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ABSTRACT

In this paper, we use the elementary methods, the properties of Dirichlet character sums and the classical Gauss
sums to study the estimation of the mean value of high-powers for a special character sum modulo a prime, and
derive an exact computational formula. It can be conveniently programmed by the “Mathematica” software, by
which we can get the exact results easily.
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1 Introduction

Let p be an odd prime, the quadratic character modulo p is called the Legendre symbol, which is
defined by

(
a
p

)
=

⎧⎪⎨
⎪⎩

1, if a is a quadratic residue modulo p;
−1, if a is a quadratic non-residue modulo p;
0, if p | a.

Many mathematicians have studied the properties of the Legendre symbol and obtained a series
of important results (see [1–13]). Perhaps the most representative properties of the Legendre’s symbol
are as follows:

Let p and q be two distinct odd primes, then one has the quadratic reciprocal formula (see [14]:
Theorem 9.8 or [15]: Theorems 4–6)(

p
q

)
·
(

q
p

)
= (−1)

(p−1)(q−1)
4 .

For any odd prime p with p ≡ 1 mod 4, there exists two non-zero integers αp and βp such that (see
[15]: Theorems 4–11)

p = α2
p + β2

p . (1)
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In fact, the integers αp and βp in Eq. (1) can be represented by the Jacobsthal sums φ2(r), which is
(see [16]: Definition of the Jacobsthal sums)

φk (r) =
p−1∑
a=1

(
a
p

) (
ak + r

p

)
and αp = 1

2
φ2 (1) , βp = 1

2
φ2 (s) ,

where s is any quadratic non-residue modulo p.

Now we consider a sum A(r) be similar to βp. For any integers r with (r, p) = 1 and k ≥ 0, let
A(r) and Sk(p) be defined as follows:

A (r) = 1 +
p−1∑
a=1

(
a2 + ra

p

)
and Sk (p) = 1

p − 1

p−1∑
r=1

Ak (r) .

In this paper, we give an exact computational formula for Sk(p) with p ≡ 1 mod 6, and prove the
following result:

Theorem. Let p be a prime with p ≡ 1 mod 6, for any integer k, we have the identity

Sk (p) = 1
3

·
[

dk +
(−d + 9b

2

)k

+
(−d − 9b

2

)k
]

,

where d and b are uniquely determined by 4p = d2 + 27b2, d ≡ 1 mod 3 and b > 0.

From this Theorem, we can immediately deduce the following four Corollaries:

Corollary 1. Let p be a prime with p ≡ 1 mod 6, then we have

1
p − 1

p−1∑
r=1

1

1 +
p−1∑
a=1

(
a2 + ra

p

) = 1
p − 1

p−1∑
r=1

1

1 +
p−1∑
a=1

(
a4 + ra

p

) = p
d · (3p − d2)

.

Corollary 2. Let p be a prime with p ≡ 1 mod 6, we have

1
p − 1

p−1∑
r=1

1[
1 +

p−1∑
a=1

(
a2 + ra

p

)]2 = 1
p − 1

p−1∑
r=1

1[
1 +

p−1∑
a=1

(
a4 + ra

p

)]2 = 3 · p2

d2 · (3p − d2)
2 .

Corollary 3. Let p be a prime with p ≡ 1 mod 6, then we have

1
p − 1

p−1∑
r=1

[
1 +

p−1∑
a=1

(
a2 + ra

p

)]4

= 1
p − 1

p−1∑
r=1

[
1 +

p−1∑
a=1

(
a4 + ra

p

)]4

= 6 · p2.

Corollary 4. Let p be a prime with p ≡ 1 mod 6, we have

1
p − 1

p−1∑
r=1

[
1 +

p−1∑
a=1

(
a2 + ra

p

)]6

= 1
p − 1

p−1∑
r=1

[
1 +

p−1∑
a=1

(
a4 + ra

p

)]6

= 18p3 + d2 · (
d2 − 3p

)2
.

Some notes: In our Theorem, we only discuss the case p ≡ 1 mod 6. If p ≡ 5 mod 6, the result is
trivial, see Proposition 6.1.2 in [16]. In this case, for any integer r with (r, p) = 1, we have the identity
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A(r) =1 +
p−1∑
a=1

(
a2 + ra

p

)
= 1 +

p−1∑
a=1

(
a3

p

) (
a3 + r

p

)

=1 +
p−1∑
a=1

(
1 + ra

p

)
=

p−1∑
a=0

(
1 + ra

p

)
= 0.

Thus, for all prime p with p ≡ 5 mod 6 and k ≥ 1, we have Sk(p) = 0.

In addition, our Theorem holds for all negative integers.

Obviously, the advantage of our work is that it can transfer a complex mathematical computa-
tional problem into a simple form suitable for computer programming. It means that for any fixed
prime p with p ≡ 1 mod 6 and integer k, the exact value of Sk(p) can be calculated by our Theorem
and a simple computer program. In Section 4, we give an example to calculate the exact results of the
prime number p within 200 satisfying conditions p ≡ 1 mod 6 and d ≡ 1 mod 3. The exact results of
calculation are summarised in Table 1.

Table 1: The calculation of Sk(p)

p d b k Sk(p)

S1(7) = 0, S2(7) = 14,
S3(7) = −20, S4(7) = 294,

7 1 1 1, 2, 3, 4, 5, 6, 7, 8 S5(7) = −700, S6(7) = 6574
S7(7) = −20580, S8(7) = 152054

S1(19) = 0, S2(19) = 38,
S3(19) = −56, S4(19) = 2166,

19 7 1 1, 2, 3, 4, 5, 6, 7, 8 S5(19) = −5329, S6(19) = 126598
S7(19) = −424536, S8(19) = 7514006

S1(31) = 0, S2(31) = 62,
S3(31) = −308, S4(31) = 5766,

31 4 2 1, 2, 3, 4, 5, 6, 7, 8 S5(31) = −47740, S6(31) = 631102
S7(31) = −6215748, S8(31) = 73396406

S1(61) = 0, S2(62) = 122,
S3(61) = −182, S4(61) = 22326,

61 1 3 1, 2, 3, 4, 5, 6, 7, 8 S5(61) = −55510, S6(61) = 4118782
S7(61) = −14221662, S8(61) = 763839926

S1(73) = 0, S2(73) = 146,
S3(73) = −1190, S4(73) = 31974,

73 7 3 1, 2, 3, 4, 5, 6, 7, 8 S5(73) = −434350, S6(73) = 8418406
S7(73) = −133171710, S8(73) = 2360507414

S1(97) = 0, S2(97) = 194,
S3(97) = 1330, S4(97) = 56454,

97 19 1 1, 2, 3, 4, 5, 6, 7, 8 S5(97) = 645050, S6(97) = 18197014
S7(97) = 262793370, S8(97) = 6153247574

(Continued)
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Table 1 (continued)

p d b k Sk(p)

S1(103) = 0, S2(103) = 206,
S3(103) = −1820, S4(103) = 63654,

103 13 3 1, 2, 3, 4, 5, 6, 7, 8 S5(103) = −937300, S6(103) = 22981486
S7(103) = −405475980, S8(103) = 8087165174

S1(151) = 0, S2(151) = 302,
S3(151) = −1748, S4(151) = 136806,

151 19 3 1, 2, 3, 4, 5, 6, 7, 8 S5(151) = −1319740, S6(151) = 65028622
S7(151) = −836979108, S8(151) = 31764871286

S1(163) = 0, S2(163) = 326,
S3(163) = 3400, S4(163) = 159414,

163 25 1 1, 2, 3, 4, 5, 6, 7, 8 S5(163) = 2771000, S6(163) = 89513446
S7(163) = 1897026600, S8(163) = 53193475094

S1(181) = 0, S2(181) = 362,
S3(181) = −3458, S4(181) = 196566,

181 7 5 1, 2, 3, 4, 5, 6, 7, 8 S5(181) = −3129490, S6(181) = 118693102
S7(181) = −2379038298, S8(181) = 75272130806

2 Several Lemmas

In this section, we give some simple Lemmas, which are necessary in the proofs of our Theorem.
In addition, we need some properties of the classical Gauss sums and character sums, which can be
found in many number theory books, such as [14,15] or [17], and we will not repeat them. First, we
have the following:

Lemma 1. Let p be a prime with p ≡ 1 mod 3, for any third-order character λ modulo p, we have
the identity

τ 3 (λ) + τ 3
(
λ
) = dp,

where τ (χ) =
p−1∑
a=1

χ (a) e
(

a
p

)
denotes the classical Gauss sums with e(y) = e2π iy and i2 = −1, d is the

same as the one in the Theorem.

Proof. See references [18] or [19].

Lemma 2. Let p be an odd prime, for any non-principal character χ modulo p, we have the identity

τ
(
χ 2

) = χ 2(2)

τ (χ2)
· τ (χ) · τ (χχ2) ,

where χ2 =
(

∗
p

)
denotes the Legendre’s symbol modulo p.
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Proof. From the properties of the classical Gauss sums we have
p−1∑
a=0

χ
(
a2 − 1

) =
p−1∑
a=0

χ
(
(a + 1)2 − 1

) =
p−1∑
a=1

χ (a) χ (a + 2)

= 1
τ (χ)

p−1∑
b=1

χ (b)

p−1∑
a=1

χ (a) e
(

b(a + 2)

p

)
= τ (χ)

τ (χ)

p−1∑
b=1

χ (b) χ (b) e
(

2b
p

)

= τ (χ)

τ (χ)

p−1∑
b=1

χ
2
(b) e

(
2b
p

)
= χ 2 (2) · τ (χ) · τ

(
χ

2
)

τ (χ)
. (2)

On the other hand, for any integer b with (b, p) = 1, from the identity
p−1∑
a=0

e
(

ba2

p

)
= 1 +

p−1∑
a=1

(1 + χ2 (a)) e
(

ba
p

)
=

p−1∑
a=1

χ2 (a) e
(

ba
p

)
= χ2 (b) · τ (χ2)

we also have
p−1∑
a=0

χ
(
a2 − 1

) = 1
τ (χ)

p−1∑
a=0

p−1∑
b=1

χ (b) e
(

b(a2 − 1)

p

)

= 1
τ (χ)

p−1∑
b=1

χ (b) e
(−b

p

) p−1∑
a=0

e
(

ba2

p

)
= τ (χ2)

τ (χ)

p−1∑
b=1

χ (b) χ2 (b) e
(−b

p

)

= χ2 (−1) χ (−1) τ (χ2) · τ (χχ2)

τ (χ)
. (3)

From Eqs. (2) and (3) we have the identity

τ
(
χ

2
) = χ

2
(2) · χ2 (−1) χ (−1) · τ (χ2) · τ (χχ2)

τ (χ)

or

τ
(
χ 2

) = χ 2(2)

τ (χ2)
· τ (χ) · τ (χχ2) .

This proves Lemma 2.

Lemma 3. Let p be a prime p with p ≡ 1 mod 6, then for any integer r with (r, p) = 1 and three
order character λ modulo p, we have the identity
p−1∑
a=1

(
a2 + ra

p

)
= −1 + 1

p
· (

λ (2r) · τ 3 (λ) + λ (2r) · τ 3
(
λ
))

.

Proof. From the characteristic function of the cubic residue modulo p, we have

1
3

· (
1 + λ (a) + λ (a)

) =
{

1 if a is a cubic residue modulo p;
0 otherwise.

(4)
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Applying Eq. (4) we have
p−1∑
a=1

(
a2 + ra

p

)
=

p−1∑
a=1

χ2

(
a3)

χ2

(
a3 + r

) =
p−1∑
a=1

χ2

(
a3

)
χ2

(
a3 + r

)

=
p−1∑
a=1

(
1 + λ (a) + λ (a)

)
χ2 (a) χ2 (a + r)

=
p−1∑
a=1

χ2 (1 + ra) +
p−1∑
a=1

λ (a) χ2 (a) χ2 (a + r) +
p−1∑
a=1

λ (a) χ2 (a) χ2 (a + r)

= −1 + λ (r)
p−1∑
a=1

λ (a) χ2 (a) χ2 (a + 1) + λ (r)
p−1∑
a=1

λ (a) χ2 (a) χ2 (a + 1) . (5)

From the properties of the classical Gauss sums, we have
p−1∑
a=1

λ (a) χ2 (a) χ2 (a + 1) = 1
τ(χ2)

·
p−1∑
b=1

χ2 (b)

p−1∑
a=1

λ (a) χ2 (a) e
(

b(a + 1)

p

)

= 1
τ(χ2)

· τ (λχ2) · τ
(
λ
)

. (6)

Taking χ = λ in Lemma 2, we have

τ
(
λ
) = λ (2)

τ (χ2)
· τ (λ) · τ (λχ2) . (7)

Note that τ (λ) · τ
(
λ
) = p, from Eqs. (6) and (7) we have

p−1∑
a=1

λ (a) χ2 (a) χ2 (a + 1) = λ(2)

p
· τ 3

(
λ
)

. (8)

Similarly, we also have
p−1∑
a=1

λ (a) χ2 (a) χ2 (a + 1) = λ (2)

p
· τ 3 (λ) . (9)

Combining Eqs. (5), (8) and (9) we can deduce that
p−1∑
a=1

(
a2 + ra

p

)
= −1 + 1

p
· (

λ (2r) · τ 3 (λ) + λ (2r) · τ 3
(
λ
))

.

This proves Lemma 3.

Lemma 4. Let p be any odd prime with p ≡ 1 mod 6, then for any integers k ≥ 3 and r with
(r, p) = 1, we have the third order recursive formula

Ak(r) = 3p · Ak−2(r) + (
d3 − 3dp

) · Ak−3(r),
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where d is the same as defined in the Theorem.

Proof. Note that λ3 = λ
3 = χ0, the principal character modulo p, from Lemma 1 and Lemma 3

we have

A3 (r) = 1
p3

· (
λ (2r) · τ 3 (λ) + λ (2r) · τ 3

(
λ
))3

= 1
p3

· [
τ 9 (λ) + τ 9

(
λ
) + 3p3 · (

λ (2r) · τ 3 (λ) + λ (2r) · τ 3
(
λ
))]

= 1
p3

·
[(

τ 3 (λ) + τ 3
(
λ
))3 − 3p3

(
τ 3 (λ) + τ 3

(
λ
)) + 3p4 · A (r)

]
= d3 − 3dp + 3p · A(r). (10)

Indeed, for any integer k ≥ 3, from Eq. (10) we have the third order recursive formula

Ak(r) = Ak−3(r) · A3(r) = 3p · Ak−2(r) + (
d3 − 3dp

) · Ak−3(r).

This proves Lemma 4.

Lemma 5. Let p be any odd prime with p ≡ 1 mod 6, then we have

S0(p) = 1, S1(p) = 0, S2(p) = 2p, S3(p) = d · (
d2 − 3p

)
and

Sk(p) = 3p · Sk−2(p) + (
d3 − 3pd

) · Sk−3(p) for all k ≥ 4.

Proof. From the definition

Sk (p) = 1
p − 1

p−1∑
r=1

Ak (r)

and the orthogonality of characters modulo p, we have

S0 (p) = 1, S1 (p) = 1
p(p − 1)

p−1∑
r=1

(
λ (2r) · τ 3 (λ) + λ (2r) · τ 3

(
λ
)) = 0, (11)

S2 (p) = 1
p2(p − 1)

p−1∑
r=1

(
λ (2r) · τ 3 (λ) + λ (2r) · τ 3

(
λ
))2 = 2p. (12)

From Eq. (10) we also have

S3 (p) = 1
p3(p − 1)

p−1∑
r=1

(
λ (2r) · τ 3 (λ) + λ (2r) · τ 3

(
λ
))3

= 1
p − 1

p−1∑
r=1

(
d3 − 3dp + 3p · A (r)

) = d · (
d2 − 3p

)
. (13)

If k ≥ 4, then from Lemma 4 we have
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Sk(p) = 3p · Sk−2(p) + (
d3 − 3dp

) · Sk−3(p). (14)

Now Lemma 5 follows from Eqs. (11)–(14).

3 Proof of the Theorem

In this section, we complete the proof of our Theorem. It is clear that the characteristic equation
of the third order linear recursive formula

Sk(p) = 3p · Sk−2(p) + (
d3 − 3dp

) · Sk−3(p) (15)

is

x3 − 3px − (
d3 − 3dp

) = 0. (16)

Note that 4p = d2 + 27b2, from Eq. (16) we have

(x − d)

(
x + d + 9b

2

) (
x + d − 9b

2

)
= 0.

It is clear that the three roots of Eq. (16) are x1 = d, x2 = −d+9d
2

and x3 = −d−9d
2

. Indeed, the general
term of Eq. (15) is

Sk (p) = C1 · dk + C2 ·
(−d + 9b

2

)k

+ C3 ·
(−d − 9b

2

)k

, k ≥ 0. (17)

From Lemma 5 we have⎧⎪⎨
⎪⎩

C1 + C2 + C3 = 1,
C1 · d + C2 · (−d+9b

2

) + C3 · (−d−9b
2

) = 0,
C1 · d2 + C2 · (−d+9b

2

)2 + C3 · (−d−9b
2

)2 = 2p.

(18)

Solving the Eq. (18) we can get C1 = C2 = C3 = 1
3
. From Eq. (17) we have

Sk (p) = 1
3

[
dk +

(−d + 9b
2

)k

+
(−d − 9b

2

)k
]

, k ≥ 0.

This proves our Theorem.

Obviously, using Lemma 4 we can also extend k in Lemma 5 to all negative integers, which leads
to the Corollary 1 and the Corollary 2.

This completes the proofs of our all results.

4 Conclusion

In this paper, we give an exact computational formula for Sk(p) with p ≡ 1 mod 6, which is, for
any integer k, we have the identity

Sk (p) = 1
3

·
[

dk +
(−d + 9b

2

)k

+
(−d − 9b

2

)k
]

,

where d and b are uniquely determined by 4p = d2 + 27b2, p ≡ 1 mod 6 and b > 0.
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Meanwhile, the problems of calculating the mean value of high-powers of quadratic character
sums modulo a prime are given.

In the end, we use the mathematical software “Mathematica” to program and calculate the exact
values of S1(p) to S8(p) of the prime number p within 200 satisfying conditions p ≡ 1 mod 6 and
d ≡ 1 mod 3, as shown in Table 1. Its application can also extend to Sk(p) that satisfies conditions
p ≡ 1 mod 6 and d ≡ 1 mod 3 (where 4p = d2 + 27b2) for any k. See the Appendix A for this specific
computer program.
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Appendix A.

Clear[b]

Clear[p];

Clear[a];

Clear[d];

a = 1;

Array[p, 20];

For[i = 1, i <= 10000, i + +,

If [Mod[Prime[i], 6] == 1,

p[a] = Prime[i];

If [a == 20, Break[], ]

a + +;

, ]

]

a = 1;

Array[d, 20];

For[i = 1, i <= 10000, i + +,

If [Mod[i, 3] == 1,

d[a] = i;

If [a == 20, Break[], ]

a + +;

, ]

]

S[pi, di, bi, ki]: = (1/3) ∗ (diki + ((−di + 9 ∗ bi)/2)ki + ((−di −9 ∗ bi)/2)ki)

For[i = 1, i <= 20, i + +,

For[j = 1, j <= 20, j + +,

b = Sqrt[(4 ∗ p[i] − d[j] ∗ d[j])/27];

If [Element[b, Integers],
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For[k = 1, k <= 8, k + +,

Print["p = ", p[i], "d = ", d[j], "b = ", b, "k = ", k,

"S = ", S[p[i], d[j], b, k]];

],

]

]

]
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