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ABSTRACT

In this study, the design of a computational heuristic based on the nonlinear Liénard model is presented using
the efficiency of artificial neural networks (ANNs) along with the hybridization procedures of global and local
search approaches. The global search genetic algorithm (GA) and local search sequential quadratic programming
scheme (SQPS) are implemented to solve the nonlinear Liénard model. An objective function using the differential
model and boundary conditions is designed and optimized by the hybrid computing strength of the GA-SQPS. The
motivation of the ANN procedures along with GA-SQPS comes to present reliable, feasible and precise frameworks
to tackle stiff and highly nonlinear differential models. The designed procedures of ANNs along with GA-SQPS are
applied for three highly nonlinear differential models. The achieved numerical outcomes on multiple trials using
the designed procedures are compared to authenticate the correctness, viability and efficacy. Moreover, statistical
performances based on different measures are also provided to check the reliability of the ANN along with GA-
SQPS.

KEYWORDS
Nonlinear Liénard model; numerical computing; sequential quadratic programming scheme; genetic algorithm;
statistical analysis; artificial neural networks

1 Introduction

In scientific fields, most of the real-world problems are observed in plasma physics, solid state
physics, mathematical biology, fluid dynamics, and chemical kinetics, which have been stated in the
form of differential systems [1]. Various approaches have been exploited to solve these types of models,
like Chebyshev polynomial based approximation scheme, closed-form scheme, spectral collocation
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method, subdomain finite element scheme, Bernoulli collocation method, predictor–corrector scheme,
variational iteration scheme, homotopy perturbation scheme, differential quadrature scheme, quantic
B-spline differential scheme, power series scheme, differential transformation scheme, Pade series
scheme and Legendre polynomial function approximation and so on [2–7].

The present study is related to solving a nonlinear Liénard model (NLM) using the efficiency
of artificial neural networks (ANNs) along with hybridization procedures of global search genetic
algorithm (GA) and local search sequential quadratic programming scheme (SQPS). All the above-
cited schemes have their own benefits and drawbacks, however, the stochastic computing efficiency
based on ANN along with GA-SQPS is neither been tested nor implemented to solve the stiff-natured
NLM. The NLM is mathematically given as [8]:{

f ′′ (�) + q(f )f ′ (�) + u(f ) = g(�),

f (�0) = A0, f ′(�0) = A1.
(1)

The above form of the NLM is used to generalize the damped springmass system as well as these
models have been applied in the physically substantial areas by taking different values of the q(f ),
u(f ) and g(�). In the above NLM, u(f ) is the restoring force, g(�) is the external force and q(f )f ′ (�)

is the damping force. By taking q(f ) = ε(f 2 − 1), u(f ) = f and g(�) = 0, the model form becomes
the nonlinear Van der Pol model based on the electronic vacillation [9]. The NLM is implemented in
the modeling of fluid mechanics [10]. Furthermore, the vacuum tube technology progressed by using
oscillating circuits based on the NLM [11].

Due to the huge importance of the NLM, the focus of the research community was to present the
significant applications of this model [12–19]. The computing stochastic solvers are used to present the
solutions of various singular models, functional differential systems, biological systems, prediction
models and fractional applications [20–29]. However, the stochastic computing efficiency based on
the strength of ANN along with GA-SQPS has not been implemented to present the numerical
performances based on the NLM. These stochastic contributions proved the worth to observe the
robustness and accuracy-based ANN along with GA-SQPS for solving the NDM.

Few novel influences based on the stochastic scheme are shortened as:

• Design of ANN along with GA-SQPS is presented successfully for solving the NLM.

• The matching of achieved and exact results for three different problems based on the NLM
establish convergence, reliability and precision.

• The values of the absolute error (AE) are obtained in good measures for solving each example
based on the NLM.

• The consistent, accurate performance is observed through statistical observations on multiple
trials of ANN along with GA-SQPS in terms of semi-interquartile range (S.I.R), mean absolute
deviation (MAD), Nash Sutcliffe Efficiency (NSE) and Theil’s Inequality Coefficient (TIC)
metrics.

• Beside sensibly precise continuous input training interval, ease in the concept, robustness,
smooth implementable training, extendibility and stability are other commendable proclama-
tions for the designed ANN along with GA-SQPS.

The rest of the paper is organized as; Section 2 presents the designed procedure, optimization
process and statistical performances. Section 3 describes the discussions of the results. Section 4 shows
the conclusions and upcoming research directions.
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2 Methodology

This section presents the design of the ANN along with GA-SQPS measures to solve the nonlinear
Liénard differential model. The detail of fitness function is accessible using the mean square error
along with the learning practice of the hybrid computing GA-SQPS.

2.1 Mathematical ANN Modeling
The ANNs have been exploited to solve various applications arising in numerous fields [30].

The proposed results are signified as f̂ (�), while f̂ (n) (�) is the nth derivative. The mathematical
terminologies are given as:

f̂ (�) =
k∑

P=1

aPL (wP� + bP) , (2)

f̂ (n) (�) =
k∑

P=1

aPL(n) (wP� + bP) ,

where k signifies the neurons, L is the activation function and [aP, wP, bP] denote the pth component
form of [a, w, b]. The log-sigmoid L(�) = 1/(1 + e−�) activation function in the networks is written
as:

f̂ (�) =
k∑

P=1

aP

(
1

1 + e−(wP�+bP)

)
, (3)

f̂
′
(�) =

k∑
P=1

aPwP

(
e−(wP�+bP)

(1 + e−(wP�+bP))
2

)
,

...

f̂ (n) (�) =
k∑

P=1

aPwP

(
e−(wP�+bP)

(1 + e−(wP�+bP))
n+1 − e−(n+1)(wP�+bP)

(1 + e−(wP�+bP))
n · · ·

)
.

An error based fitness function (EFit) is given as:

EFit = EFit−i + EFit−ii. (4)

Here EFit−i and EFit−ii are the fitness functions associated to NLM and its boundary conditions,
given as:

EFit = 1
N

N∑
P=1

(
f ′′ + q (fP) f ′

P + u (fP) − gP

)2 + 1
2

((
f̂0 − A0

)2

+
(

f̂
′

0 − A1

)2
)

, (5)

where Nh = 1, fP = f (�) , q (f ) = q (fP) , U (f ) = U (fP) and gP = gh. One may describe the Eq. (1)
with the availability of suitable weights W , i.e., EFit → 0.

2.2 Optimization Procedure: GA-SQPS
The optimization processes to solve the nonlinear Liénard differential model using the designed

ANN along with GA-SQPS measures are provided in this section.



204 CMES, 2023, vol.136, no.1

GA is an optimization based global search technique work to present the solutions of the linear
and nonlinear networks. It is normally implemented to regulate the precise population results for
numerous steep/complex systems based on the optimal training performance. GA is applied recently
as automatic clustering [31], molecular sequence alignment, bioinformatics [32], energy efficiency
and thermal comfort in building design [33], structural optimization [34], weight setting problem in
OSPF/IS-IS routing [35], assembly sequences [36], image annotation [37], CNN template learning [38]
and risk-based partner selection problem [39].

The performance based on the GA optimization converges rapidly by the hybridization with the
local search scheme by taking its best values as initial inputs. Therefore, an efficient SQPS, i.e., a local
search technique is implemented in the process of hybridization. SQPS is used recently in unified full-
chip CMP model aware dummy fill insertion framework [40], quasilinear parabolic optimal control
problems [41], convex/nonconvex economic dispatch models [42], fractional order control design [43]
and economic dispatch of micro-grid [44] and some related other applications [45–47]. The designed
structure using the ANN procedures along with GA-SQPS for the NLM is presented in Fig. 1.

2.3 Performance Measures
The statistical operators performances of MAD, TIC, S.I.R and ENSE are provided together

with the global representations to check the reliability of the designed ANN along with GA-SQPS.
The detailed pseudocode based structure of the designed ANN along with GA-SQPS for solving the
NLM is presented in Table 1. The mathematical notations of the statistical operators are written as:

MAD =
n∑

r=1

∣∣∣fr − f̂r

∣∣∣ , (6)

TIC =

√
1
n

n∑
r=1

(
fr − f̂r

)2

(√
1
n

n∑
r=1

f 2
r +

√
1
n

n∑
r=1

f̂ 2
r

) , (7)

⎧⎨
⎩S.I.R = −1

2
× (q1 − q3) ,

q1 = 1st quartile & q3 = 3rd quartile,
(8)

NSE =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 −

n∑
r=1

(
fr − f̂r

)2

(
fr − f r

)2 , f r = 1
n

n∑
r=1

fr, (9)

ENSE = 1 − NSE. (10)
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Figure 1: Designed structure using the ANN procedures along with GA-SQPS for the NLM
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Table 1: Detailed structure of the designed ANN along with GA-SQPS for solving the NLM

GA procedure starts
Inputs: The values of the chromosomes are measured for same system
element: W = [a, w, b]
Population:Chromosome vactors: [aP, wP, bP]
Output: WGA−Best is the global weight vector
Initialization: For chromosomes selection, adjust WGA−Best.
FIT Estimation: Adjust the FIT (EFit) based population (P) in Eq. (5).

• Terminating values: Stop when [TolFun = 10−19], [E = 10−20],
[PopSize = 180] & [TolCon = 10−21], [StallLimit = 135],
[Generations = 60].

storage
Ranking: EFit, WGA−Best in population.
Storage: time, WGA−Best, EFit, count of function and iterations.

GA Ends
Start of SQPS

Inputs: WGA−Best

Output: The optimal GA-SQPS weights: WGA−SQPS

Initialize: W GA−Best, Iterations & Projects.
Dismissing Criteria: Stop, when [EFit = 10−19],
[MaxFunEvals = 265000], [Iterations = 400] &[TolFun = 10−19].
FIT approximation: Calculate EFit & WGA−SQPS for system 5.
Adjustments: fmincon for SQPS, EFit to update the ‘W’ using Eq. (5).
Accumulate: Transmute WGA−SQPS, Epochs, time, EFit and count of function
for the SQPS.

SQPS End

3 Simulations and Results Performance

The current section present the result discussions for three different problems based NLM by
applying the ANN along with GA-SQPS. The graphical and numerical measures have been provided
to assess the convergence and accuracy.

Problem 1: Consider the NLM involving trigonometric ratios is given as [8]:{
f ′′ (�) + f (�)f ′ (�) + f (�) + f 2(�) = cos2(�) − cos(�) sin(�),

f (0) = 1, f ′(0) = 0.
(11)

The exact form of the solution is cos(�), the error function is given as:

EFit = 1
N

N∑
m=1

(
f̂ ′′

p + f̂p f̂ ′
p + f̂p + f̂ 2

p − cos2
(
�p

) + sin
(
�p

)
cos

(
�p

))2

+ 1
2

((
f̂p − 1

)2

+
(

f̂ ′
p

)2
)

. (12)
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Problem 2: Suppose the higly NLM is written as [8]:⎧⎪⎨
⎪⎩

f ′′ (�) − f (�) + 4f 2(�) − 3f 5(�) = 0,

f (0) =
(√

2
)−1

, f ′ (0) =
√

2
4

.
(13)

The exact solution of Eq. (13) is

√
1 + tanh(�)

2
and the error function is given as:

EFit = 1
N

N∑
m=1

(
f̂ ′′

p − f̂p + 4f̂ 2
p − 3f̂ 5

p

)2

+ 1
2

⎛
⎝(

f̂0 −
(√

2
)−1

)2

+
(

f̂ ′
0 −

√
2

4

)2
⎞
⎠ . (14)

Problem 3: Suppose the higly NLM is shown as [8]:⎧⎨
⎩

f ′′ (�) − f (�) + 4f 2(�) + 3f 5(�) = 0,

f (0) =
(√

1 + √
2
)−1

, f ′ (0) = 0.
(15)

The exact solution of Eq. (13) is

√
sech2

(�)

/ ((
1 − √

2
)

sech2
(�) + 2

√
2
)

and the error func-

tion is given as:

EFit = 1
N

N∑
m=1

(
f̂ ′′

p − f̂p + 4f̂ 2
p + 3f̂ 5

p

)2

+ 1
2

⎛
⎝(

f̂0 −
(√

1 + √
2
)−1

)2

+
(

f̂ ′
0

)2

⎞
⎠ . (16)

The results based on NLM for problems 1 to 3 have been performed through the numerical
performance of global and local search GA-SQPS. These optimization procedures of GA-SQPS is
provided in Table 1 and the whole practice is repeated for fifty multiple runs to produce a larger data
of parameters. The proposed results through the designed ANN along with GA-SQPS are provided
using the trained weights and mathematically given as:

f̂P−1 (�) = −1.6260
1 + e−(1.3507�−0.980)

− 1.8911
1 + e−(1.4324�+1.803)

− 0.0266
1 + e−(−0.1345�−0.554)

− 0.4761
1 + e−(−0.880�−0.7503)

− 2.4929
1 + e−(1.3578�−2.348)

− 0.8664
1 + e−(0.4878�−1.674)

+ 0.6385
1 + e−(1.0891�−0.0251)

− 0.0247
1 + e−(1.138�+0.8001)

− 0.4066
1 + e−(−1.049�−2.011)

− 0.9207
1 + e−(−1.0495�−2.011)

, (17)

f̂P−2 (�) = −0.9906
1 + e−(−0.305�+2.876)

− 1.2110
1 + e−(−0.981�−0.291)

+ 1.0046
1 + e−(0.798�−6.839)

− 0.0569
1 + e−(7.448�+11.626)

− 0.6015
1 + e−(14.55�+10.770)

− 15.2797
1 + e−(0.210�−11.497)

+ 1.9942
1 + e−(0.820�+1.210)

− 0.5041
1 + e−(−2.929�−3.345)

− 0.2304
1 + e−(8.494�+8.144)

+ 0.7976
1 + e−(−1.361�+1.195)

, (18)
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f̂P−3 (�) = −1.8276
1 + e−(−0.135�−1.29624)

− 0.2899
1 + e−(−0.263�−1.609)

− 2.5910
1 + e−(−1.609�−3.645)

− 0.0604
1 + e−(−1.162�−3.645)

− 1.5869
1 + e−(−0.031�+0.5801)

− 1.7296
1 + e−(−2.14�+0.087)

+ 0.1134
1 + e−(−0.099�+0.378)

− 0.9385
1 + e−(1.210�−0.7525)

+ 0.4930
1 + e−(−0.085�−1.0692)

− 1.9195
1 + e−(−2.25�−0.339)

. (19)

The graphical measures are provided in Figs. 2 to 6 for each problem based on a nonlinear
Liénard differential model using 30 numbers of variable, 10 neurons with [0,1] input and 0.05 step size.
The obtained results based on best weights are given in Figs. 2a–2c using the above Eqs. (17)–(19).
The comparison plots based on the exact, best and mean solutions are accessible in Figs. 2d–2f. The
mean and best results are plotted using the proposed ANN along with GA-SQPS and presented with
the true results. The matching of the proposed and true outcomes validates the correctness of the
proposed ANN along with GA-SQPS. The AE plots based on the best and mean solutions are drawn
in Subfigures 2g and 2h. It is observed that the AE best values for problems 1–3 lie 10−07 to 10−10,
10−05 to 10−07 and 10−06 to 10−08, respectively. The mean AE values were found around 10−02–10−04,
10−03–10−04 and 10−02–10−03 for problems 1, 2 and 3. The performance procedures for the best, mean
and worst results for the NLM is provided in Figs. 2j–2l. For problem 1, the best MAD, TIC and
ENSE operator values lie around 10−07 to 10−10, 10−10 to 10−11 and 10−13–10−15, the values based on the
mean operators of MAD, TIC and ENSE lie as 10−03–10−05, 10−06–10−08 and 10−03–10−04, while the worst
MAD, TIC and ENSE operators found as 10−01–10−02, 10−04–10−05 and 10−02–10−03. For 2nd problem,
the best MAD, TIC and ENSE operators are calculated as 10−05–10−06, 10−08–10−09 and 10−04–10−05,
the MAD, TIC and ENSE operator mean values are 10−03–10−04, 10−07–10−08 and 10−02–10−04, while the
MAD, TIC and ENSE worst operator measures found as 10−02–10−03, 10−05–10−06 and 10−03–10−04. For
3rd problem, the best MAD, TIC and ENSE operators found as 10−05–10−06, 10−09–10−10 and 10−10–10−11,
the MAD, TIC and ENSE mean operators are 10−03–10−04, 10−06–10−08 and 10−02–10−04, while the MAD,
TIC and ENSE operator worst performances found as 10−01–10−02, 10−03–10−05 and 10−02–10−03. These
best presentations through the comparison of the results in the form of AE along with the statistical
operators indicate the correctness of the proposed scheme for the NLM.

The statistical representations for Fitness (FIT), TIC, MAD and ENSE together with the
histograms are provided in Figs. 3–6. The best FIT values are observed in Fig. 3, which are reported
as 10−07–10−09, 10−08–10−11 and 10−04–10−08 for 1–3 problems. Fig. 4 shows the optimal TIC values
calculated as 10−08 to 10−11 for problem 1 to 3. Fig. 5 presents the optimal MAD performances, which
are observed as 10−04 to 10−08 for 1 to 3 problem. Fig. 6 illustrates the opimal ENSE performances,
which are observed around 10−09–10−14 for 1st problem, 10−07–10−08 for 2nd problem and 10−04 to 10−07

for 3rd problem. In another sense, one can observe based on these performances that almost 85%
of executions achieved a very reasonable and precise accuracy level of the statistical measures. The
optimization tool built-in command MATLAB has been used in this study for the optimization
procedure as well as other simulation studies.



CMES, 2023, vol.136, no.1 209

(a) Best weights : 1st problem (b)  Best weights : 2nd problem (c) Best weights : 3rd Problem

(d) Solution plots of problem 1 (e) Solution plots of problem 2 (f) Solution plots of problem 3

(g) AE for problem 1 (h) AE for problem 2 (i) AE for problem 3

(j) Problem 1: Performance measures (k) Problem 2: Performance measures (l) Problem 3: Performance measures

Figure 2: Best weights, solution plots, AE and performance indices for each problem of NLM
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(a) Histogram (1) (b) Histogram (2) (c) Histogram (3)

(f) Boxplot (3)

Convergence FIT measures for problems 1 to 3 of the NLM

(d) Boxplot (1) (e) Boxplot (2)

Figure 3: Performances of the FIT convergence for problems 1 to 3 based NLM
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Convergence TIC measures for problems 1 to 3 of the NLM

(a) Histogram (1) (b) Histogram (2) (c) Histogram (3)

(d) Boxplot (1) (e) Boxplot (2) (f) Boxplot (3)

Figure 4: Performances of the TIC convergence for problems 1 to 3 based NLM
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(a) Histogram (1) (b) Histogram (2) (c) Histogram (3)

(d) Boxplot (1) (e) Boxplot (2) (f) Boxplot (3)

Convergence MAD measures for problems 1 to 3 of the NLM

Figure 5: Performances of the MAD convergence for problems 1 to 3 based NLM
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(a) Histogram (1) (b) Histogram (2) (c) Histogram (3)

(d) Boxplot (1) (e) Boxplot (2) (f) Boxplot (3)

Convergence ENSE measures for problems 1 to 3 of the NLM

Figure 6: Performances of the ENSE convergence for problems 1 to 3 based NLM
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In order to observe the precision as well as accuracy level of the proposed ANN along with GA-
SQPS, the statistical performances based on minimum (MIN), Maximum (MAX), median (MED),
Mean, S.I.R and Standard deviation (STD) are considered for 50 independent executions in Tables 2–4
for each problem of the NLM. The MIN operator shows the ideal results, whereas MAX values shows
the bad values and the S.I.R operator. The small dependable values of the MEAN, STD, MED, MIN,
S.I.R and even MAX values for the NLM show the accuracy of the stochastic performances to solve
the NLM.

Table 2: Statistical measures of the proposed ANN along with GA-SQPS for the NLM based
problem 1

� Problem 1 based on the NLM
MIN MAX MED MEAN S.I.R STD

0 7.1801E-10 6.3433E-02 1.1808E-06 9.1625E-04 3.1352E-06 7.5805E-03
0.05 3.4027E-10 6.8192E-02 1.0219E-06 9.8453E-04 3.0456E-06 8.1493E-03
0.1 2.4784E-08 7.1993E-02 1.1815E-06 1.0393E-03 2.9925E-06 8.6036E-03
0.15 3.5463E-08 7.5060E-02 1.1622E-06 1.0835E-03 2.7579E-06 8.9702E-03
0.2 5.7298E-09 7.7566E-02 1.6914E-06 1.1196E-03 3.1028E-06 9.2696E-03
0.25 6.4170E-10 7.9581E-02 2.2558E-06 1.1486E-03 2.5876E-06 9.5105E-03
0.3 1.8354E-08 8.1071E-02 2.2730E-06 1.1702E-03 2.2627E-06 9.6885E-03
0.35 1.3211E-08 8.1953E-02 2.5263E-06 1.1829E-03 2.6208E-06 9.7939E-03
0.4 2.2913E-09 8.2214E-02 2.4241E-06 1.1864E-03 3.1175E-06 9.8251E-03
0.45 4.4739E-09 8.1966E-02 2.2484E-06 1.1825E-03 3.1785E-06 9.7956E-03
0.5 1.3619E-08 8.1340E-02 1.9611E-06 1.1730E-03 2.8202E-06 9.7207E-03
0.55 3.3247E-08 8.0349E-02 1.7123E-06 1.1581E-03 2.9199E-06 9.6023E-03
0.6 2.2385E-08 7.8935E-02 1.6185E-06 1.1371E-03 2.8555E-06 9.4334E-03
0.65 8.3347E-08 7.7118E-02 1.4602E-06 1.1105E-03 2.4927E-06 9.2163E-03
0.7 7.1063E-08 7.5022E-02 1.4809E-06 1.0804E-03 2.4540E-06 8.9658E-03
0.75 1.0672E-07 7.2750E-02 1.7591E-06 1.0480E-03 2.8649E-06 8.6943E-03
0.8 5.0016E-08 7.0292E-02 2.3777E-06 1.0131E-03 2.8329E-06 8.4005E-03
0.85 6.5628E-08 6.7574E-02 2.7571E-06 9.7450E-04 2.8030E-06 8.0756E-03
0.9 8.7921E-08 6.4589E-02 2.7358E-06 9.3220E-04 3.6340E-06 7.7188E-03
0.95 6.5819E-08 6.1465E-02 2.4349E-06 8.8786E-04 4.1125E-06 7.3454E-03
1 1.0204E-08 5.8337E-02 2.0280E-06 8.4327E-04 4.5129E-06 6.9715E-03

Table 3: Statistical measures of the proposed ANN along with GA-SQPS for the NLM based
problem 2

� Problem 2 based on the NLM
MIN MAX MED MEAN S.I.R STD

0 1.7302E-07 3.6327E-03 7.0372E-06 1.4608E-04 5.6257E-06 5.4135E-04
0.05 1.7891E-06 3.7776E-03 4.7283E-06 1.5545E-04 6.2104E-06 5.7515E-04
0.1 5.8262E-07 3.9212E-03 2.6224E-06 1.6482E-04 8.3853E-06 6.0992E-04

(Continued)
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Table 3 (continued)

� Problem 2 based on the NLM
MIN MAX MED MEAN S.I.R STD

0.15 5.4155E-08 4.0506E-03 1.1021E-06 1.7447E-04 1.0946E-05 6.4506E-04
0.2 5.1690E-07 4.1594E-03 3.5857E-06 1.8567E-04 1.1396E-05 6.7920E-04
0.25 2.3866E-06 4.2467E-03 5.8671E-06 1.9663E-04 1.1626E-05 7.1201E-04
0.3 8.2746E-07 4.3152E-03 8.1877E-06 2.0717E-04 1.1995E-05 7.4315E-04
0.35 8.9591E-07 4.3700E-03 1.0517E-05 2.1755E-04 1.2307E-05 7.7263E-04
0.4 7.0989E-07 4.5908E-03 1.2835E-05 2.2785E-04 1.2025E-05 8.0077E-04
0.45 2.5323E-07 4.7998E-03 1.4898E-05 2.3811E-04 1.1499E-05 8.2817E-04
0.5 9.1944E-07 5.0028E-03 1.7423E-05 2.4906E-04 1.1291E-05 8.5539E-04
0.55 2.3375E-07 5.2088E-03 1.9802E-05 2.6026E-04 1.5849E-05 8.8350E-04
0.6 4.4174E-07 5.4271E-03 2.2324E-05 2.7182E-04 1.7238E-05 9.1359E-04
0.65 1.2717E-06 5.6665E-03 2.4897E-05 2.8396E-04 1.8671E-05 9.4668E-04
0.7 2.3874E-06 5.9348E-03 2.7536E-05 2.9689E-04 2.0019E-05 9.8368E-04
0.75 3.8665E-06 6.2383E-03 3.0249E-05 3.1081E-04 2.1175E-05 1.0254E-03
0.8 5.7209E-06 6.5814E-03 3.3116E-05 3.2591E-04 2.1760E-05 1.0724E-03
0.85 7.8909E-06 6.9673E-03 3.5987E-05 3.4239E-04 2.1480E-05 1.1252E-03
0.9 7.2039E-06 7.3972E-03 3.8913E-05 3.6048E-04 2.1159E-05 1.1842E-03
0.95 7.6656E-06 7.8712E-03 4.1952E-05 3.8048E-04 2.0935E-05 1.2495E-03
1 9.6419E-06 8.3877E-03 4.5191E-05 4.0261E-04 2.1076E-05 1.3212E-03

Table 4: Statistical measures of the proposed ANN along with GA-SQPS for the NLM based
problem 3

� Problem 3 based on the NLM
MIN MAX MED MEAN S.I.R STD

0 2.1534E-07 1.6424E-01 8.8862E-06 8.7643E-03 3.1187E-05 3.1426E-02
0.05 4.2019E-07 1.6300E-01 8.9334E-06 8.6753E-03 3.1378E-05 3.1136E-02
0.1 2.4513E-07 1.5997E-01 7.9213E-06 8.4790E-03 3.2051E-05 3.0484E-02
0.15 2.8576E-07 1.5518E-01 7.8354E-06 8.1761E-03 3.4157E-05 2.9475E-02
0.2 3.6012E-07 1.4868E-01 7.6024E-06 7.7692E-03 3.7129E-05 2.8124E-02
0.25 2.5432E-07 1.4057E-01 7.5275E-06 7.2632E-03 3.9778E-05 2.6451E-02
0.3 1.4575E-07 1.3094E-01 6.4040E-06 6.6649E-03 4.1350E-05 2.4481E-02
0.35 7.4969E-08 1.1994E-01 7.8612E-06 5.9827E-03 4.1531E-05 2.2245E-02
0.4 5.7261E-07 1.0770E-01 8.1248E-06 5.2274E-03 2.8618E-05 1.9777E-02
0.45 2.8892E-07 9.4382E-02 7.5199E-06 4.4116E-03 2.8471E-05 1.7118E-02
0.5 4.2034E-08 8.0137E-02 6.2860E-06 3.5486E-03 3.2206E-05 1.4309E-02
0.55 7.7385E-08 6.5122E-02 7.2406E-06 2.6567E-03 2.6535E-05 1.1404E-02
0.6 2.1992E-08 4.9488E-02 7.7698E-06 1.8206E-03 2.0812E-05 8.4639E-03
0.65 1.9363E-07 3.3379E-02 6.7901E-06 1.2347E-03 1.6867E-05 5.6341E-03
0.7 1.0930E-07 1.6930E-02 8.3385E-06 1.1406E-03 1.9976E-05 3.5022E-03

(Continued)
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Table 4 (continued)

� Problem 3 based on the NLM
MIN MAX MED MEAN S.I.R STD

0.75 7.2498E-07 2.4203E-02 1.0703E-05 1.1245E-03 2.0195E-05 3.9162E-03
0.8 6.9259E-07 3.7394E-02 1.1970E-05 2.0373E-03 2.4465E-05 6.1833E-03
0.85 1.4595E-08 5.0265E-02 1.2462E-05 2.9488E-03 2.8236E-05 9.0399E-03
0.9 2.1956E-07 6.2720E-02 1.2206E-05 3.8425E-03 3.1904E-05 1.2040E-02
0.95 1.0596E-06 7.4680E-02 1.1778E-05 4.7159E-03 3.5565E-05 1.5057E-02
1 9.2954E-07 8.6073E-02 1.0857E-05 5.5676E-03 3.8833E-05 1.8043E-02

The convergence measure performances are further accompanied based on the global operators
of FIT, TIC, MAD and ENSE for fifty executions given in Table 5. For problems 1 to 3 based on
the NLM, the MIN performances of these operators lie as 10−04–10−06, 10−03–10−04, 10−06–10−07 and
10−03–10−06. The S.I.R performances of these operators found as 10−03–10−06, 10−02–10−04, 10−06–10−07

and 10−03–10−05. These performances based global operators confirm the exactness of the designed
scheme.

Table 5: Global operator performances for each problem of the NLM

Index Problem G.FIT G.TIC G.MAD G.ENSE

MIN S.I.R MIN S.I.R MIN S.I.R MIN S.I.R

1 1.57E-04 1.31E-03 1.07E-03 8.83E-03 5.06E-07 4.19E-06 6.18E-04 5.17E-03
f̂ (�) 2 2.41E-06 8.85E-06 2.57E-04 8.74E-04 1.24E-07 4.25E-07 6.66E-06 3.32E-05

3 6.58E-04 2.72E-03 4.86E-03 1.72E-02 1.92E-06 6.19E-06 1.70E-03 7.76E-03

The computational cost of the proposed ANN along with GA-SQPS is inspected through the
parameter variation of the typical time, completed cycles/iterations and executed function count. The
complexity investigations of each problem of the NLM based on the numerical measures are provided
in Table 6. One can find that the average generations, executed time and function assessment lie around
113.2780, 204.7667 and 13914.3238 for each problem of the NLM. These numerical measures are
provided to associate the efficiency of the ANN along with GA-SQPS.

Table 6: Complexity performances for the NLM

Problem
Iterations Implemented time Function counts

MIN STD MIN STD MIN STD

1 109.8143 35.0169 205.0000 8.7654 13396.3857 943.5160
2 116.5227 36.1397 204.3000 5.8566 14380.7000 2437.5300
3 113.4971 39.8903 205.0000 9.1095 13965.8857 2330.4541
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4 Conclusion

The present work is related to solving the nonlinear Liénard model numerically through the
computational intelligent ANN procedures and GA-SQPS. The nonlinear Liénard differential model
is observed in the generalization of a damped spring mass and the Van der Pol system. The nonlinear
Liénard equations are implemented in the modeling of fluid dynamics, vacuum tube technology/radio
and oscillating circuits. The optimization of the objective function has been performed through the
approximation capability of ANN along with GA-SQPS. The proposed ANN along with GA-SQPS is
applied for three problems based on the NLM. The correctness of the scheme is observed by comparing
the proposed results with the exact solutions. The detail of the AE, performance measures through
different indices, convergent plots and weight vectors have also been provided. The accurate and
specific presentations of the scheme are observed as 6 to 8 decimal places of accuracy level from the
exact obtainable solutions for each example of NDM. The statistical presentations of MIN, MED,
MAX, S.I.R, MEAN and STD measures certify the convergence of the designed scheme for the
numerical treatment of the nonlinear Liénard differential model.

In upcoming work, the NLM can be numerically treated by using the swarming optimizations
scheme based on the hidden layers of the Meyer and Morlet wavelet neural networks. Moreover, these
procedures can be used to solve various nonlinear and fractional order models [48–65].
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