approach was proposed to improve the consensus level. Such a consensus reaching
approach considered different types of non-cooperative behaviors and allowed experts with altruistic
behaviors to make more contributions to compensate for the loss caused by the experts with non-
cooperative behaviors. Different types of non-cooperative behaviors allowed for a more comprehensive
consideration of the problem and the existence of altruistic behavior ensured the interests of experts
with non-cooperative behavior. 3) The proposed LSGDM method was applied to a case study of the
selection of emergency alternative after the flood in Henan, China.

There are still some limitations in this study. First, we only considered the non-cooperative
behavior of experts but failed to consider the cooperative behavior. However, the cooperative behavior
of experts may also affect the decision-making. Second, we did not take the cost control into
consideration in the LSGDM. In the future, it is necessary to study how to merge altruistic behavior of
experts into minimum cost consensus model. In addition, we assumed that all the experts used FPRs
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to express their preference information, in the future research, it is necessary to present the preference
information of experts in more complex representations.
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Appendix

Table S1: A summarization of mathematical symbols

Mathematical symbol Meaning

E = {e1, e2, . . . , em} A set of experts
X = {x1, x2, . . . , xn} A set of alternatives
Peh = (peh

ij
)n×n An FPR of expert eh

ahl The trust value that the expert eh assign to expert el

cen (eh) The degree of centrality of expert eh

sdhl The similarity degree between expert eh and expert el

mahl The average trust degree between eh and el

�/� The cannot-linked/must-link constraint matrix
μk The weight of cluster Ck

dis(Peh , PCk) The distance between the expert eh and the cluster Ck

cd(eh) The degree of consensus of the expert eh in cluster Ck

cg(Ck) The degree of consensus of the cluster Ck

SP(eh ,z) The adjustment evaluation of expert eh has been suggested in round z
SAE(ek ,z) The sum of proposed adjustment evaluations of expert eh in round z
DAR(eh ,z) The sum of deviations between the proposed preference value and the

actual preference value of expert eh in round z
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Table S1 (continued)

Mathematical symbol Meaning

ONIz
h/FNIz

h/TNIz
h The index of NCB-I/II/III of expert eh in round z

SEh The actually total adjusted evaluation values of expert eh in round z
RAEh The sum of evaluation values eh has been made contribution by other

experts
AIh The altruistic index of expert eh
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