
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in

Engineering & Sciences
echT PressScience

DOI: 10.32604/cmes.2023.024018

ARTICLE

Implementation of Rapid Code Transformation Process Using Deep Learning
Approaches

Bao Rong Chang1, Hsiu-Fen Tsai2,* and Han-Lin Chou1

1Department of Computer Science and Information Engineering, National University of Kaohsiung, Kaohsiung, 811, Taiwan

2Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung, 811, Taiwan

*Corresponding Author: Hsiu-Fen Tsai. Email: s�sai@kmu.edu.tw

Received: 21 May 2022 Accepted: 05 September 2022

ABSTRACT

Our previous work has introduced the newly generated program using the code transformation model GPT-2,

verifying the generated programming codes through simhash (SH) and longest common subsequence (LCS) algo-

rithms. However, the entire code transformation process has encountered a time-consuming problem. Therefore,

the objective of this study is to speed up the code transformation process signi�cantly. This paper has proposed

deep learning approaches for modifying SH using a variational simhash (VSH) algorithm and replacing LCS with

a piecewise longest common subsequence (PLCS) algorithm to faster the veri�cation process in the test phase.

Besides the code transformationmodelGPT-2, this study has also introducedMicroso�MASS and FacebookBART

for a comparative analysis of their performance. Meanwhile, the explainable AI technique using local interpretable

model-agnostic explanations (LIME) can also interpret the decision-making ofAImodels. The experimental results

show that VSH can reduce the number of quali�ed programs by 22.11%, and PLCS can reduce the execution time

of selected pocket programs by 32.39%. As a result, the proposed approaches can signi�cantly speed up the entire

code transformation process by 1.38 times on average compared with our previous work.

KEYWORDS

Code transformation model; variational simhash; piecewise longest common subsequence; explainable AI; LIME

1 Introduction

Artificial intelligence (AI) [1] has returned tomainstream technology and developed deep learning
in recent years. With the development of deep learning, the Google Brain team has developed
Tensorflow, which can use for machine learning of various perception and language understanding
tasks and data prediction, image feature classification, and text generation. Deep learning has
introduced generation-based models, including long short-term memory (LSTM) [2] and generative
adversarial network (GAN) [3]. Although LSTM can generate text, it only predicts the words that
may appear next and cannot generate similar articles. In contrast, GAN generates pictures better than
text. To allow machines to imitate humans more accurately, the trend of AI applications is gradually
developing toward human language-related issues.

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2023.024018
https://www.techscience.com/doi/10.32604/cmes.2023.024018
mailto:sftsai@kmu.edu.tw

108 CMES, 2023, vol.136, no.1

As the technology of AI becomes more and more mature, the related natural language processing
has also developed rapidly shortly. In terms of language processing, the English natural language
sentence segmentation model, natural language toolkit (NLTK) [4] based on Python programming,
has been developed for years. A well-trained NLTK can segment English text into sentences or
words and perform text processing such as part-of-speech tags. For more advanced text conversion
models, the non-profit organization OpenAI LP has developed GPT-2 [5], the second generation
of generative pre-training tool and belongs to the unsupervised learning transformer model. It is
mainly engaged in English imitation creation in artificial intelligence. Besides text, people can also
use it to generate fake news [6]. In addition to GPT-2, Microsoft has developed MASS and Facebook
AI BART. They can also do a similar job like GPT-2 very well. Is it possible to think of a similar
manner to use them to generate the code of a designated programming language, for example, the code
of Python programming? The previous paper [7] introduced the newly generated program using the
code transformation model GPT-2, where users can verify the generated programming codes through
simhash (SH) and longest common subsequence (LCS) algorithms. However, the code transformation
process has encountered the problem of being time-consuming in the previous work.

Therefore, the objective of this study is to propose the deep learning approaches for modifying SH
and LCS algorithms where a modified SH (called variational simhash) can reassign the appropriate
weighted value of keywords, and a modified LCS (called piecewise longest common subsequence)
can break a long string into a few smaller pieces of string. In such a way, the proposed approaches can
significantly reduce the algorithm execution time to speed up the entire process of code transformation,
which is our main contribution to this study. Meanwhile, this study also introduces three code
transformation models, GPT-2, MASS, and BART, and will deliver the performance evaluation
among them and check which one can achieve better results.

The following paragraphs of this paper are arranged as follows. In Session 2, related work
will be described in text transform models, content check, predetermined generative programs, and
explainable AI techniques. The way to system implementation is given in Session 3. The experimental
results and discussion will be obtained in Session 4. Finally, we drew a brief conclusion in Session 5.

2 Related Work

2.1 Text Transform Model

The traditional text transformer model contains an Encoder and Decoder stack, as shown in
Fig. 1. GPT-2 [5] is an unsupervised transformer language generation model released by OpenAI
in 2019. GPT-2 is composed of a Decoder stack, as shown in Fig. 2. This study has received much
programming information related to transformer-based models like GPT-2 from the website Github
for training GPT-2 as a code transformation model.

MASS [8] is a transformer-based model that connects the Encoder and Decoder by attention. A
continuous segment of length k randomly shields the input of the Encoder of MASS compared to the
basic transformer architecture. After that, it uses a Decoder to predict the masked segment, as shown
in Fig. 3. BART [9] is intrinsically the architecture of a standard transformer model. Like MASS, it
masks the Encoder’s input, but the difference is that the masked words can be a few discontinuous
segments, as shown in Fig. 4. BART replaces the excitation function ReLU with GeLUs, and Decoder
has not changed. The loss function of BART is the cross-entropy between the output of the Decoder
and the original text. BART uses this cross-entropy loss to optimize its transform model and improve
accuracy.

CMES, 2023, vol.136, no.1 109

Figure 1: Traditional text transformer model Figure 2: GPT-2 architecture

Figure 3: MASS architecture

Figure 4: BART architecture

2.2 Binary Code Comparison

Simhash [10] is a kind of locality-sensitive hash, and its main idea is to reduce dimensionality, as
shown in Fig. 5. It maps the high-dimensional feature vector to the low-dimensional feature vector
and compares the two vectors with the similarity of the article through the Hamming distance [11].
The smaller the Hamming distance, the higher the similarity.

Figure 5: SimHash process flow

110 CMES, 2023, vol.136, no.1

After the text is segmented, the Hash calculation obtains the feature vector. Adding weight to the
feature vector is weighting and accumulating all the weighted vectors. The cumulative result is more
significant than zero as one and less than zero as zero, and users can obtain the fingerprint, as shown
in Fig. 6. Finally, we calculate the two fingerprints [12] for Hamming distance.

Figure 6: Calculate fingerprint

Generally speaking, the simhash algorithmuses the formula of tf-idf to estimate the corresponding
weight value for each keyword. In Eq. (1), idfi is referred to as inverse document frequency, which
refers to a measure of the universal importance of a word. Furthermore, fi represents the number of
files in which the word i appears in the text j, and D is the total number of all texts. In Eq. (2), tfi,j
represents term frequency meaning the average frequency of the word i in the text j, and fi,j stands for
the frequency of the word i appearing in the text j.

∑

i′∈j
i′, j is the sum of the frequency of each word

appearing in the text j, which is the length of the text. In Eq. (3), tfidfi,j is the estimated weight value of
the specific word, tfi,j is the term frequency meaning the frequency of a word given in the file, and idfi
is the inverse document frequency, a measure of the universal importance of a word given in the file.

idfi = log
D

fi
, fi = |{j ∈ D, i ∈ j}| (1)

tfi,j =
fi,j

∑

i′∈j
i′, j

(2)

tfidfi,j = tfi,j ∗ idfi (3)

2.3 Multimedia Content Check

Although there are many methods to compare different forms of media information, this study
uses LCS [13] as a single effective method to detect the consistency of multimedia information, which
is suitable for text, pictures, sounds, and movies. LCS finds the longest common subsequence in the
sequence set. Unlike searching for the longest common substring, the position of the subsequence in
the original sequence does not need to be continuous, as shown in Fig. 7. The yellow part in Fig. 7
indicates the completion of the comparison. In this study, we convert the execution result of each
qualified program and the execution result of the corresponding sample program into ASCII code
or binary code and use LCS to check the conformity. To check whether the execution result of the
generated program is consistent with the execution result of the sample program, please confirm that
the generated program is available.

CMES, 2023, vol.136, no.1 111

Figure 7: Longest common subsequence (LCS)

2.4 Predetermined Generative Programs

We do not know the number of the code-transformed programs produced from GPT-2, MASS,
and BART is appropriate and needed. Therefore, this study theoretically introduces a statistical
estimation of the number of predetermined code-transformed programs, and hereafter the preliminary
programs denote the code-transformed programs. This estimation implies how many preliminary
programs are needed to ensure that the code transformation process can find the best-performance
one. Therefore, users can first calculate the quantity of the preliminary programs generated by a sample
program with a pass ratio exceeding 90% and obtain the ratio qi, as shown in Eq. (4). In Eq. (4), Nsi

represents the total number of primary programs, and xsi stands for the number of primary programs
whose pass ratio exceeds 90%. After the previous calculation, Eq. (5) gets the average ratio q, where t
is the total number of sample programs. Then users can find out the number of misjudgments in, xsi
and calculate the ratio of misjudgments qmi, as shown in Eq. (6). In Eq. (6), xmsi represents the number
of misjudgments among the number of the preliminary programs with a pass ratio of more than 90%.
Then Eq. (7) can obtain the average percentage of misjudgments qm.

112 CMES, 2023, vol.136, no.1

qi =
xsi

Nsi

, i = 1, 2, . . . , t (4)

q =

∑t

i=1 qi

t
(5)

qmi =
xmsi

xsi
, i = 1, 2, . . . , t (6)

qm =

∑t

i=1 qmi

t
(7)

After that, users can calculate the number of the preliminary programswhose pass ratio is less than
90% to get the ratio ui, as shown in Eq. (8). In Eq. (8), ysi represents the number of the preliminary
programs whose pass ratio is less than 90%. Next, Eq. (9) finds out the average ratio u. Then users can
find out the number of misjudgments ysi and then calculate the proportion of misjudgments umi, as
shown in Eq. (10). In Eq. (10), ymsi represents the number of misjudgments. The preliminary programs
have many misjudgments with less than a 90% pass ratio. Finally, Eq. (11) gives the average percentage
of misjudgments um.

ui =
ysi

Nsi

, i = 1, 2, . . . , t (8)

u =

∑t

i=1 ui

t
(9)

umi =
ymsi

ysi
, i = 1, 2, . . . , t (10)

um =

∑t

i=1 umi

t
(11)

Eq. (12) counts the total of preliminary programs generated by all the sample programs to getNg.
According to the statistics such asNg, q, qm, u, and um, Eq. (13) obtains the average pass ratio of over a
90% probability Pgq. Assuming that a pass ratio of j programs exceeds 90%, P(Kj|Pgq) means that for
these j programs, the probability that a pass ratio of the code similarity check exceeds 90% is valid,
such as Eq. (14). In Eq. (14),Kj represents j programs with a pass ratio of code similarity check of 90%
or more among the generated programs. According to the above statistics, the probability of the code
similarity check with the pass ratio of j programs exceeding 90% is P(Kj|Pgq). Therefore, Eq. (15) can
infer the minimum number of preliminary programs produced from the code transformation process
to ensure that at least j programs have a code similarity check with a pass ratio of more than 90%,
where N is the total number of preliminary programs to be generated.

Ng =
∑t

i=1
Nsi (12)

Pgq =
Ng · q · (1 − qm) +Ng · u · um

Ng

(13)

P(Kj|Pgq) =
P(Kj ∩ Pgq)

Pgq

(14)

CMES, 2023, vol.136, no.1 113

N · P(Kj|Pgq) ≥ Kj (15)

Take four sample programs of the previous paper [7] as an example. Each sample program can
generate 500 preliminary programs, respectively, and Table 1 gives the average percentage of the
preliminary programs with a pass ratio over or less than 90%. We can calculate the probability Pgq

indicating the preliminary programs with a pass ratio of code similarity check over indeed 90% is
8.6% in Eq. (13). Next, Eq. (14) can estimate the probability P(Kj|Pgq) representing the preliminary
programs with a pass ratio of code similarity check over 90% is 4.91%. Suppose there are 5 preliminary
programs with a pass ratio of code similarity check over 90% required. In that case, Eq. (15) can infer
that a specific code transformation model should produce at least 100 preliminary programs for use.

Table 1: The average percentage of preliminary programs with a pass ratio over or less than 90%

Program group

Average percentage Preliminary programs with a pass
ratio of code similarity check over
90% where q = 10%

Preliminary programs without a
pass ratio of code similarity check
over 90% where u = 90%

The average percentage of
no false positives

81.78% 92.33%

The average percentage of
false positives

18.22% 7.67%

The probability of a pass
ratio of code similarity
check over 90%

8.6%

2.5 Explainable AI Technique

Most data scientists prefer high-precision metrics when using models to solve problems, and high-
precision models are too complex to understand the decision-making of their algorithms. Because the
algorithms are too complex, the designers can consistently not explain why artificial intelligence can
achieve specific effects. Today, researchers propose explainable artificial intelligence so that people
can understand the inference of the results from AI-related algorithms. There are three classification
criteria for interpretability methods: (1) Essential or ex-post interpretability, (2) Model-specific or
general, and (3) Local or global interpretability. In 2016, Marco Ribeiro, Sameer Singh, and Carlos
Guestrin proposed local interpretable model-agnostic explanations (LIME) [14], a post-analytical
approach to interpretation after model establishment, as shown in Fig. 8. The first is randomly
selecting attributes from the data as data perturbations and other labels the results. Next, in LIME, we
calculate the distance between the result and the attributes to get the weights of the attributes and then
filter the attributes with small weights. After that, we can explain the result according to the remaining
attributes. Therefore, people can use explainable AI techniques to supervise the rules discovered by AI
systems, and judging those rules can explain the outcomes of their decisions.

114 CMES, 2023, vol.136, no.1

Figure 8: LIME processing flow

3 Research Method

The previous paper [7] used a code transformation model to generate similar and more concise
programs that can shorten execution times. Users can retrieve the corresponding sample programs
from the semantic database using keywords. However, the retrieved sample programs may encounter
the problem of their codes in low execution performance. Therefore, the previous work is to find a way
to transform its sample program into the newly generated programs that can perform better than the
original one magnificently because we have significantly improved the execution speed of the entire
code transformation process in this study. The previous paper introduced the code transformation
model using GPT-2 to produce the newly generated programs called the preliminary programs. Some
of the preliminary programs are not exploitable. Therefore, we must confirm which programs are
exploitable through the code similarity check and the execution output conformity check. Then the
system chooses the best-performing one as a pocket program for this instance, as shown in Fig. 9.

Figure 9: Natural language generating program process

3.1 Code Transformation Process

The code transformation process is done by inputting the sentence, selecting keywords afterNLTK
segmentation, searching the sample programs by keywords, and feeding the sample programs into the
code transformation model producing the newly generated programs with better efficiency to improve
their execution speed. The entire procedure includes two stages, model generation, and model use
stages, as shown in Figs. 10 and 11. The first is the training phase in themodel generation stage, and the
next is the test phase. The training phase contains several units: word segmentation, sample program,
generative programmodel, and generated program units. After the word segmentation, the system uses
keywords to search sample programs from the semantic database to find the proper sample programs

CMES, 2023, vol.136, no.1 115

corresponding to the action initiated by the input sentence. To train the program generation model,
users can submit the retrieved sample programs to the pre-trained code transformation model, e.g.,
GPT-2. Once users have established the program generation model, they can feed it into that code
transformation model again to produce the newly generated programs. They are called preliminary
programs. The first step uses the variational simhash algorithm to check code similarity between
the sample program and anyone of the preliminary programs in the test phase. Then the next step
uses PLCS to check the conformity of the execution results between sample programs and anyone
of qualified programs. Two steps are to filter the un-qualified programs and leave a few programs
with higher consistency in code similarity and output conformity. Finally, users can pick out the best-
performing program as a pocket program and save it into the semantic database to replace the original
sample program. Since input sentences and the program’s code are composed of words and symbols,
they are all pure text. Therefore, the training and test phases can successfully handle text streams to
achieve a unified parallel analysis.

Figure 10: Training phase of model generation stage

Figure 11: Test phase of model generation stage

116 CMES, 2023, vol.136, no.1

In the model use stage, as shown in Fig. 12, if users can retrieve the pocket program from
the semantic database directly, they go to execute it to retain the output. Otherwise, the code
transformation process is like the model generation stage until the step has found the pocket program.
After that, users can run the pocket program to obtain the execution result at once. Similarly, the
model use stage can successfully deal with text streams between tasks, as mentioned earlier in the
model generation stage.

Figure 12: Model use stage

3.2 Variational Simhash Algorithm (VSH)

Generally speaking, the weighting method of simhash uses the TF-IDF algorithm as its weighting
value. Its method counts the frequency of word occurrence, which is suitable for text comparison.
But in code, unreserved words appear frequently but are not very important. Suppose we obtain the
weights according to the original method. In that case, the weight of the non-reserved words will be
greater than the weight of the reserved words, making the code similarity inaccurate, so the original
method is unsuitable for the code. Therefore, this study proposed a variational autoencoder model
suitable for code similarity comparison, called the variational simhash algorithm, and Fig. 13 gives its
algorithm. This study will first train a set of variational autoencoder (VAE) to give weights that are
reserved words greater than symbols and symbols greater than non-reserved words. After that, convert
all reserved words, symbols, and non-reserved words in the code to be compared to an n-bit vector via
word2vec. The weights are then directly mapped to an m-bit vector via the VAE. Compared with
user-defined weights used in the simhash algorithm, the proposed variational simhash algorithm can
provideweightsmuch closer to the normal distribution. Since the user-definedweights don’t follow any
protocol or regulation, the traditional simhash algorithm cannot provide the appropriate weight for
each corresponding word. Suppose a word does not exist in the list of defined words. The traditional
algorithm cannot give it appropriate weight. On the contrary, the proposed approach can assign a
proper weight based on the VAE’s inference.

This study uses VAE to map weights directly. First, convert a word into a 9-dimensional vector
through word2vec, as shown in Fig. 14. The input layer is this vector. The Encoder has two layers, the
first layer has seven neurons, and the second layer has five neurons. We then reduce the vector to a 3-
dimensional vector by the mean and standard deviation, and the Decoder is responsible for restoring
the data dimension to the original dimension. Then go back to the word via word2vec. This study
found 550 codes from GitHub, of which 500 are training data, 40 are validation data, and 10 are test
data. The loss function is MSE, the activation function is ReLU, and the optimizer is Adam. Fig. 15
shows the architecture diagram.

CMES, 2023, vol.136, no.1 117

Figure 13: Variational simhash algorithm

Figure 14: word2vec architecture

After reducing to a three-dimensional vector, VAE substitutes the data into Eq. (16) to obtain the
weight value, where i is the number of neurons in the hidden layer, hi represents the value of the i-th
neuron, and W stands for the weight value. This study has carried out an example with two simple
program codes in Test1 [15] andTest2 [16] to demonstrate the efficient implementation of twomethods,
word2vec and VAE. It turned out that the simhash algorithm gave 68% of the code similarity check.
The variational simhash algorithm, by contrast, inferred it to be 90%.

W =

(

∑n

i=1
hi

)
1
2

(16)

118 CMES, 2023, vol.136, no.1

Figure 15: Variational autoencoder (VAE) architecture

3.3 Piecewise Longest Common Subsequence (PLCS)

This study proposed a new effective LCS-like method to rapidly check multimedia information’s
consistency. After converting the execution result of each program into a string of ASCII code or
binary code, we use LCS to compute the conformity of the sample program and the generated program
execution results. This study found that when the length of a string of ASCII or binary code is very
long, it takes a long time to finish the conformity check. Technically speaking, supposed two strings
with the length of n individually, LCS will spend n2 times of comparisons to check the conformity
between them. This study has proposed an improved LCS algorithm called the piecewise longest
common subsequence (PLCS) to shorten the conformity check, as shown in Fig. 16. PLCS can use
a deep neural network (DNN) to predict the appropriate segmented length of a string of ASCII or
binary code. First, it converts the execution result into a string ASCII or binary code, breaking it into
several segments where a segment has a fixed length. After that, it uses the LCS algorithm to perform
a conformity check segment by segment. After the algorithm completes the LCS operation on each
segment, it will empty the memory allocated for the calculation. The algorithm will return only the
LCS result of the segment as well. Finally, we add the LCS results of the segments to get the final
LCS result. Supposed the length of the two strings is n, the algorithm derives every segment with k

characters to perform PLCS. The PLCS will spend k2 ∗

⌊n

k

⌋

+ (nmod k)2 times of the comparison.

The number of comparisons used in the proposed approach, PLCS, is much less than the traditional
method LCS. The operation of PLCS is faster than that of LCS because a small amount of memory is
allocated for a single segment computing to speed up the conformity operation. In theory, the data type
or the length of the string affects how long the segment length set in the string should be. Therefore,
this study employs a DNNmodel to predict howmany characters combine a segment to infer segment
lengths for long sequences as the most suitable way to compute PLCS quickly.

CMES, 2023, vol.136, no.1 119

Figure 16: PLCS algorithm

This study employs a deep neural network (DNN) model with a softmax function to predict the
length of a segment, as shown in Fig. 17. In Fig. 17, the symbol from O1 to O5 represents the different
lengths of a segment, andwe specify these symbols to different lengths of a segment, as listed in Table 2.
The input layer contains three parts: feature and the length and width of the signal. The loss function
is the sum of squared errors (SSE), the activation function is the rectified linear unit (ReLU), and the
optimizer is the adaptative gradient (AdaGrad). The feature input is a one-dimensional vector with a
length of 784 elements. The data set for training a DNNmodel consists of 100 input vectors and their
corresponding 100 output labels where the model performs segmentation results of different lengths.

Figure 17: DNN estimate the length of a segment

120 CMES, 2023, vol.136, no.1

Table 2: The length of a segment (unit: bit)

Symbol One hot encoding Length of a segment

O1 000012 500
O2 000102 1000
O3 001002 5000
O4 010002 10000
O5 100002 50000

Regarding data allocation for training a DNN model, there are 90 vectors as training data, five
validation data, and five test data. There are two hidden layers in DNN. The number of neurons in the
first hidden layer is 30 and in the second 40. If the input signal is text, the feature value of the input
layer adopts Doc2Vec to convert the text into a vector, and the signal length is the original length of
the sentence in which the signal width is 1. Users can use VGG16 to capture image features as an input
signal if the input is an image. The signal length is the original length of the image, and the signal
width is the image’s original width. If the input is a voice signal, users can use the Python package
librosa.display.waveplot to convert it into the waveform of an image as an input signal. The training
process of a voice input will do the same task as the image input process mentioned above. If the input
is a movie, users can use the YOLO v3 model to track the object’s motion and convert the track of
motion into a displacement image as an input signal. The training process of a move input will do the
same task as the image input process mentioned above. Fig. 18 shows the loss curve during the training
phase of a DNN model.

Figure 18: Loss curve during DNN training phase

This study uses the execution results of four sample programs and the programs they generate
for testing. The execution results are article text [17], graphic image [18], speech signal [19] and video
signal [20], respectively. Table 3 shows the performance evaluation between LCS and PLCS. The LCS
algorithm takes 659.50 s on average for the conformity check of execution results. In contrast, the
PLCS algorithm is 173.25 s.

CMES, 2023, vol.136, no.1 121

Table 3: Performance evaluation between LCS and PLCS

Case Predicted
segment length
(bit)

Number of
comparisons
using LCS

LCS execution
time (s)

Number of
comparisons
using PLCS

PLCS
execution
time (s)

Article text 500 485,809 0.006 288,809 0.0017
Graphic image 1000 1,227,241,024 298 35,001,024 78
Voice signal 10000 21,278,640,384 1397 1,434,480,384 431
Video signal 5000 6,430,917,249 943 400,037,249 184

Average 4125 7,234,321,117 659.50 467,451,866.5 173.25

4 Experimental Results and Discussion

4.1 Experiment Setting

This study uses fast model training on an advanced GPU [21] cluster architecture to reduce the
processing time spent on traditional CPU training models, as shown in Fig. 19. NLTK performed
sentence segmentation and keyword searches to find the corresponding sample programs, and then
users fed those programs into code transformationmodels GPT-2,MASS, and BART. The variational
simhash algorithm checks for code similarity. The Piecewise Longest Common Subsequence algorithm
checks the consistency of the execution results of two different programs. Use LIME to interpret the
model. Users can build all of the above tools in a cloud environment to execute most applications
and generate programs. Therefore, this study uses open source packages to establish the operating
environment, as listed in Table 4.

Figure 19: GPU workstation cluster

Table 4: Open-source package

Package Version

Anaconda2 5.2.0
Python 3.7.5

(Continued)

122 CMES, 2023, vol.136, no.1

Table 4 (continued)

Package Version

Tensorflow 1.14
CUDA 10
XAMPP 3.2.4
NLTK 3.5
GPT-2 0.6
SimHash 2.0.0
LCS −

4.2 Experimental Design

We performed four experiments in this section. Experiment 1 has 4 example sentences, and each
sentence will select the keyword and then use the keyword to retrieve the sample program from the
semantic database. The second experiment was to generate 100 programs separately from each sample
program. Then check the code similarity between the sample program and the generated program, and
verify whether the execution results of the generated program and the sample program are consistent.
And analyze the performance of the generated program. The third experiment is to analyze the
execution speed of the whole system. Experiment 4 explains the model.

This study established a semantic database for the experiment. XAMPP [22] created the keywords,
example program names, example program paths, generated model paths, and other tables in the
database, as shown in Fig. 20.

Figure 20: Table of four sample programs

4.3 Experimental Results

4.3.1 Experiment 1

In Experiment 1, NLTK will be used to segment words from four input example sentences and
select the appropriate keywords accordingly. Experiment 1 adopted four example sentences, as listed
in Table 5. The results of word segmentation using NLTK have shown in Fig. 21.

CMES, 2023, vol.136, no.1 123

Table 5: Example sentences

Case Sentence content

Example 1 The weather is very good today, I want to know the traffic flow.
Example 2 Fit approximate equations through neural network.
Example 3 I want to listen to piano music and relax.
Example 4 I want to turn the photo into a video for viewing, and recall it.

Figure 21: Screenshot of NLTK word segmentation

The keywords have the corresponding sample programs precisely found and pick-up from the
semantic database where the corresponding sample programs have entitled Web-Crawler, Neuralnet-
work, Music, and Makevideo, as listed in Table 6. The sample programs in this study are all obtained
fromGithub. The sample program in Example 1 is related to web crawlers [23], and the corresponding
keywords are weather and traffic. Sample program 1 is to grab the corresponding data on the Internet,
get the weather forecast from the weather center, and automatically assign the traffic jam spots on
Google Maps. Next, in the example program of Example 2, the corresponding keyword is “equation,
neural, network” [24] related to neural network applications. The primary purpose of the example
program is to find an approximate equation by training a neural network. Third, in the sample program
of Example 3, the corresponding keywords are piano and music, which is related to the program
that generates music [25]. The webcam programming goal is to generate a short piece of piano music
automatically. Finally, in Example 4, the keywords corresponding to the sample program are photo
and video. This program can convert photos into videos for users to watch [26].

Table 6: The list of example programs in Experiment 1

Case Extracted keywords from example sentence Sample program

Example 1 weather, traffic Web-Crawler
Example 2 equations, neural, network Neuralnetwork
Example 3 piano, music Music
Example 4 photo, video Makevideo

4.3.2 Experiment 2

Experiment 2 with four sample programs implements in a single GPU workstation. This experi-
ment first imported four sample programs into GPT-2, MASS, and BART to generate the preliminary
programs. In Appendix, we have demonstrated a few samples of the generated preliminary programs.

124 CMES, 2023, vol.136, no.1

After each sample program generates 100 preliminary programs, the next is to check the code similarity
using the variational simhash (VSH) algorithm. We set a qualification level with the pass ratio of code
similarity greater than or equal to 90%. Figs. 22–25 show the pass ratio of the generated preliminary
programs. We have selected some of them with a higher pass ratio (≥90%) called qualified programs.

Figure 22: The pass ratio of the preliminary pro-
grams in Example 1

Figure 23: The pass ratio of the preliminary pro-
grams in Example 2

Figure 24: The pass ratio of the preliminary pro-
grams in Example 3

Figure 25: The pass ratio of the preliminary pro-
grams in Example 4

The third is to compile every qualified program. Once any program has complied successfully,
we execute that program immediately. As shown in Figs. 26–29, PLCS will check the results of the
successfully executed programs, as listed in Table 7. This PLCS is to find the conformity between
the execution result of the sample program and the qualified program. The one with the highest
compliance was called the pocket program.

CMES, 2023, vol.136, no.1 125

(a) Execution result of sample program 1

(b) Execution result of newly generated program 1

Figure 26: Execution result of Example 1

(a) Execution result of sample program 2

(b) Execution result of newly generated program 2

Figure 27: Execution result of Example 2

Figure 28: Execution result of Example 3 Figure 29: Execution result of Example 4

126 CMES, 2023, vol.136, no.1

Table 7: PLCS conformity according to the number of identical codes (unit: %)

Case

Subject Example 1 Example 2 Example 3 Example 4

GPT-2 MASS BART GPT-2 MASS BART GPT-2 MASS BART GPT-2 MASS BART

Sample
program

62 62 62 35218 35218 35218 162964 162964 162964 68087 68087 68087

Generated
program

62 63 62 36513 36102 35783 188218 179341 179376 66537 66983 67210

Identical
codes

61 61 61 35218 35195 34218 161998 160301 163911 65894 65912 66548

PLCS confor-
mity

98.38 97.60 98.38 98.19 98.69 96.3 92.25 93.65 95.75 97.89 97.59 98.37

Finally, we have evaluated the performance of the proposed approaches, including VSH and PLCS
algorithms, according to the execution result of sample programs and their respective pocket programs,
as listed in Tables 8 and 9. Table 8 shows the number of code lines reduced between the sample program
and the pocket program in four cases where the minimum number of code lines either in the sample
program or the pocket program could be out of GPT-2, MASS, or BART. The proposed approach
can reduce the number of code lines by 28.22% and program execution time by 30.98% on average.
As a result, the proposed approach in this study can outperform the previous method published in
2021 [7].

Table 8: Number of code lines reduction

Case

Subject Example 1 Example 2 Example 3 Example 4

Sample program 291 152 174 147
Pocket program 169∗ (174

∧

) 123∗ (128
∧

) 137# (146
∧

) 102∗ (111
∧

)
Reduction ratio (%) 41.92∗ (40.34

∧

) 19.08∗ (15.78
∧

) 21.26# (16.09
∧

) 30.61∗ (24.48
∧

)

Average reduction ratio (%) 28.22 (27.21
∧

)

Note: p.s. abbreviated symbol
∧

: GPT-2, #: MASS, and ∗: BART and parenthesis () indicating the minimum number of code lines of a sample
program.

Table 9: Program execution time reduction (unit: second)

Case
Subject Example 1 Example 2 Example 3 Example 4

Sample program 8.35 10.57 14.58 12.43
Pocket program 6.04∗ (6.97

∧

) 6.89∗ (7.13
∧

) 10.56# (11.71
∧

) 7.97∗ (8.92
∧

)
Reduction ratio (%) 27.66∗ (16.59

∧

) 34.81∗ (32.54
∧

) 27.57# (19.68
∧

) 35.88∗ (28.23
∧

)

Average reduction ratio (%) 30.98 (24.62
∧

)

Note: p.s. abbreviated symbol
∧

: GPT-2, #: MASS, and ∗: BART and parenthesis () indicating the minimum execution time of a sample
program.

CMES, 2023, vol.136, no.1 127

4.3.3 Experiment 3

In this study, the proposed method makes the generated programs produced more efficient
and increases the system’s speed. The first part is to improve code similarity comparison using the
variational simhash (VSH) algorithm that can reduce the number of qualified programs. Reducing the
number of qualified programs deducts the time required to compile all qualified programs. Compared
with simhash (SH) algorithm, the proposed one obtained fewer qualified programs, as shown in
Table 10. Table 10 shows that the reduction ratio of the number of qualified programs is up to 22.08%.

Table 10: Comparison of the number of qualified programs produced

Method Example 1 Example 2 Example 3 Example 4

GPT-2 MASS BART GPT-2 MASS BART GPT-2 MASS BART GPT-2 MASS BART
SH 23 34 41 25 29 32 28 37 42 31 36 40

VSH 19 27 33 19 21 23 22 29 32 25 29 31

Reduction ratio (%) 17.39 20.58 19.51 24.00 27.58 28.12 21.43 21.62 23.81 19.35 19.44 22.50

Average reduction
ratio (%)

22.11

Next, the proposed PLCS can perform the conformity check of the program execution results
faster than the traditional LCS, as shown in Table 11. Therefore, it makes the system run rapidly. In
Table 11, users pick up the best-performing pocket programs generated fromGPT-2,MASS, or BART
in Examples 1, 2, 3, and 4. Then users compare the conformity check using LCS and PLCS according
to the number of string comparisons and its execution time. As a result, PLCS can reduce the number
of character comparisons by 31.82% and the execution time shortened by 32.39%.

In contrast, the previous work [7] employed GPT-2 model, simhash algorithm, and LCS algo-
rithm.

Table 11: Comparison of the conformity check

Case The number of
string
comparisons in
LCS

The number of
string
comparisons in
PLCS

Reduction
ratio (%)

Time for
string
comparisons
in LCS (s)

Time for
string
comparisons
in PLCS (s)

Reduction
ratio (%)

Example 1 3721 3721 0.00 0.0030 0.0030 0.00
Example 2 1,240,307,524 937,040,324 24.45 392 279 28.83
Example 3 26,557,265,296 17,808,785,296 32.94 7839 5268 32.80
Example 4 4,635,839,569 3,368,007,569 27.35 894 622 30.43

Average 8,108,354,027.5 5,528,459,227.5 31.82 2,281.25 1542.25 32.39

The proposed approach in this study uses GPT-2, MASS, or BART models, variational simhash
algorithm, and PLCS algorithm. Tables 10 and 11 confirm that the proposed method improves the
efficiency of producing the generated programs and the execution speed of the conformity check.
Then, users can calculate the entire process’s execution time ttotal in Eq. (17), where tsegmentation represents
the time of selecting keywords after word segmentation using NLTK, tsample program retrieval stands for the
time of searching the corresponding sample program in the semantic database, tcode transformation is the time
of producing the newly generated program from the code transformation models, tcode similarity check denotes
the time for checking code similarity, tcompling qualified program expresses the time for compiling all qualified

128 CMES, 2023, vol.136, no.1

programs, tconformity check indicates the time of the consistency check of execution result, and tpocket program execution

refers to the time to run a pocket program. Finally, users must use the code transformation model to
estimate the time taken for the entire process of code transformation, as listed in Table 12. Eq. (18)
has defined a performance index to express the speedup factor between two different methods. As a
result, the proposed approach outperforms the method mentioned in the previous work, increasing
the speed of the entire code transformation process up to 1.38 times.

ttotal = tsegmentation + tsample program retrieval + tcode transformation + tcode similarity check + tcompling qualified program

+ tconformity check + tpocket program execution (17)

PIproposed =

1

ttotal_proposed

1

ttotal_previous

(18)

Table 12: Execution time of the entire process and performance index

Case ttotal_previous (s) ttotal_proposed (s) PI

Example 1 2635.34 2633.62 1.00
Example 2 3045.50 2922.02 1.04
Example 3 10,478.24 5655.76 1.85
Example 4 3570.98 3098.50 1.15

Average 4932.52 3577.48 1.38

4.3.4 Experiment 4

This study uses LIME to explain the decision-making from AI models or algorithms such as
GPT-2, MASS, BART, simhash, variational simhash, LCS, and PLCS. First, users applied LIME
to interpret the outcomes of the decisions made from three pre-trained code transformation models,
GPT-2, MASS, and BART. Given sample program 1, GPT-2, MASS, or BART produced the newly
generated programs and then sent them into LIME to obtain the explainable results, as shown in
Figs. 30–32. The results show the effect of each line of the program and its probability of being
generated. It shows that pre-trained code transformation models can decide what code should not
be generated, thus making the code transformation process more efficient. As a result, there is no
difference in the code transformation results among the three models mentioned above.

Figure 30: LIME explains the results produced by GPT-2

CMES, 2023, vol.136, no.1 129

Figure 31: LIME explains the results produced by MASS

Figure 32: LIME explains the results produced by BART

Next, users applied LIME to explain the decision-making from the algorithms of code similarity
check, both simhash and variational simhash algorithms. Given the preliminary programs and
the corresponding sample program, simhash or variational simhash produced the newly qualified
programs and then sent them into LIME to obtain the explainable results, as shown in Figs. 33–34.
The weights of the words in a code line affect the result of the code similarity check. Finally, given the
qualified programs and the corresponding sample program, LCS and PLCS produced the comparison
of the execution results of the sample program and the pocket program. They then sent them into
LIME to obtain the explainable results, as shown in Figs. 35 and 36. Consequently, the ASCII or
binary code length affects the execution time significantly.

Figure 33: LIME explains the results produced by simhash

Figure 34: LIME explains the results produced by variational simhash

Figure 35: LIME explains the results produced by LCS

130 CMES, 2023, vol.136, no.1

Figure 36: LIME explains the results produced by LCS

This study uses LIME to explain the AI model or algorithm decision-making and let people learn
how the systemworks to optimize the algorithm and increase the overall efficiency. This study complies
consistently with the European Parliament-issued Ethics Guidelines for Trustworthy AI, proving that
this study is trustworthy.

4.4 Discussion

In terms of code transformation models GPT-2, MASS, and BART introduced in Section 2,
this study has validated that we used a pre-trained model for the transfer learning technique to
train a generative program model running two passes through code transformation models. Then
it can produce higher-performance generated programs newly. However, the followed verification
process in the test phase will encounter the time-consuming problem for the checks of code similarity
and execution result conformity, mainly a considerable amount of output data taking a long time.
Therefore, the proposed variational simhash algorithm can appropriately adjust the weighted values
of keywords or reserved words of Python programming. The accuracy of the code similarity check
can increase by 24%, superior to the simhash algorithm, as described in Section 3.2. Moreover,
compared with LCS described in Section 3.3, the proposed PLCS algorithm can reduce the number
of comparisons by 31.82% of conformity checks and speed up the computation by 32.39%. Finally,
in the experimental results in Section 4, the performance evaluation outcomes have testified that both
proposed approaches can effectively speed up the entire code transformation process significantly.

In Section 4.3.2, according to the execution results of use cases of text, pictures, and videos,
Tables 7 and 8 have shown that the performance of BART is better than that of GPT-2 and MASS.
Regarding the execution result of the use case of speech, the performance of MASS is better than that
of GPT-2 and BART. In Section 4.3.3, compared with simhash algorithm, the proposed variational
simhash algorithm can reduce the number of qualified programs effectively, as listed in Table 10.
Accordingly, it has taken less time to compile all qualified programs. Compared with LCS algorithm,
the proposed PLCS algorithm can reduce the number of string comparisons for performing the
conformity check of program execution results, as shown in Table 11. Thus, it has considerably
reduced the time for the outcome verification and speeds up the entire code transformation process.
In Section 4.3.4, this study uses LIME to interpret the decision-making mechanism of applied
algorithms or models. Figs. 30–36 enable readers to understand better how to produce the outputs
from algorithms or models, such as GPT-2, MASS, BART, SH, VSH, LCS, and PLCS.

Regarding limitations, because this study only designs variational simhash algorithm for Python
programming code, this algorithm for other programming languages is not applicable. Users must
recode such an algorithm according to the keywords or reserved words of the designated programming
language separately. Furthermore, the proposed approach PLCS in this study only has divided a long
string into five different lengths of a segment to implement a segment-by-segment comparison between
two strings. If there are more than five different lengths of a segment to carry out the PLCS algorithm,
it may be possible to get a faster job execution. So far, there are not many keywords and sample
programs stored in the semantic database. As more and more keywords and sample programs have

CMES, 2023, vol.136, no.1 131

stored in the semantic database, it will result in slower keyword searching in the semantic database
and poor overall performance of the code transformation process.

5 Conclusion

The main contribution of this paper is to improve the execution efficiency on both the similarity
check of the program’s code and the conformity check of program execution results, which can speed
up the entire code transformation process significantly. In other words, the proposed approaches have
achieved the objective of this study to implement a high-efficient code transformation process by
reducing the execution time considerably. Compared with the previous work, the proposed approaches
can significantly speed up the entire code transformation process by 1.38 times.Meanwhile, explainable
AI techniques can also interpret the decision-making of AI models. Here we use LIME to let people
learn how the system works to optimize the algorithm and increase the overall efficiency.

In future work, wemust devote ourselves to database searching and variational simhash algorithm
improvements. Regarding database searching, users can develop deep learning methods to optimize
data storage to rapidly retrieve keywords and sample or pocket programs in a semantic database. For
the variational simhash algorithm, we should consider extending the variational simhash algorithm
to several popular programming languages except for Python. Thus, the above improvements can
hopefully conquer the limitations stated in the discussion section.

Data Availability: Readers can find the Sample Program.zip data used to support this study’s findings
deposited in the https://drive.google.com/file/d/1SPfMmKr43bQDvxU5iY9O1jpab7H-GUGn/view?
The article has included the sample sentence data used to support the findings of this study.

Author Contributions: B.R.C. and H.-L.C. conceived and designed the experiments; H.-F.T. collected
the experimental dataset and proofread the paper; B.R.C. wrote the paper.

Funding Statement: This work is fully supported by the Ministry of Science and Technology, Taiwan,
under Grant Nos. MOST 111-2221-E-390-012 and MOST 111-2622-E-390-001.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References

1. Chakaravarthy, R. V., Jiang,H. (2020). Special session: XTA:Open source extensible, scalable and adaptable
tensor architecture for AI acceleration. 2020 IEEE 38th International Conference on Computer Design

(ICCD), pp. 53–56. Hartford, CT, USA.

2. Kumar, S. D., Subha, D. P. (2019). Prediction of depression from EEG signal using long short termmemory
(LSTM). 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), pp. 1248–
1253. Tirunelveli, India.

3. Önder, M., Akgül, Y. S. (2020). Automatic generation of matching clothes design using generative adver-
sarial networks. 2020 28th Signal Processing and Communications Applications Conference (SIU), pp. 1–4.
Gaziantep, Turkey.

4. Bird, S., Klein, E., Loper, E. (2010). Natural language processing with python, analyzing text with the
natural language toolkit. Language Resources and Evaluation, 44(4), 421–424.

https://drive.google.com/file/d/1SPfMmKr43bQDvxU5iY9O1jpab7H-GUGn/view?

132 CMES, 2023, vol.136, no.1

5. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I. (2019). Improving language understanding
by generative pre-training. https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-
unsupervised/language_understanding_paper.pdf.

6. Yanagi, Y., Orihara, R., Sei, Y., Tahara, Y., Ohsuga, A. (2020). Fake news detection with generated
comments for news articles. 2020 IEEE 24th International Conference on Intelligent Engineering Systems

(INES), pp. 85–90. Reykjavík, Iceland.

7. Chang, B. R., Tsai, H. F., Su, P. W. (2021). Code transform model producing high-performance program.
Computer Modeling in Engineering & Science, 129(1), 253–277. DOI 10.32604/cmes.2021.015673.

8. Song, K., Tan, X., Qin, T., Lu, J., Liu, T. Y. (2019). Mass: Masked sequence to sequence pre-training for
language generation. arXiv preprint arXiv: 1905.02450.

9. Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A. et al. (2019). Bart: Denoising sequence-
to-sequence pre-training for natural language generation, translation, and comprehension. arXiv preprint
arXiv: 1910.13461.

10. Yuan, Y., Li, R., Wang, Y., Cao, T., Yang, J. et al. (2020). Application of the maintenance text data of
transformers based on SimHash and Hamming distance algorithm. 2020 IEEE International Conference on
High Voltage Engineering and Application (ICHVE), pp. 1–4. Beijing, China.

11. Qin, M. (2018). Hamming-distance-based binary representation of numbers. 2018 Information Theory and
Applications Workshop (ITA), pp. 1–9. San Diego, CA, USA: IEEE.

12. Chen, X., Peng, A., Tang, B. (2020). Automatic radio map adaptation for wifi fingerprint positioning
systems. 2020 5th International Conference on Communication, Image and Signal Processing (CCISP), pp.
64–69. Chengdu, China.

13. Burghardt, J. (2021). Longest common subsequence problem. https://en.wikipedia.org/wiki/Longest_co
mmon_subsequence_problem.

14. Ribeiro, M. T., Singh, S., Guestrin, C. (2016). “Why should i trust you?”: Explaining the predictions of
any classifier. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining (KDD), pp. 1135–1144. San Francisco, CA, USA.

15. Chou, H. L. (2021). Test1. https://github.com/m1085504/Data-exsaple/blob/main/test.

16. Chou, H. L. (2021). Test2. https://github.com/m1085504/Data-exsaple/blob/main/test1.

17. Chou, H. L. (2021). Exchange-rate. https://github.com/m1085504/Data-exsaple/blob/main/Exchange-Rate.

18. Chou, H. L. (2021). Picture. https://github.com/m1085504/Data-exsaple/blob/main/picture.

19. Chou, H. L. (2021). Voice. https://github.com/m1085504/Data-exsaple/blob/main/voice.

20. Chou, H. L. (2021). Video. https://github.com/m1085504/Data-exsaple/blob/main/video.

21. Mantor, M. (2019). 7NM “NAVI” GPU–A GPU built for performance and efficiency. 2019 IEEE Hot

Chips 31 Symposium (HCS), Cupertino, CA, USA.

22. Agustin, F., Kurniawan, H., Yusfrizal, Y., Ummi, K. (2019). Comparative analysis of application quality
between AppServ and XAMPPwebserver using AHP based on ISO/IEC 25010:2011. 2018 6th International
Conference on Cyber and IT Service Management (CITSM). Parapat Nort Sumatera, Indonesia.

23. Lin, J. W. (2020). Web-crawler. https://github.com/jwlin/web-crawler-tutorial.

24. Chou, H. L. (2021). Network. https://github.com/m1085504/Data-exsaple/blob/main/Network.

25. Chou, H. L. (2021). Music. https://github.com/m1085504/Data-exsaple/blob/main/Mucis.

26. Chou, H. L. (2021). Makevideo. https://github.com/m1085504/Data-exsaple/blob/main/Makevideo.

Appendix

In the Experiment 2, samples of the generated programs are shown in Figs. 37–40.

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://doi.org/10.32604/cmes.2021.015673
https://en.wikipedia.org/wiki/Longest_common_subsequence_problem

CMES, 2023, vol.136, no.1 133

Figure 37: Sampled preliminary program associated with sample program 1 in Experiment 2

Figure 38: Sampled preliminary program associated with sample program 2 in Experiment 2

134 CMES, 2023, vol.136, no.1

Figure 39: Sampled preliminary program associated with sample program 3 in Experiment 2

Figure 40: Sampled preliminary program associated with sample program 4 in Experiment 2

	Implementation of Rapid Code Transformation Process Using Deep Learning Approaches
	1 Introduction
	2 Related Work
	3 Research Method
	4 Experimental Results and Discussion
	5 Conclusion

