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ABSTRACT

As 3D acquisition technology develops and 3D sensors become increasingly affordable, large quantities of 3D point
cloud data are emerging. How to effectively learn and extract the geometric features from these point clouds
has become an urgent problem to be solved. The point cloud geometric information is hidden in disordered,
unstructured points, making point cloud analysis a very challenging problem. To address this problem, we propose
a novel network framework, called Tree Graph Network (TGNet), which can sample, group, and aggregate local
geometric features. Specifically, we construct a Tree Graph by explicit rules, which consists of curves extending in
all directions in point cloud feature space, and then aggregate the features of the graph through a cross-attention
mechanism. In this way, we incorporate more point cloud geometric structure information into the representation
of local geometric features, which makes our network perform better. Our model performs well on several basic
point clouds processing tasks such as classification, segmentation, and normal estimation, demonstrating the
effectiveness and superiority of our network. Furthermore, we provide ablation experiments and visualizations
to better understand our network.
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1 Introduction

With the rapid development of 3D vision sensors such as RGB-D cameras, 3D point cloud data
has proliferated, which can provide rich 3D geometric information. The analysis of 3D point clouds is
receiving more and more attention as they can be used in many aspects such as autonomous driving,
robotics, and remote sensing [1]. Intelligent (automatic, efficient, and reliable) feature learning and
representation of these massive point cloud data is a key problem for 3D understanding (including 3D
object recognition, semantic segmentation and 3D object generation, etc.).

Thanks to deep learning’s powerful ability to learn features, deep learning has attracted extensive
attention. It has also achieved fruitful results in the field of image understanding over the past few years
[2–10]. As traditional 3D point cloud features rely on artificial design, they cannot describe semantic
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information at a high level, making adaptations to complex real-life situations difficult. However, deep
learning methods with autonomous feature learning capacity have great advantages in these aspects.
Since point clouds are disordered and unstructured, traditional deep learning methods that work well
on 2D images cannot be directly used to process point clouds. Inferring shape information from these
irregular points is complicated.

In order to process point clouds using raw data, Qi et al. proposed PointNet [8], which uses
multilayer perceptrons (MLPs) with shared parameters to map each point to a high-dimensional
feature space, and then passes in a Max Pooling layer to extract global features. Since PointNet mainly
focuses on the overall features and ignores the neighborhood structure information, it is difficult
for PointNet to capture local geometric structure information. Qi et al. proposed PointNet++ [9],
which introduces a multilayer network structure in PointNet to better capture geometric structure
information from the neighborhood of each point. The network structure for PointNet++ is similar
to image convolutional neural network. PointNet++ extracts local neighborhood features using
PointNet as basic components and abstracts the extracted features layer by layer using a hierarchical
network structure. Due to their simplicity and powerful presentation, many networks have been
developed based on PointNet and PointNet++ [6,11–18].

Local feature aggregation is an important basic operation that has been extensively studied in
recent years [6,14,19], which is mainly used to discover the correlations between points in local
regions. For each key point, its neighbors are first grouped according to predefined rules (e.g., KNN).
Next, the features between query points and neighboring points are passed into various point-based
transformations and aggregation modules for local geometric feature extraction.

Local feature aggregation can incorporate some prior knowledge into local features by predefined
rules. For example, KNN-based approaches explicitly assume that local features are related to
neighboring points and independent of non-adjacent features in same layers. They incorporate this
information into local features by KNN. However, the above operation lacks long-range relations,
Li et al. proposed a non-local module to capture them [6]. It not only considers neighboring points,
but also the whole point cloud sampling points. It incorporates this priori information into the local
features by L-NL Module.

We argue that these approaches are insufficient to extract long-range relations. For this reason, we
propose an end-to-end point cloud processing network named TGNet, which can efficiently, robustly,
and adequately depict the geometry of point clouds. Fig. 1 intuitively compares our aggregation
method with local and non-local aggregation methods. Compared with local aggregation approaches,
our method can better capture long-range dependencies. Compared with non-local aggregation
approaches, our method avoids the global point-to-point mapping and can extract geometric features
more efficiently.

Our main contributions can be summarized as follows:

1. We propose a novel robust end-to-end point cloud processing network, named TGNet, which
can effectively enhance point clouds processing.

2. We design a local feature grouping block TGSG (Tree Graph Sampling and Grouping) that
enables our network to better trade off the balance of local and long-range dependencies.

3. We further design a transformer-based point cloud aggregation block TGA, which can
efficiently aggregate Tree Graph features.



CMES, 2023, vol.136, no.1 557

Figure 1: Common aggregations and tree graph (our) aggregation. Red points denote key points, yellow
points denote query points and green circles denote query range. Left: local aggregation method.
Middle: non-local aggregation method. Right: our aggregation method (Note that our query points
are in the feature space)

Our approach achieves state-of-the-art performance in extensive experiments on point cloud
classification, segmentation, and normal estimation, which validates the effectiveness of our work.

We note that an earlier version of this paper appeared in [20]. This manuscript has been expanded,
revised, and refined based on conference papers. Our description of the method provides a more
complete explanation. In the experiments section, supplementary experiments and visualizations have
been added to further understand our model.

2 Related Work
2.1 Deep Learning on Point Cloud

The biggest challenge of point cloud processing is its unstructured representations. According
to the form of the data input to neural network, existing learning methods can be classified as
volume-based [2,4,5,7,10], projection-based [3,21–24], and point-based methods [8,9,11,14,16–18,25–
31]. Projection-based methods project an unstructured point cloud into a set of 2D images, while
volume-based methods transform the point cloud into regular 3D grids. Then, the task is completed
using 2D or 3D convolutional neural networks. These methods do not use raw point cloud directly
and suffer from explicit information loss and extensive computation. For volume-based methods, low-
resolution voxelization will result in the loss of detailed structural information of objects, while high-
resolution voxelization will result in huge memory and computational requirements. For projection-
based methods, they are more sensitive to viewpoints selection and object occlusion. Furthermore,
such methods cannot adequately extract geometric and structural information from 3D point clouds
due to information loss during 3D-to-2D projection.

PointNet is a pioneer of point-based methods, which directly uses raw point clouds as input to
neural networks to extract point cloud features through shared MLP and global Max Pooling. To
capture delicate geometric structures from local regions, Qi et al. proposed a hierarchical network
PointNet++ [9]. Local features are learned from local geometric structures and abstracted layer by
layer. The point-based approach does not require any voxelization or projection and thus does not
introduce explicit information loss and is gaining popularity. Following them, recent work has focused
on designing advanced convolution operations, considering a wider range of neighborhoods and
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adaptive aggregation of query points. In this paper, point-based approach is also used to construct
our network.

2.2 Advanced Convolution Operations
Although unstructured point clouds make it difficult to design convolution kernels, advanced

convolution kernels in recent literature have overcome these drawbacks and achieved promising results
on basic point cloud analysis tasks. Current 3D convolution methods can be divided into continuous
[11,13,16,17], discrete [28,32] and graph-based convolution methods [12]. Continuous convolution
methods define the convolution operation depending on the spatial distribution of local regions.
The convolution output is a weighted combination of adjacent point features, and the convolution
weights of adjacent points are determined based on their spatial distribution to the centroids. For
example, RS-CNN [17] maps predefined low-level neighborhood relationships (e.g., relative position
and distance) to high-level feature relationships via MLPs and uses them to determine the weights of
neighborhood points. In PointConv [16], the convolution kernel is considered as a nonlinear function
of local neighborhood point coordinates, consisting of weight and density functions. The weight
functions are learned by MLPs, and the kernelized density estimates are used to learn the density
functions.

Discrete convolution method defines a convolution operation on regular grids, where the offset
about the centroid determines the weights of the neighboring points. In GeoConv [32], Edge features
are decomposed into six bases, which encourages the network to learn edge features independently
along each base. Then, the features are aggregated according to the geometric relationships between
the edge features and the bases. Learning in this way can preserve the geometric structure information
of point clouds.

Graph-based convolution methods use a graph to organize raw unordered 3D point cloud, where
the vertices of the graph are defined by points in the point cloud, and the directed edges of the graph
are generated by combining the centroids and neighboring points. Features learning and aggregation
are performed in spatial or spectral domains. In DGCNN [12], its graph is built in feature space and
changes as features are extracted. EdgeConv is used to generate edge features and search for neighbors
in their feature space.

2.3 Wider Range of Neighborhoods
Due to the geometric structure of the point cloud itself, it is difficult to determine precisely

which global points are associated with local point cloud features. During the information extraction
and abstraction process, local features are roughly assumed to be associated only with neighboring
points. Recent state-of-the-art methods in literatures attempt to address the above difficulties and
achieve promising results on basic point cloud analysis tasks. SOCNN [33] and PointASNL [6] sample
global and local points and then fuse them with features. With these computed features, point cloud
processing can be executed with greater accuracy and robustness.

Unlike all existing sampling methods, we follow explicit rules for sampling and grouping points on
the surface of the point cloud. In this way, our local features will contain rich information describing
the shape and geometry of the object.

2.4 Adaptive Aggregation
There are currently two main types of feature aggregation operators: local and non-local. Local

feature aggregation operators fuse existing features of neighboring points to obtain new features. After
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that, the new features are abstracted layer by layer through a hierarchical network structure to get
global features. Different from the local feature aggregation operator, non-local aggregation operators
introduce global information when computing local features. Non-local aggregation operators start
with nonlocal neural networks [34], which essentially use self-attention to compute a new feature by
fusing the features of neighboring points with global information. Due to the success of the trans-
former in vision tasks [35–37] and the fact that the transformer [38] itself has inherently permutation
invariant and is well suited for point cloud processing, the transformer has received extensive attention
in extracting non-local features for point cloud processing [14,19]. As a representative, Qi et al. propose
PCT [14], where global features are used to learn multi-to-one feature mappings after transformation
and aggregation.

Unlike the two feature aggregation operators mentioned above, we argue that point cloud
processing can be better achieved by taking special consideration of local geometry. By aggregating
additional geometric information, local features will carry more information and thus achieve better
results.

3 Method

In this paper, we design a novel framework TGNet (Tree Graph Network), which improves the
ability to extract local features and brings the global information into point representation. TGNet
consists of several TGSG (Tree Graph Sampling and Grouping) blocks for sampling and grouping and
TGA (Tree Graph Aggregation) blocks for aggregating features. For each block, the TGSG block first
receives the output from the previous block. It then follows explicit rules for sampling, grouping, and
simple processing, which can assemble additional information about the geometric structure of local
regions. TGA block uses a self-attention mechanism to aggregate Tree Graph to obtain new features
for the next module.

We first introduce the TGSG block in Section 3.1 and the TGA block in Section 3.2, respectively.
Then, the TGSG and TGA blocks are combined in a hierarchical manner to form our TGNet proposed
in Section 3.3.

3.1 Tree Graph Sampling and Grouping (TGSG) Block
A point cloud is a set of three-dimensional coordinate points in spatial space, denoted as P =

{p1, p2, . . . , pn} ∈ R
N×3. Relatively, its features can be expressed as F = {f1, f2, . . . , fn} ∈ R

N×3 which
can represent a variety of information, including color, surface normal, geometric structure, and high-
level semantic information. In a hierarchical network framework, the output of the previous layer is
the input of the subsequent layer, and the subsequent layer abstracts the features of the previous layer.
In different feature layers, the feature F of the point cloud carries different information.

We first construct a graph G = (V , E) containing nodes V and edges E based on the spatial
relationships of the 3D point cloud. Each vertex corresponds to a point in the point cloud, and each
point is connected to its spatially adjacent K nearest points by edges. In this way, we transform the
point cloud into a graph feature space.

Using the definition of the curve in CurveNet [39], a curve of length l can be generated from a
series of points in the features space F such that ci = {ci,1, ci,2, . . . , ci,l} ∈ R

D×l. Unlike them, we adopt
a deterministic strategy where our curves follow a specific explicit rule π extending in the feature
space. Deterministic strategies can reduce learnable parameters and achieves similar results as non-
deterministic strategies. In Fig. 2a, m curves of length l extending in different directions form a Tree
Graph, such that TG = {c1, c2, . . . , cm} ∈ R

D×l×m. Local point clouds with different geometries can form
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different Tree Graph, while these Tree Graph can carry their geometric information. Fig. 2a shows a
Tree Graph with 5 curves.

Figure 2: Illustration of TGSG block. (a) Tree graph with 5 curves in point cloud feature space. (b)
illustration for tree graph. ci−1, ci and ci+1 denote curves of tree graph. Red balls denote the nodes of
curves. Green balls in the center are the key point for feature aggregation. Green circle denotes the
query range of node ci+1,3. (c) Convolution kernel operation on image I. (d) Using the GAP operation
on the feature map to create the vector z

Next, we will describe the construction process of Tree Graph in detail as shown in Fig. 2b. We
first randomly sample the starting points in feature space to get Ps = {ps1, ps2, . . . , psv|ps∗ ∈ P} and the
corresponding feature Fs = {fs1, fs2, . . . , fsv|fs∗ ∈ F}. Due to the high computational efficiency of KNN,
we obtain the neighborhood N (f) of each point feature f by this method. Then, we iteratively obtain
the nodes ci,j of the curve ci in the point cloud using predefined strategy π :

ci,j+1 = π(ci,j) (1)

where ci,0 is numerically equal to fs, that is ci,0 = fs.

In our neural network model TGNet, we use a simpler approach as strategy π , which can ensure
that the curves extend as far as possible in all directions. The node ci,j+1 on ci can be obtained by
executing the predefined policy π .

ci,j+1 = π
(
ci,j

) =

⎧⎪⎨
⎪⎩

argmax
fk

(
DVT

i fk

)
j = 0, k = 1, 2, . . . , K

argmax
ci,j,k

((
DVT

i + ti,j

)T
ci,j,k

)
j �= 0, k = 1, 2, . . . , K

(2)
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where DVi is the learnable direction vector of the ith curve ci, fk ∈ N (fs) is the neighboring feature of
p and ci,j,k ∈ N (ci,j) is neighboring feature of ci,j. ti,j represents the direction vector between point ci,j−1

and ci,j:

ti,j = ci,j − ci,j−1 (3)

In this way, we can obtain a Tree Graph that contains both local and non-global long-range
information.

When the number of m increases, the query points and query ranges will be more clustered around
the center point because the curve will become more. When the number of l increases, the query points
and query ranges will be farther from the center point because the curve will be longer. So, we can
adjust m and l to enable the network to balance local information and long-range dependencies. When
the product of m and l is constant, increasing the length of l enables the network to obtain more
information over long distances. Conversely, decreasing l allows the network to focus more on local
information.

In Fig. 2c, we convert the graph TG into an image I ∈ R
m×l×D of size m× l with dimension D using

the following manner:

I =

⎡
⎢⎢⎢⎢⎣

c1

c2

c3

...
cm

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

c1,1 c1,2 c1,3 · · · c1,l

c2,1 c2,2 c2,3 · · · c2,l

c3,1 c3,2 c3,3 · · · c3,l

...
...

...
. . .

...
cm,1 cm,2 cm,3 · · · cm,l

⎤
⎥⎥⎥⎥⎦

m×l×D

(4)

Note that ci,j an element F.

In the above way, we obtain a tensor similar to an image feature map. In Fig. 2d, we use a simple
method to process the image I to get local features. We obtain the local features I′ ∈ R

Ns×D′×l×m of the
starting points of each Tree Graph image Is = {I1, I2, . . . , INs} ∈ R

Ns×D×l×m by a convolution kernel of
size 3 × 3. Then use GAP (global average pooling) on the image to get z ∈ R

Ns×D′ . Finally, we convert
image Is to a vector z to represent the entire Tree Graph, which is used to represent the local geometric
structure information.

3.2 Tree Graph Aggregation (TGA) Block
With the TGSG block, we obtain a Tree Graph containing local information and non-global long-

range dependency information. In this subsection, we will use TGA block to fuse Tree Graph and
global information into local features. To simplify the notation, we define the local features of the
point cloud as x ∈ R

N×D. We take advantage of the cross-attention to fuse feature z into local feature
x. The multi-head cross attention from local to global is defined as follows:

x′ = x + LN
([

Attn
(
zhW

Q
h , xhW

K
h , xhW

V
h

)])
h=1:hm

Wo (5)

With multi-head cross attention (MCA) and feed forward layer (FFN), H can be computed as:

H = x′ + LN(FFN(x′)) (6)

x and z are split as x = [xh] and z = [zh](1 ≤ h ≤ hm) for multi-head attention with hm heads. WQ
h ,

WK
h and WV

h are the projection matrix in the hth head. Wo
h is used to merge multiple heads together. LN
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is layer normalization function. Attn is standard attention function as:

Attn (Q, K, V) = softmax
(

QKT

√
dk

)
V (7)

Absolute and relative positions of the point cloud are very important. As shown in Fig. 3, we
incorporate them into. H. We concatenate P (the absolute spatial positions), PK (neighboring points
spatial positions) and P − PK . The concatenated features are mapped to higher dimensions through a
single layer MLP. Hk − H added with PK are passed into another MLP layer and Max Pooling layer
get result xout.

Figure 3: Tree graph aggregation block

3.3 Tree Graph Network (TGNet)
Fig. 4 shows the architecture of a TGNet (Tree Graph network), which stacks several TGSG

blocks and TGA blocks. It starts with a local feature extraction block (LFE), which takes key points’
absolute position, neighboring points’ relative position, and neighboring points’ absolute position as
input. LFE contains an MLP layer and a Max Pooling layer to initially extract point cloud features.
In all TGSGs, the length and the number of curves are set to 5. In all TGAs, the number of attention
heads is 3, and the ratio in FFN is 2 instead of 4 to reduce computations. In this paper, TGNet is used
for point cloud classification, segmentation, and surface normal estimation, which can all be trained
in an end-to-end manner.

For classification, the point cloud is passed into a local feature extraction block (LFE) to initially
extract local features. The extracted local features are abstracted layer by layer through 8 TGSA and
TGA modules, and the global features are obtained by Max-Pooling. Finally, we get class scores by
using two layers of MLPs. The category with the highest score is what TGNet’s prediction.

The point cloud segmentation task is similar to the normal estimation task, and we use almost
the same architecture. We all use attention U-Net style networks to learn multi-level representations.
For segmentation, its outputs per point prediction score for semantic labels. For normal estimation, it
outputs per point normal prediction.
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Figure 4: Top: TGNet applied to point cloud classification task. Bottom: TGNet applied to point cloud
segmentation and normal estimation task

4 Experiments

We evaluate our network on multiple point cloud processing tasks, including point cloud clas-
sification, segmentation, and normal estimation. To further understand TGNet, we also performed
ablation experiments and visualizations to help further understand our network.

4.1 Classification
We evaluate TGNet on ModelNet40 [2] for classification, which contains 12311 CAD models of

3D objects belonging to 40 categories. The dataset consists of two parts: the training dataset contains
9843 objects, and the test dataset contains 2468 objects. We uniformly sample 1024 points from the
surface of each CAD model. For processing purposes, all 3D point clouds are normalized to a unit
sphere. During training, we augment the data by scaling in the range [0.67, 1.5] and panning in the
range [−0.2, 0.2]. We trained our network for 200 epochs, using SGD with a learning rate of 0.001,
and reduced the learning rate to 0.0001 using cosine annealing. The batch sizes for training and testing
are set to 48 and 24, respectively.

Table 1 reports the results of our TGNet and current most advanced methods. In contrast to
other methods, ours uses only 1024 sampling points and does not require additional surface normals.
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In addition, when we do not use the voting strategy [17], our method achieves a state-of-the-art
score of 93.8, which is already better than many methods. Surprisingly, our method achieves 94.0
accuracies using the voting strategy. These improvements demonstrate the robustness of TGNet to
various geometric shapes.

Table 1: Classification results on ModelNet40

Method Input Points Acc

Pointwise-CNN [29] xyz 1024 86.1
PointNet [8] xyz 1024 89.2
MO-Net [40] xyz 1024 89.3
KD-Net (depth = 10) [29] xyz 1024 90.6
PointNet++ [9] xyz 1024 90.7
SO-Net [18] xyz, nr 2048 90.9
PAT [41] xyz 1024 91.7
PointCNN [28] xyz 1024 92.2
DGCNN [12] xyz 1024 92.2
PointWeb [42] xyz 1024 92.3
PCNN [15] xyz 1024 92.3
SpiderCNN [43] xyz, nr 5120 92.4
PointConv [16] xyz, nr 1024 92.5
KPConv [13] xyz 1024 92.7
PointASNL [6] xyz 1024 92.9
RS-CNN [17] xyz 1024 92.9
PCT [14] xyz 1024 93.2
DensePoint [11] xyz 1024 93.2
GeoCNN [32] xyz 1024 93.4
RS-CNN [17]∗ xyz 1024 93.6
PointTransformer [19] xyz 1024 93.7
TGNet (ours) xyz 1024 93.8
TGNet (ours)∗ xyz 1024 94

4.2 Segmentation
We evaluate the ability of our network for fine-grained shape analysis on the ShapeNetPart

[44] benchmark. ShapeNetPart dataset contains 16881 shape models in 16 categories, labeled as 50
segmentation parts. We use 12137 models for training and the rest for validation and testing. We
uniformly select 2048 points from each model as input to our network. We train our network for
200 epochs with a learning rate of 0.05 and a batch size of 32. Table 2 summarizes the comparison
of current advanced methods, where TGNet achieves the best performance of 86.5% overall mIoU.
Segmentation is a more difficult task than shape classification. Even without fine-tuning parameters,
our method still achieves high scores. The effectiveness of our Tree Graph features strategy is
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confirmed. Fig. 5 shows our segmentation results. The segmentation predictions made by TGNet are
very close to the ground truth.

Table 2: Segmentation results on shapnetpart

Method Input Points mIoU

PointNet [8] xyz 2048 83.7
SO-Net [18] xyz, nr 1024 84.6
DGCNN [12] xyz 2048 85.1
PointNet++ [9] xyz, nr 2048 85.1
PointCNN [28] xyz 2048 86.1
PointASNL [6] xyz 2048 86.1
RS-CNN [17] xyz 2048 86.2
PCT [14] xyz 2048 86.4
TGNet (ours) xyz 2048 86.5

Figure 5: Segmentation results on ShapeNetPart benchmark. Top: ground truth; Bottom: ours

4.3 Normal Estimation
Normal estimation is essential to many 3D point cloud processing tasks, such as 3D surface recon-

struction and rendering. It is a very challenging task that requires a comprehensive understanding of
object geometry. We evaluate normal estimation on the ModelNet40 dataset as a supervised regression
task. We train for 200 epochs using a structure similar to point cloud segmentation, where the input is
1024 uniformly sampled points. Table 3 shows the average cosine error results for TGNet and current
state-of-the-art methods. Our network shows excellent performance with an average error of only 0.12.
Our method gives excellent results demonstrating that TGNet can understand 3D model shapes very
well. Fig. 6 summarizes the normal estimation results of our method. The surface normals predicted
by TGNet are very close to ground truth. Even complex 3D models, such as airplanes, can be estimated
accurately.
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Table 3: Normal estimation on Modelnet40

Method Input Points Error

PointNet [8] xyz 1024 0.47
PointNet++ [12] xyz 1024 0.29
RS-CNN [17] xyz 1024 0.15
PCT [14] xyz 1024 0.13
TGNet (ours) xyz 1024 0.12

Figure 6: Normal estimation results on ModelNet40

4.4 Ablation Studies
We performed numerous experiments on the dataset ModelNet40 to evaluate the network entirely.

Table 4 shows the ablation result. First, we introduce our baseline method for making comparisons.
To replace TGSG, we use KNN for sampling and grouping and use shared MLPs to ensure that the
features of their outputs have the same dimensions. TGA module is replaced by PNL (point nonlocal
cell) of PointASNL. The accuracy of the baseline is only 92.8%. The impact is investigated by simply
replacing TGNet’s components to the baseline architecture.

For model B, our method shows a 0.4% improvement over the baseline when using TGSG for
model B. In contrast with the baseline, TG is used to sample and group geometric information. This
illustrates the effectiveness of our Tree Graph in capturing geometric information. For model C, our
method shows a 0.6% improvement over the baseline when using TGA. This illustrates the effectiveness
of our TGA in aggregating local and non-local information. Our model TGNet achieved an accuracy
of 93.8 after using TGSG blocks and TGA blocks. The ablation experiment shows that introducing
more geometric information into the local features by explicit methods can effectively improve the
point cloud processing.
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Table 4: Ablation studies of TGNet

Model TGSG TGA Acc (%)

A 92.8
B � 93.2
C � 93.4
TGNet � � 93.8

4.5 More Experiments on TGNet
As mentioned before, adjusting the values of m and l enables TGNet to tradeoff local information

with long-range dependent information. In this subsection, we use different number of curves and
nodes for experiments on the ModelNet40 dataset. As shown in Fig. 7, we perform five experiments,
and the product of l and m for each experiment is 24 except the third time, which is 25. When m equals
5 and l equals 5. We obtain the best accuracy of 93.8% experimental results.
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Figure 7: Test result of using different number of m and l for experiments. The number of curves m = 3
and the number of nodes l = 8 are denoted m3l8. The other cases (m4l6, m5l5, m6l4, m8l3) are similar
to m3l8

The experiments show that simply increasing the number of curves or the number of nodes does
not lead to better results when the number of learnable parameters is close. The best results can only
be achieved with a reasonable trade-off between locally and remotely relevant information.

4.6 Visualization for Tree Graph
In this subsection, we visualize shallow Tree Graphs to further understand it. Since the deep Tree

Graph has more high-level semantic information, a local point feature may even represent the entire
point cloud geometric information. We cannot map the deep Tree Graph to the geometric space, so
we do not discuss the deep Tree Graph in this subsection.

Our Tree Graph consists of several lines extending in different directions in feature space. However,
in contrast to curves in feature space, curves do not extend in one direction. In Fig. 8, we can clearly
see that the nodes of the curve (also known as query points) are mainly concentrated in the corners
and edges of the point cloud. These points can provide robust geometric information for the feature
calculation of the center points (also known as key points). Our Tree Graphs aggregate these robust
regions with distinct geometric structures as input to the next layer of the network. This is where our
method differs from others and why our method is more effective.
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Figure 8: Visualization for tree graph. Black balls are the center of tree graph. Blue-green balls are the
points of point clouds. Others are the node of curves

5 Conclusion

In this paper, we propose a novel method TGNet, which obtains Tree Graphs with local and non-
global long-range dependencies by explicit sampling and grouping rules. The aggregation of features
is then performed in a cross-attention mechanism. In this way, the geometric spatial distribution of the
point cloud can be explicitly reasoned about, and the geometric shape information can be incorporated
into the local features. Due to these advantages mentioned above, our approach can achieve state-of-
the-art results on several point cloud object analysis tasks.
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